
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm
http://ocw.mit.edu/

6.006 Recitation

Build 2008.36

6.006 Proudly Presents

• PS 6

• Super Mario Brothers

• Points Back on Tests

• DP vs. Minimum-Cost Paths

PS 6 Out

• The best way to gauge your understanding
of Dynamic Programming

• Do fib (fibonacci) over the weekend

• Come get help if you can’t do it quickly!

• Do the other problems as soon as you
understand them

Beating Super Mario:

The Vision

1. Abstract into 6.006 problem

2. Solve using DP

3. pwn

Platforming I

• P platforms, at (xi, yi)

• Starting on platform 1,
want to get to platform
P

• Pure pwnage

• Always move right

• Minimum # moves

5: (2, 7)
6: (2, 6)

4: (1,4)
2: (2, 3)

7: (3, 2)
3: (1,1)

1: (0,0)

Platforming II
• Moves from (x, y)

• walk: (x+1, y)

• jump: (x+1, y+1) or (x
+1, y+2)

• super-jump: (x+1, y+3)
or (x+1, y+4)

• fall: (x+d, y-d-d’) as
long as d+d’ < 5

5: (2, 7)
6: (2, 6)

4: (1,4)
2: (2, 3)

7: (3, 2)
3: (1,1)

1: (0,0)

Platforming: Solution I

• Problem: the minimum number of moves
from platform 1 to platform P

• Optimal sub-structure

• assume the optimal solution stops at

platform Q right before moving to P

• then the optimal solution must get from
platform 1 to Q w/ the min. no. of moves

Platforming: Solution II

• d[p] = minimum # of moves to get to p

• parent_p[p] = parent platform for p

• parent_m[p] = parent move for p

• bottom-up solution: sort the platforms by
their x coordinate, then d[p] only depends
on d[p’] where p’ < p

Platforming:

Running Time

• Subproblems

• one per platform - P in total

• Time per subproblem

• looking back at previous platforms - O(P)

• Total running time - O(P2)

Points Back on Tests

• Multiple-choice test
(think SATs)

• Each answer is an
alphabet letter (for SAT,
the alphabet is A-E)

• Single correct answer
for each question

Qtn. Your Ans. Correct
1 A A
2 B C
3 A B
4 C A
5 D C
6 A D
7 E A
8 E E

Points Back on Tests II

• Step 1: Claim that you
made an error when
transcribing answers

• Step 2: Hire a damn
good lawyer, claim that
you did multiple
mistakes

• Outcome: Longest
Common Subsequence

Qtn. Your Ans. Correct
1 A A
2 B C
3 A B
4 C A
5 D C
6 A D
7 E A
8 E E

Points Back on Tests:

Towards a Solution

• x = [A, B,A, C, D,A, E]

• y = [A, C, B,A,A, B, E]

• Solution: a list of pairs (si, ti) s.t.

• x[si] = y[ti]

• si < sj and ti < tj for any i < j

Points Back on Tests:

Solution I

• Want: the longest common sequence in x, y

• Optimal sub-structure:

• assume answer (s1, t1) ... (sn-1,tn-1),(sn,tn)

• then (s1, t1) ... (sn-1,tn-1) must be the
longest common sequence of x[1: sn-1]
and x[1: tn-1]

Points Back on Tests:

Solution II

• d[i][j] = len. of max. common sequence of
x[1:i] and y[1:j]

• d[0][j] = 0, d[i][0] = 0

• d[i][j] only depends on d[i-1][j-1], d[i-1][j],
and d[i][j-1], so we can build d bottom-up
for i from 0 to len(x) and for j from 0 to
len(y)

DP vs. Min-Cost Paths:
Platforming I

• Each platform is a node

• A move between P and
Q is a directed edge (P,
Q) of cost 1

• Want: min-cost path
between node 1 and P

• Parents in DP: same as
the parents in single-
source min-cost paths

5: (2, 7)
6: (2, 6)

4: (1,4)
2: (2, 3)

7: (3, 2)
3: (1,1)

1: (0,0)

DP vs. Min-Cost Paths:
Platforming II

• We only move right ⇒

all edges are from left to
right ⇒ sorting by x

computes a topologic
ordering

• Bottom-up DP is the
same as computing
single-source min-cost
paths in a DAG

5: (2, 7)
6: (2, 6)

4: (1,4)
2: (2, 3)

7: (3, 2)
3: (1,1)

1: (0,0)

DP vs. Min-Cost Paths:
Points Back on Tests I

• subproblems: d[i][j] ⇒ a

node is a tuple (i, j)

• 0-weight edges from (i,j)
to (i,j+1) and to (i+1,j)

• Edge (i,j) to (i+1,j+1) has
weight 1 if x[i] = y[j]

• Want: max-cost path
from (0, 0) to (|x|, |y|)

Qtn. Your Ans. Correct
1 A A
2 B C
3 A B
4 C A
5 D C
6 A D
7 E A
8 E E

DP vs. Min-Cost Paths:
Points Back on Tests I

• Edges are (i,j) to (i+1, j),
(i+1, j+1) and (i, j+1) ⇒

lexicographical ordering
is a topological order

• So we can do min-cost
path in DAGs by
multiplying edges by -1

• DP does exactly that!

Qtn. Your Ans. Correct
1 A A
2 B C
3 A B
4 C A
5 D C
6 A D
7 E A
8 E E

