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Coming up next...


• Open addressing 

• Karp-Rabin 

• coming back from the dead to hunt us 



Open Addressing 

• Goal: use nothing but the table 

• Hoping for less code, better caching 

• Hashing ⇒ we must handle collisions


• Solution: try another location 



))
))

Easy Collision handling

taken


taken


taken 
taken 
taken 

here ☺ 

taken


• h(x) = standard hash 0 
function 1


• if T[h(x)] is taken 2

3


• try T[h(x)+1] h(29) ➙ 4

h(29) + 1 ➙ 5


• then T[h(x) + 2] h(29) + 2 ➙ 6


• then T[h(x) + 3] h(29) + 3 ➙ 7

8


• just like parking a car 9




• h(k) grows up to H(k, i) 
where i is the attempt 
number 

• first try T[H(k, 0)] 

H(29, 0) ➙


Collision Handling:

Abstracting it Up


0
 taken 
1 taken 
2 taken 
3 taken 
4 taken 
5 taken 
6 taken 
7 taken 
8 taken 
9 taken




• h(k) grows up to H(k, i) 
where i is the attempt H(29, 1) ➙ 
number 

• first try T[H(k, 0)] 

• then T[H(k, 1)] 

H(29, 0) ➙ 

Collision Handling:

Abstracting it Up


0
 taken 
1 taken 
2 taken 
3 taken 
4 taken 
5 taken 
6 taken 
7 taken 
8 taken 
9 taken




• h(k) grows up to H(k, i) 
where i is the attempt H(29, 1) ➙ 
number 

• first try T[H(k, 0)] H(29, 2) ➙


• then T[H(k, 1)] 

• then T[H(k, 2)] 

H(29, 0) ➙ 

Collision Handling:

Abstracting it Up


0
 taken 
1 taken 
2 taken 
3 taken 
4 taken 
5 taken 
6 taken 
7 taken 
8 taken 
9 taken




Collision Handling:

Abstracting it Up


• h(k) grows up to H(k, i) 
where i is the attempt 
number 

• first try T[H(k, 0)] 

• then T[H(k, 1)] 

• then T[H(k, 2)] 

• stop after trying all 

H(29, 3) ➙ 0 taken 
H(29, 1) ➙ 1 taken 
H(29, 4) ➙ 2 taken 
H(29, 9) ➙ 3 taken 
H(29, 2) ➙ 4 taken 
H(29, 5) ➙ 5 taken 
H(29, 6) ➙ 6 taken 
H(29, 7) ➙ 7 taken 
H(29, 8) ➙ 8 taken 
H(29, 0) ➙ 9 taken 



Collision Handling:

Abstracting it Up


• H(k) = 
<H(k, 0), H(k, 1), H(k, 
2) ... > 

• Linear probing, h(29) = 
4, Hlinear(29) = ? 

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>


• General properties? 

H(29, 3) ➙ 0 taken 
H(29, 1) ➙ 1 taken 
H(29, 4) ➙ 2 taken 
H(29, 9) ➙ 3 taken 
H(29, 2) ➙ 4 taken 
H(29, 5) ➙ 5 taken 
H(29, 6) ➙ 6 taken 
H(29, 7) ➙ 7 taken 
H(29, 8) ➙ 8 taken 
H(29, 0) ➙ 9 taken 



Collision Handling:

Abstracting it Up


• Any collision handling strategy comes to: 

• for key k, probe H(k,0), then H(k,1) etc.


• No point in trying the same place twice 

• Probes should cover the whole table 
(otherwise we raise ‘table full’ prematurely) 

• Conclusion: H(k, 0), H(k, 1) ... H(k, m-1) are 
a permutation of {1, 2, 3 ... m} 



))
))

Linear Probing and 


taken


taken


taken 
taken 
taken 

here ☺ 

taken


Permutations 
• h(29) = 4; H(29) = 0


1

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3> 2


3
• h(k) = h0(mod m); H(k) = 
h(29) ➙ 4


<h0 mod m, (h0 + 1) mod h(29) + 1 ➙ 5

m, (h0 + 2) mod m,  ... h(29) + 2 ➙ 6

(h0 + m - 1) mod m > h(29) + 3 ➙ 7


8
• m permutations (max m!) 
9




Ideal Collision Handling


• Simple Hashing (collision by chaining) 

• Ideal hashing function: uniformly 

distributes keys across hash values


• Open Addressing 

• Ideal hashing function: uniformly 
distributes keys across permutations 

• a.k.a. uniform hashing 



Uniform Hashing: 
Achievable? 

• Simple mapping between 
permutations of m and 
numbers 1 ... m! 

• Convert key to big 
number, then use 
permutation number 
(bignum mod m!) 

• ... right? 

k mod 6 Permutation 

0 <1, 2, 3> 

1 <1, 3, 2> 

2 <2, 1, 3> 

3 <2, 3, 1> 

4 <3, 1, 2> 

5 <3, 2, 1> 



Uniform Hashing: 
Achievable? 

• Number of digits in m! 

• O(log(m!)) 

• O(m*log(m)) 

• Working mod m! is slow 

• check your Python 
cost model 

k mod 6 Permutation 

0 <1, 2, 3> 

1 <1, 3, 2> 

2 <2, 1, 3> 

3 <2, 3, 1> 

4 <3, 1, 2> 

5 <3, 2, 1> 



Working Compromise 


• Why does linear probing suck? 

• We jump in the table once, then walk


• Improvement 

• Keep jumping after the initial jump 

• Jumping distance: 2nd hash function 

• Name: double hashing 



Double Hashing: Math

• h1(k) and h2(k) are 


hashing functions

0 taken 
1 
2 taken 
3 
4 taken 
5 taken 
6 taken 
7 taken 
8 
9 taken 



• h1(k) and h2(k) are 0

hashing functions 1


• H(k, 0) = h1(k) 2

3


h1(29) ➙ 4

5

6

7

8

9


Double Hashing: Math

taken


taken


taken 
taken 
taken 
taken 

taken




• h1(k) and h2(k) are 0

hashing functions 1


• H(k, 0) = h1(k) 2

3


• H(k, 1) = h1(k) + h2(k) h1(29) ➙ 4

5

6


h1(29)+h2(29) ➙ 7

8

9


Double Hashing: Math

taken


taken


taken 
taken 
taken 
taken 

taken




• h1(k) and h2(k) are h1(29)+2⋅h2(29) ➙ 0

hashing functions 1


• H(k, 0) = h1(k) 2

3


• H(k, 1) = h1(k) + h2(k) h1(29) ➙ 4

5

6


h1(29)+h2(29) ➙ 7

8

9


Double Hashing: Math

taken


taken


taken 
taken 
taken 
taken 

taken




• h1(k) and h2(k) are h1(29)+2⋅h2(29) ➙ 0 
hashing functions 1 

• H(k, 0) = h1(k) 2 
h1(29)+3⋅h2(29) ➙ 3 

• H(k, 1) = h1(k) + h2(k) h1(29) ➙ 4 
5 
6 

h1(29)+h2(29) ➙ 7 
8 
9 

Double Hashing: Math

taken


taken

here ☺ 
taken 
taken 
taken 
taken 

taken




• h1(k) and h2(k) are h1(29)+2⋅h2(29) ➙ 0 
hashing functions 1 

• H(k, 0) = h1(k) 2 
h1(29)+3⋅h2(29) ➙ 3 

• H(k, 1) = h1(k) + h2(k) h1(29) ➙ 4 
5 

• H(k, i) = h1(k) + i⋅h2(k) 6

h1(29)+h2(29) ➙ 7 • mod m 

8 

• you knew that, right? 9 

Double Hashing: Math

taken


taken

here ☺ 
taken 
taken 
taken 
taken 

taken




1
2
3
4
5
6
7
8
9

Double Hashing Trap

• gcd(h2(k), m) must be 1 

• solution 1 (easy to get) 

• m prime, h2(k) = k 
mod q (where q < m) 

• solution 2 (faster, better)


• m = 2r (table can grow) 

• h2(k) is odd (not even) 

h1(29)+2⋅h2(29) ➙ 0 taken 

h1(29)+3⋅h2(29) ➙ 
h1(29) ➙ 

h1(29)+h2(29) ➙ 

taken

here ☺ 
taken 
taken 
taken 
taken 

taken




Open Addressing:

Deleting Keys


h1(29)+2⋅h2(29) ➙ 0 taken

• Suppose we want to 1


delete kd stored at 7

2
 taken


here ☺
• Can’t simply wipe the h1(29)+3⋅h2(29) ➙ 3

entry, because key 29 h1(29) ➙ 4
 taken

wouldn’t be found 5
 taken

anymore	 6
 taken


• rember H(29) =	 h1(29)+h2(29) ➙ 7
 kd


<4, 7, 0, 3 ...>	 8

9
 taken




Open Addressing:

Deleting Keys


h1(29)+2⋅h2(29) ➙


• Entry meaning  ‘deleted’ 


• Handling ‘deleted’ h1(29)+3⋅h2(29) ➙ 

• Search: Keep looking 
h1(29) ➙ 

• Insert: Stop, replace 
‘deleted’ with the new h1(29)+h2(29) ➙ 
key/value 

0 taken 
1 
2 taken 
3 here ☺ 
4 taken 
5 taken 
6 taken 
7 deleted 
8 
9 taken 



Open Addressing:Code


• Design: implementing a collection in Python


• __getitem__(self, key) 

• return key item or raise KeyError(key) 

• __setitem__(self, key, item) 

• insert / replace (key, item) 

• __delitem__(self, key) 



Open Addressing: Code 
• Closures: not for n00bs 

• def compute_modulo is 
local to the mod_m call 

• the function created by 
def compute_modulo is 
returned like any object 

• the object remembers 
the context around the 
def (the value of m)

 1 def mod_m(m):
2 def compute_modulo(n):
3 return (n % m)
4 return compute_modulo
5 
6 >>> m5 = mod_m(5)
7 >>> m3 = mod_m(3)
8 >>> m5(9)
9 4 
10 >>> m3(9)
11 0 



      
      
      

 1 
 2    
 3        
 4    
 5    
 6 
 7    
 8        
 9    
10
11 
12    
13
14 
15    
16  
17  
18  

Open Addressing:Code


def linear_probing(m = 1009):


def hf(key, attempt):

return (hash(key) + attempt) % m


return hf


def double_hashing(hf2, m = 1009):

def hf(key, attempt):


return (hash(key) + attempt * hf2(key)) % m

return hf


class DeletedEntry:


pass


class OpenAddressingTable:

def __init__(self, hash_function, m = 1009):


self.entries = [None for i in range(m)]

self.hash = hash_function


self.deleted_entry = DeletedEntry()




      
      
      

          

             

      

Open Addressing: Code

14 class OpenAddressingTable:


15 def __init__(self, hash_function, m = 1009):

16 self.entries = [None for i in range(m)]


17 self.hash = hash_function

18 self.deleted_entry = DeletedEntry()


19

20 def get_entry(self, key):


21 for attempt in xrange(len(self.entries)):

22 h = self.hash(key, attempt)


23 if self.entries[h] is None: 

24 return None


25 if self.entries[h] is not self.deleted_entry and \

26 self.entries[h][0] == key:


27 return self.entries[h]

28 


29 def __getitem__(self, key):

30 entry = self.get_entry(key)


31 if entry is None:

32 raise KeyError(key)


33 return entry[1]

34 


35 def __contains__(self, key):

36 return self.get_entry(key) is not None




      
      
      

          

             
              

Open Addressing: Code

14 class OpenAddressingTable:


15 def __init__(self, hash_function, m = 1009):

16 self.entries = [None for i in range(m)]


17 self.hash = hash_function

18 self.deleted_entry = DeletedEntry()


19

37 def __setitem__(self, key, value):


38 if value is None: raise 'Cannot set value to None'

39 del self[key]


40 for attempt in xrange(len(self.entries)):

41 h = self.hash(key, attempt)


42 if self.entries[h] is None or \

43 self.entries[h] is self.deleted_entry:


44 self.entries[h] = (key, value)

45 return


46 raise 'Table full'




      
      
      

          

             
              

Open Addressing: Code

14 class OpenAddressingTable:


15 def __init__(self, hash_function, m = 1009):

16 self.entries = [None for i in range(m)]


17 self.hash = hash_function

18 self.deleted_entry = DeletedEntry()


19

47 def __delitem__(self, key):


48 for attempt in xrange(len(self.entries)):

49 h = self.hash(key, attempt)


50 if self.entries[h] is None: 

51 return


52 if self.entries[h] is not self.deleted_entry and \

53 self.entries[h][0] == key:


54 self.entries[h] = self.deleted_entry

55 return


56 return




Ghosts of Karp & Rabin

Getting Rolling Hashes Right




Modular Arithmetic


• Foundation: 

• (a + b) mod m = ((a mod m) + (b mod m)) 
mod m 

• From that, it follows that: 

• (a ⋅ b) mod m = ((a mod m) ⋅ (b mod m)) 
mod m 

• induction: multiplication is repeated +




Modular Gotcha 

• Never give mod a negative number 

• want q = (a - b) mod m, but a - b < 0 

• q mod m = (a - (b mod m)) mod m


• but (b mod m) is < m 

• so (a + m - (b mod m)) > 0 

• q = (a + m - (b mod m)) mod m 



Modular Arithmetic-Fu


• Multiplicative inverses: assume p is prime 

• For every a and p, there is a-1 so that: 

• (a * a-1) mod p = 1


• example: p = 23, a = 8 ⇒ a-1 = 3


• check: 8 * 23 = 24, 24 mod 23 = 1


• Multiplying by a-1 is like dividing by a 



Modular Arithmetic-Fu


• How do we compute a-1? 

• Fermat’s Little Theorem: 

• p prime ⇒ aa-1 mod p = 1 

• Huh? 

• aa-1 mod p = a * aa-2 mod p = 1


• so (for p) a-1 mod p = aa-2 mod p 



Back to Rolling Hashes 


• Data Structure (just like hash table) 

• start with empty list 

• append(val): appends val at the end of list 

• skip(): removes the first list element 

• hash(): computes a hash of the list 




