http://ocw.mit.edu
6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.006 Recitation

Build 2008.36

6.006 Proudly Presents

- PS 6
- Super Mario Brothers
- Points Back on Tests
- DP vs. Minimum-Cost Paths

PS 6 Out

- The best way to gauge your understanding of Dynamic Programming
- Do fib (fibonacci) over the weekend
- Come get help if you can't do it quickly!
- Do the other problems as soon as you understand them

Beating Super Mario: The Vision

I. Abstract into 6.006 problem

2. Solve using DP

3. pwn

Platforming I

- P platforms, at $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
- Starting on platform I, want to get to platform P

$$
\begin{array}{r}
\frac{5:(2,7)}{6:(2,6)} \\
\underline{4:(1,4)} \\
\underline{2:(2,3)}
\end{array}
$$

- Always move right
- Minimum \# moves

I: $(0,0)$

Platforming II

- Moves from (x, y)
- walk: $(x+1, y)$
- jump: $(x+1, y+I)$ or (x $+1, y+2)$
- super-jump: $(x+1, y+3)$ or $(x+1, y+4)$

$$
\begin{gathered}
\frac{\frac{5:(2,7)}{6:(2,6)}}{\frac{4:(1,4)}{2:(2,3)}} 7\left(\frac{3:(3,2)}{3:(1,1)}\right.
\end{gathered}
$$

Platforming: Solution I

- Problem: the minimum number of moves from platform I to platform P
- Optimal sub-structure
- assume the optimal solution stops at platform Q right before moving to P
- then the optimal solution must get from platform I to Q w/ the min. no. of moves

Platforming: Solution II

- $d[p]=$ minimum \# of moves to get to P
- parent_P[p] = parent platform for P
- parent_m[p] = parent move for P
- bottom-up solution: sort the platforms by their x coordinate, then d[p] only depends on d[p'] where p' < p

Platforming: Running Time

- Subproblems
- one per platform - P in total
- Time per subproblem
- looking back at previous platforms - O(P)
- Total running time $-\mathrm{O}\left(\mathrm{P}^{2}\right)$

Points Back on Tests

- Multiple-choice test (think SATs)
- Each answer is an alphabet letter (for SAT, the alphabet is $\mathrm{A}-\mathrm{E}$)
- Single correct answer for each question Qtn. Your Ans. Correct

I	A	A
2	B	C
3	A	B
4	C	A
5	D	C
6	A	D
7	E	A
8	E	E

Points Back on Tests II

- Step I: Claim that you made an error when transcribing answers
- Step 2: Hire a damn good lawyer, claim that you did multiple mistakes
- Outcome: Longest 7 Common Subsequence

Qtn.	Your Ans. Correct	
I	A	A
2	B	C
3	A	B
4	C	A
5	D	C
6	A	D
7	E	A
8	E	E

Points Back on Tests: Towards a Solution

- $x=[A, B, A, C, D, A, E]$
- $y=[A, C, B, A, A, B, E]$
- Solution: a list of pairs $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right)$ s.t.
- $x\left[s_{i}\right]=y\left[\mathrm{t}_{\mathrm{i}}\right]$
- $\mathrm{s}_{\mathrm{i}}<\mathrm{s}_{\mathrm{j}}$ and $\mathrm{t}_{\mathrm{i}}<\mathrm{t}_{\mathrm{j}}$ for any $\mathrm{i}_{\mathrm{i}}<{ }_{\mathrm{j}}$

Points Back on Tests: Solution I

- Want: the longest common sequence in x, y
- Optimal sub-structure:
- assume answer ($\left.\mathrm{s}_{1}, \mathrm{t}_{1}\right) \ldots\left(\mathrm{s}_{\mathrm{n}-1}, \mathrm{t}_{\mathrm{n}-1}\right),\left(\mathrm{s}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)$
- then $\left(s_{1}, t_{1}\right)$... $\left(s_{n-1}, t_{n-1}\right)$ must be the longest common sequence of $x\left[1: s_{n-1}\right]$ and $x\left[1: t_{n-1}\right]$

Points Back on Tests: Solution II

- $\mathrm{d}[\mathrm{i}][\mathrm{i}]=$ len. of max. common sequence of $x[1: i]$ and $y[1: j]$
- $d[0][\mathrm{j}]=0, \mathrm{~d}[\mathrm{i}][0]=0$
- d[i][i] only depends on d[i-I][j-I], d[i-I][i], and $\mathrm{d}[\mathrm{i}][\mathrm{j}-\mathrm{I}]$, so we can build d bottom-up for i from 0 to len (x) and for j from 0 to len(y)

DP vs. Min-Cost Paths: Platforming I

- Each platform is a node
- A move between P and Q is a directed edge (P ,
$\frac{5:(2,7)}{6:(2,6)}$
- Want: min-cost path between node I and P

4: $(1,4)$
2: $(2,3)$
$7:(3,2)$
3: (1, 1)
I: $(0,0)$

DP vs. Min-Cost Paths: Platforming II

- We only move right \Rightarrow
all edges are from left to right \Rightarrow sorting by x
computes a topologic ordering
- Bottom-up DP is the same as computing single-source min-cost paths in a DAG

DP vs. Min-Cost Paths: Points Back on Tests I

- subproblems: d[i][i] \Rightarrow a node is a tuple (i, j)
- 0-weight edges from (i,j) to ($\mathrm{i}, \mathrm{j}+\mathrm{I}$) and to ($\mathrm{i}+\mathrm{I}, \mathrm{j}$)
- Edge (i, j) to $(\mathrm{i}+\mathrm{I}, \mathrm{j}+\mathrm{I})$ has weight I if $x[i]=y[i]$
- Want: max-cost path from $(0,0)$ to $(|x|,|y|)$

Qtn. Your Ans. Correct

I	A	A
2	B	C
3	A	B
4	C	A
5	D	C
6	A	D
7	E	A
8	E	E

DP vs. Min-Cost Paths: Points Back on Tests I

- Edges are (i,j) to (i+I, j), ($\mathrm{i}+\mathrm{I}, \mathrm{j}+\mathrm{I}$) and $(\mathrm{i}, \mathrm{j}+\mathrm{I}) \Rightarrow$ lexicographical ordering is a topological order
- So we can do min-cost path in DAGs by multiplying edges by -I
- DP does exactly that!

Qtn. Your Ans. Correct

I	A	A
2	B	C
3	A	B
4	C	A
5	D	C
6	A	D
7	E	A
8	E	E

