
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm
http://ocw.mit.edu/

6.006 Recitation

Build 2008.14

Coming up next...

• Open addressing

• Karp-Rabin

• coming back from the dead to hunt us

Open Addressing

• Goal: use nothing but the table

• Hoping for less code, better caching

• Hashing ⇒ we must handle collisions

• Solution: try another location

))
))

Easy Collision handling

taken

taken

taken
taken
taken

here ☺

taken

• h(x) = standard hash 0
function 1

• if T[h(x)] is taken 2

3

• try T[h(x)+1] h(29) ➙ 4

h(29) + 1 ➙ 5

• then T[h(x) + 2] h(29) + 2 ➙ 6

• then T[h(x) + 3] h(29) + 3 ➙ 7

8

• just like parking a car 9

• h(k) grows up to H(k, i)
where i is the attempt
number

• first try T[H(k, 0)]

H(29, 0) ➙

Collision Handling:

Abstracting it Up

0
 taken
1 taken
2 taken
3 taken
4 taken
5 taken
6 taken
7 taken
8 taken
9 taken

• h(k) grows up to H(k, i)
where i is the attempt H(29, 1) ➙
number

• first try T[H(k, 0)]

• then T[H(k, 1)]

H(29, 0) ➙

Collision Handling:

Abstracting it Up

0
 taken
1 taken
2 taken
3 taken
4 taken
5 taken
6 taken
7 taken
8 taken
9 taken

• h(k) grows up to H(k, i)
where i is the attempt H(29, 1) ➙
number

• first try T[H(k, 0)] H(29, 2) ➙

• then T[H(k, 1)]

• then T[H(k, 2)]

H(29, 0) ➙

Collision Handling:

Abstracting it Up

0
 taken
1 taken
2 taken
3 taken
4 taken
5 taken
6 taken
7 taken
8 taken
9 taken

Collision Handling:

Abstracting it Up

• h(k) grows up to H(k, i)
where i is the attempt
number

• first try T[H(k, 0)]

• then T[H(k, 1)]

• then T[H(k, 2)]

• stop after trying all

H(29, 3) ➙ 0 taken
H(29, 1) ➙ 1 taken
H(29, 4) ➙ 2 taken
H(29, 9) ➙ 3 taken
H(29, 2) ➙ 4 taken
H(29, 5) ➙ 5 taken
H(29, 6) ➙ 6 taken
H(29, 7) ➙ 7 taken
H(29, 8) ➙ 8 taken
H(29, 0) ➙ 9 taken

Collision Handling:

Abstracting it Up

• H(k) =
<H(k, 0), H(k, 1), H(k,
2) ... >

• Linear probing, h(29) =
4, Hlinear(29) = ?

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>

• General properties?

H(29, 3) ➙ 0 taken
H(29, 1) ➙ 1 taken
H(29, 4) ➙ 2 taken
H(29, 9) ➙ 3 taken
H(29, 2) ➙ 4 taken
H(29, 5) ➙ 5 taken
H(29, 6) ➙ 6 taken
H(29, 7) ➙ 7 taken
H(29, 8) ➙ 8 taken
H(29, 0) ➙ 9 taken

Collision Handling:

Abstracting it Up

• Any collision handling strategy comes to:

• for key k, probe H(k,0), then H(k,1) etc.

• No point in trying the same place twice

• Probes should cover the whole table
(otherwise we raise ‘table full’ prematurely)

• Conclusion: H(k, 0), H(k, 1) ... H(k, m-1) are
a permutation of {1, 2, 3 ... m}

))
))

Linear Probing and

taken

taken

taken
taken
taken

here ☺

taken

Permutations
• h(29) = 4; H(29) = 0

1

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3> 2

3
• h(k) = h0(mod m); H(k) =
h(29) ➙ 4

<h0 mod m, (h0 + 1) mod h(29) + 1 ➙ 5

m, (h0 + 2) mod m, ... h(29) + 2 ➙ 6

(h0 + m - 1) mod m > h(29) + 3 ➙ 7

8
• m permutations (max m!)
9

Ideal Collision Handling

• Simple Hashing (collision by chaining)

• Ideal hashing function: uniformly

distributes keys across hash values

• Open Addressing

• Ideal hashing function: uniformly
distributes keys across permutations

• a.k.a. uniform hashing

Uniform Hashing:
Achievable?

• Simple mapping between
permutations of m and
numbers 1 ... m!

• Convert key to big
number, then use
permutation number
(bignum mod m!)

• ... right?

k mod 6 Permutation

0 <1, 2, 3>

1 <1, 3, 2>

2 <2, 1, 3>

3 <2, 3, 1>

4 <3, 1, 2>

5 <3, 2, 1>

Uniform Hashing:
Achievable?

• Number of digits in m!

• O(log(m!))

• O(m*log(m))

• Working mod m! is slow

• check your Python
cost model

k mod 6 Permutation

0 <1, 2, 3>

1 <1, 3, 2>

2 <2, 1, 3>

3 <2, 3, 1>

4 <3, 1, 2>

5 <3, 2, 1>

Working Compromise

• Why does linear probing suck?

• We jump in the table once, then walk

• Improvement

• Keep jumping after the initial jump

• Jumping distance: 2nd hash function

• Name: double hashing

Double Hashing: Math

• h1(k) and h2(k) are

hashing functions

0 taken
1
2 taken
3
4 taken
5 taken
6 taken
7 taken
8
9 taken

• h1(k) and h2(k) are 0

hashing functions 1

• H(k, 0) = h1(k) 2

3

h1(29) ➙ 4

5

6

7

8

9

Double Hashing: Math

taken

taken

taken
taken
taken
taken

taken

• h1(k) and h2(k) are 0

hashing functions 1

• H(k, 0) = h1(k) 2

3

• H(k, 1) = h1(k) + h2(k) h1(29) ➙ 4

5

6

h1(29)+h2(29) ➙ 7

8

9

Double Hashing: Math

taken

taken

taken
taken
taken
taken

taken

• h1(k) and h2(k) are h1(29)+2⋅h2(29) ➙ 0

hashing functions 1

• H(k, 0) = h1(k) 2

3

• H(k, 1) = h1(k) + h2(k) h1(29) ➙ 4

5

6

h1(29)+h2(29) ➙ 7

8

9

Double Hashing: Math

taken

taken

taken
taken
taken
taken

taken

• h1(k) and h2(k) are h1(29)+2⋅h2(29) ➙ 0
hashing functions 1

• H(k, 0) = h1(k) 2
h1(29)+3⋅h2(29) ➙ 3

• H(k, 1) = h1(k) + h2(k) h1(29) ➙ 4
5
6

h1(29)+h2(29) ➙ 7
8
9

Double Hashing: Math

taken

taken

here ☺
taken
taken
taken
taken

taken

• h1(k) and h2(k) are h1(29)+2⋅h2(29) ➙ 0
hashing functions 1

• H(k, 0) = h1(k) 2
h1(29)+3⋅h2(29) ➙ 3

• H(k, 1) = h1(k) + h2(k) h1(29) ➙ 4
5

• H(k, i) = h1(k) + i⋅h2(k) 6

h1(29)+h2(29) ➙ 7 • mod m

8

• you knew that, right? 9

Double Hashing: Math

taken

taken

here ☺
taken
taken
taken
taken

taken

1
2
3
4
5
6
7
8
9

Double Hashing Trap

• gcd(h2(k), m) must be 1

• solution 1 (easy to get)

• m prime, h2(k) = k
mod q (where q < m)

• solution 2 (faster, better)

• m = 2r (table can grow)

• h2(k) is odd (not even)

h1(29)+2⋅h2(29) ➙ 0 taken

h1(29)+3⋅h2(29) ➙
h1(29) ➙

h1(29)+h2(29) ➙

taken

here ☺
taken
taken
taken
taken

taken

Open Addressing:

Deleting Keys

h1(29)+2⋅h2(29) ➙ 0 taken

• Suppose we want to 1

delete kd stored at 7

2
 taken

here ☺
• Can’t simply wipe the h1(29)+3⋅h2(29) ➙ 3

entry, because key 29 h1(29) ➙ 4
 taken

wouldn’t be found 5
 taken

anymore	 6
 taken

• rember H(29) =	 h1(29)+h2(29) ➙ 7
 kd

<4, 7, 0, 3 ...>	 8

9
 taken

Open Addressing:

Deleting Keys

h1(29)+2⋅h2(29) ➙

• Entry meaning ‘deleted’

• Handling ‘deleted’ h1(29)+3⋅h2(29) ➙

• Search: Keep looking
h1(29) ➙

• Insert: Stop, replace
‘deleted’ with the new h1(29)+h2(29) ➙
key/value

0 taken
1
2 taken
3 here ☺
4 taken
5 taken
6 taken
7 deleted
8
9 taken

Open Addressing:Code

• Design: implementing a collection in Python

• __getitem__(self, key)

• return key item or raise KeyError(key)

• __setitem__(self, key, item)

• insert / replace (key, item)

• __delitem__(self, key)

Open Addressing: Code
• Closures: not for n00bs

• def compute_modulo is
local to the mod_m call

• the function created by
def compute_modulo is
returned like any object

• the object remembers
the context around the
def (the value of m)

 1 def mod_m(m):
2 def compute_modulo(n):
3 return (n % m)
4 return compute_modulo
5
6 >>> m5 = mod_m(5)
7 >>> m3 = mod_m(3)
8 >>> m5(9)
9 4
10 >>> m3(9)
11 0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

Open Addressing:Code

def linear_probing(m = 1009):

def hf(key, attempt):

return (hash(key) + attempt) % m

return hf

def double_hashing(hf2, m = 1009):

def hf(key, attempt):

return (hash(key) + attempt * hf2(key)) % m

return hf

class DeletedEntry:

pass

class OpenAddressingTable:

def __init__(self, hash_function, m = 1009):

self.entries = [None for i in range(m)]

self.hash = hash_function

self.deleted_entry = DeletedEntry()

Open Addressing: Code

14 class OpenAddressingTable:

15 def __init__(self, hash_function, m = 1009):

16 self.entries = [None for i in range(m)]

17 self.hash = hash_function

18 self.deleted_entry = DeletedEntry()

19

20 def get_entry(self, key):

21 for attempt in xrange(len(self.entries)):

22 h = self.hash(key, attempt)

23 if self.entries[h] is None:

24 return None

25 if self.entries[h] is not self.deleted_entry and \

26 self.entries[h][0] == key:

27 return self.entries[h]

28

29 def __getitem__(self, key):

30 entry = self.get_entry(key)

31 if entry is None:

32 raise KeyError(key)

33 return entry[1]

34

35 def __contains__(self, key):

36 return self.get_entry(key) is not None

Open Addressing: Code

14 class OpenAddressingTable:

15 def __init__(self, hash_function, m = 1009):

16 self.entries = [None for i in range(m)]

17 self.hash = hash_function

18 self.deleted_entry = DeletedEntry()

19

37 def __setitem__(self, key, value):

38 if value is None: raise 'Cannot set value to None'

39 del self[key]

40 for attempt in xrange(len(self.entries)):

41 h = self.hash(key, attempt)

42 if self.entries[h] is None or \

43 self.entries[h] is self.deleted_entry:

44 self.entries[h] = (key, value)

45 return

46 raise 'Table full'

Open Addressing: Code

14 class OpenAddressingTable:

15 def __init__(self, hash_function, m = 1009):

16 self.entries = [None for i in range(m)]

17 self.hash = hash_function

18 self.deleted_entry = DeletedEntry()

19

47 def __delitem__(self, key):

48 for attempt in xrange(len(self.entries)):

49 h = self.hash(key, attempt)

50 if self.entries[h] is None:

51 return

52 if self.entries[h] is not self.deleted_entry and \

53 self.entries[h][0] == key:

54 self.entries[h] = self.deleted_entry

55 return

56 return

Ghosts of Karp & Rabin

Getting Rolling Hashes Right

Modular Arithmetic

• Foundation:

• (a + b) mod m = ((a mod m) + (b mod m))
mod m

• From that, it follows that:

• (a ⋅ b) mod m = ((a mod m) ⋅ (b mod m))
mod m

• induction: multiplication is repeated +

Modular Gotcha

• Never give mod a negative number

• want q = (a - b) mod m, but a - b < 0

• q mod m = (a - (b mod m)) mod m

• but (b mod m) is < m

• so (a + m - (b mod m)) > 0

• q = (a + m - (b mod m)) mod m

Modular Arithmetic-Fu

• Multiplicative inverses: assume p is prime

• For every a and p, there is a-1 so that:

• (a * a-1) mod p = 1

• example: p = 23, a = 8 ⇒ a-1 = 3

• check: 8 * 23 = 24, 24 mod 23 = 1

• Multiplying by a-1 is like dividing by a

Modular Arithmetic-Fu

• How do we compute a-1?

• Fermat’s Little Theorem:

• p prime ⇒ aa-1 mod p = 1

• Huh?

• aa-1 mod p = a * aa-2 mod p = 1

• so (for p) a-1 mod p = aa-2 mod p

Back to Rolling Hashes

• Data Structure (just like hash table)

• start with empty list

• append(val): appends val at the end of list

• skip(): removes the first list element

• hash(): computes a hash of the list

