MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

### 6.006 Recitation

Build 2008.36

# 6.006 Proudly Presents

#### • PS 6

- Super Mario Brothers
- Points Back on Tests
- DP vs. Minimum-Cost Paths

### PS 6 Out

- The best way to gauge your understanding of Dynamic Programming
- Do fib (fibonacci) over the weekend
  - Come get help if you can't do it quickly!
- Do the other problems as soon as you understand them

### Beating Super Mario: The Vision

I. Abstract into 6.006 problem

2. Solve using DP

#### 3. pwn

### Platforming I

- P platforms, at (x<sub>i</sub>, y<sub>i</sub>)
- Starting on platform I, want to get to platform P
- Pure pwnage <u>4: (</u>
   Always move right <u>3: (</u>
   Minimum # moves I: (0.0)

|         |         | 5: (2, 7)<br>6: (2, 6) |           |
|---------|---------|------------------------|-----------|
|         | 4:(1,4) | 2: (2, 3)              | 7: (3, 2) |
| l:(0,0) | 3:(1,1) |                        |           |

## Platforming II

- Moves from (x, y)
  - walk: (x+I, y)
  - jump: (x+1, y+1) or (x
     +1, y+2)
  - super-jump: (x+1, y+3) or (x+1, y+4)
  - fall: (x+d, y-d-d') as long as d+d' < 5</li>



# Platforming: Solution I

- Problem: the minimum number of moves from platform I to platform P
- Optimal sub-structure
  - assume the optimal solution stops at platform Q right before moving to P
  - then the optimal solution must get from platform I to Q w/ the min. no. of moves

## Platforming: Solution II

- d[p] = minimum # of moves to get to p
- parent\_p[p] = parent platform for p
- parent\_m[p] = parent move for p
- bottom-up solution: sort the platforms by their x coordinate, then d[p] only depends on d[p'] where p' < p</li>

# Platforming: Running Time

#### Subproblems

- one per platform P in total
- Time per subproblem
  - looking back at previous platforms O(P)
- Total running time O(P<sup>2</sup>)

### Points Back on Tests

|                                                           | Qtn. | Your Ans. | Correct |
|-----------------------------------------------------------|------|-----------|---------|
| <ul> <li>Multiple-choice test<br/>(think SATs)</li> </ul> |      | A         | A       |
|                                                           | 2    | B         | С       |
| • Each answer is an                                       | 3    | A         | B       |
| alphabet letter (for SAT,                                 | 4    | С         | A       |
| the alphabet is A-E)                                      | 5    | D         | С       |
| <ul> <li>Single correct answer</li> </ul>                 | 6    | A         | D       |
| for each question                                         | 7    | E         | A       |
|                                                           | 8    | E         | E       |

### Points Back on Tests II

- Step I: Claim that you made an error when transcribing answers
- Step 2: Hire a damn good lawyer, claim that you did multiple mistakes
- Outcome: Longest
   Common Subsequence

| Qtn. | Your Ans. | Correct |
|------|-----------|---------|
|      | A         | A       |
| 2    | B         | С       |
| 3    | A         | B       |
| 4    | C         | A       |
| 5    | D         | С       |
| 6    | A         | D       |
| 7    | E         | A       |
| 8    | Ε         | E       |

### Points Back on Tests: Towards a Solution

- x = [A, B, A, C, D, A, E]
- y = [A, C, B, A, A, B, E]
- Solution: a list of pairs (s<sub>i</sub>, t<sub>i</sub>) s.t.
  - $x[s_i] = y[t_i]$
  - $s_i < s_j$  and  $t_i < t_j$  for any i < j

## Points Back on Tests: Solution I

- Want: the longest common sequence in x, y
- Optimal sub-structure:
  - assume answer  $(s_1, t_1) \dots (s_{n-1}, t_{n-1}), (s_n, t_n)$
  - then (s<sub>1</sub>, t<sub>1</sub>) ... (s<sub>n-1</sub>, t<sub>n-1</sub>) must be the longest common sequence of x[l: s<sub>n-1</sub>] and x[l: t<sub>n-1</sub>]

## Points Back on Tests: Solution II

- d[i][j] = len. of max. common sequence of x[1:i] and y[1:j]
- d[0][j] = 0, d[i][0] = 0
- d[i][j] only depends on d[i-1][j-1], d[i-1][j], and d[i][j-1], so we can build d bottom-up for i from 0 to len(x) and for j from 0 to len(y)

# DP vs. Min-Cost Paths: Platforming I

• Each platform is a node

- A move between P and Q is a directed edge (P, Q) of cost I
- Want: min-cost path between node I and P
- Parents in DP: same as the parents in singlesource min-cost paths



# DP vs. Min-Cost Paths: Platforming II

- We only move right ⇒

   all edges are from left to right ⇒ sorting by x
   computes a topologic ordering
- Bottom-up DP is the same as computing single-source min-cost paths in a DAG



## DP vs. Min-Cost Paths: Points Back on Tests I

- subproblems: d[i][j] ⇒ a
   node is a tuple (i, j)
- 0-weight edges from (i,j) to (i,j+1) and to (i+1,j)
- Edge (i,j) to (i+1,j+1) has weight I if x[i] = y[j]
- Want: max-cost path from (0, 0) to (|x|, |y|)

| Qtn. | Your Ans. | Correct |
|------|-----------|---------|
|      | A         | A       |
| 2    | В         | С       |
| 3    | Α         | B       |
| 4    | С         | A       |
| 5    | D         | С       |
| 6    | A         | D       |
| 7    | E         | A       |
| 8    | Ε         | Ε       |

# DP vs. Min-Cost Paths: Points Back on Tests I

- Edges are (i,j) to (i+1, j), (i+1, j+1) and (i, j+1) ⇒
   lexicographical ordering is a topological order
- So we can do min-cost path in DAGs by multiplying edges by - I

• DP does exactly that!

| Qtn. | Your Ans. | Correct |
|------|-----------|---------|
|      | A         | A       |
| 2    | B         | С       |
| 3    | A         | B       |
| 4    | С         | A       |
| 5    | D         | С       |
| 6    | A         | D       |
| 7    | E         | A       |
| 8    | Ε         | E       |