http://ocw.mit.edu
6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.006 Recitation

Build 2008.|4

Coming up next...

- Open addressing
- Karp-Rabin
- coming back from the dead to hunt us

Open Addressing

- Goal: use nothing but the table
- Hoping for less code, better caching
- Hashing \Rightarrow we must handle collisions
- Solution: try another location

Easy Collision handling

- $\mathrm{h}(\mathrm{x})=$ standard hash function
- if $T[h(x)]$ is taken
- $\operatorname{try} \mathrm{T}[\mathrm{h}(\mathrm{x})+\mathrm{I}]$
- then $\mathrm{T}[\mathrm{h}(\mathrm{x})+2]$
- then $\mathrm{T}[\mathrm{h}(\mathrm{x})+3]$
- just like parking a car

	0	taken
	2	taken
	3	
$h(29) \rightarrow$		taken
$\mathrm{h}(29)+\mathrm{l} \rightarrow$	5	taken
$\mathrm{h}(29)+2 \rightarrow$	6	taken
$\mathrm{h}(29)+3 \rightarrow$	7	here ()
	8	
	9	taken

Collision Handling:

 Abstracting it Up- $\mathrm{h}(\mathrm{k})$ grows up to $\mathrm{H}(\mathrm{k}, \mathrm{i})$ where i is the attempt number
- first try $\mathrm{T}[\mathrm{H}(\mathrm{k}, 0)]$

0	taken
	taken
2	taken
3	taken
	taken
5	taken
6	taken
7	taken
8	taken
$\mathrm{H}(29,0) \rightarrow$	taken

Collision Handling:

 Abstracting it Up- h(k) grows up to $H(k, i)$ where i is the attempt number
- first try $\mathrm{T}[\mathrm{H}(\mathrm{k}, 0)]$
- then $\mathrm{T}[\mathrm{H}(\mathrm{k}, \mathrm{l})]$

$\mathrm{H}(29,1) \rightarrow$	taken
	taken
$\mathrm{H}(29,0) \rightarrow$	taken

Collision Handling:

 Abstracting it Up- h(k) grows up to $H(k, i)$ where i is the attempt number
- first try $\mathrm{T}[\mathrm{H}(\mathrm{k}, 0)]$
- then $\mathrm{T}[\mathrm{H}(\mathrm{k}, \mathrm{l})]$
- then $\mathrm{T}[\mathrm{H}(\mathrm{k}, 2)]$

$\mathrm{H}(29,1) \rightarrow$	taken
	taken
	taken
$\mathrm{H}(29,2) \rightarrow$	taken
	taken
$\mathrm{H}(29,0) \rightarrow$	taken

Collision Handling:

 Abstracting it Up- h(k) grows up to $\mathrm{H}(\mathrm{k}, \mathrm{i})$ where i is the attempt number
- first try $\mathrm{T}[\mathrm{H}(\mathrm{k}, 0)]$
- then $\mathrm{T}[\mathrm{H}(\mathrm{k}, \mathrm{l})]$
- then T[H(k, 2)]
- stop after trying all

$\mathrm{H}(29,3) \rightarrow 0$	taken
$\mathrm{H}(29,1) \rightarrow$ I	taken
$\mathrm{H}(29,4) \rightarrow 2$	taken
$\mathrm{H}(29,9) \rightarrow 3$	taken
$\mathrm{H}(29,2) \rightarrow 4$	taken
$\mathrm{H}(29,5) \rightarrow 5$	taken
$\mathrm{H}(29,6) \rightarrow 6$	taken
$\mathrm{H}(29,7) \rightarrow 7$	taken
$\mathrm{H}(29,8) \rightarrow 8$	taken
$\mathrm{H}(29,0) \rightarrow 9$	taken

Collision Handling:

 Abstracting it Up- $\mathrm{H}(\mathrm{k})=$
< H(k, 0), H(k, l), H(k, 2) ... $>$
- Linear probing, h(29) = $4, H_{\text {linear }}(29)=$?
$<4,5,6,7,8,9,0, I, 2,3>$
- General properties?

$\mathrm{H}(29,3) \rightarrow 0$	taken
$\mathrm{H}(29,1) \rightarrow$	taken
$\mathrm{H}(29,4) \rightarrow$	taken
$\mathrm{H}(29,9) \rightarrow$	taken
$\mathrm{H}(29,2) \rightarrow$	taken
$\mathrm{H}(29,5) \rightarrow$	taken
$\mathrm{H}(29,6) \rightarrow$	taken
$\mathrm{H}(29,7) \rightarrow 7$	taken
$\mathrm{H}(29,8) \rightarrow 8$	taken
$\mathrm{H}(29,0) \rightarrow$ ¢	taken

Collision Handling:

Abstracting it Up

- Any collision handling strategy comes to:
- for key k, probe $H(k, 0)$, then $H(k, I)$ etc.
- No point in trying the same place twice
- Probes should cover the whole table (otherwise we raise 'table full' prematurely)
- Conclusion: H(k, 0), H(k, I) ... H(k, m-I) are a permutation of $\{1,2,3 \ldots \mathrm{~m}\}$

Linear Probing and

 Permutations- $h(29)=4 ; H(29)=$

$$
<4,5,6,7,8,9,0, I, 2,3>
$$

- $h(k)=h o(\bmod m) ; H(k)=$
<homod m, $\left(\mathrm{h}_{0}+\mathrm{I}\right) \bmod$ $\mathrm{m},\left(\mathrm{h}_{0}+2\right) \bmod \mathrm{m}, \ldots$ $\left(h_{0}+m-I\right) \bmod m>$
- m permutations (max m !)

Ideal Collision Handling

- Simple Hashing (collision by chaining)
- Ideal hashing function: uniformly distributes keys across hash values
- Open Addressing
- Ideal hashing function: uniformly distributes keys across permutations
- a.k.a. uniform hashing

Uniform Hashing: Achievable?

- Simple mapping between permutations of m and numbers I ... m!
- Convert key to big number, then use permutation number (bignum mod m!)
- ... right?
k mod 6 Permutation
$0<1,2,3>$
l <1,3,2>
2
<2, I, 3>
3
$<2,3$, | $>$
4
<3, I, 2>
5
$<3,2$, | $>$

Uniform Hashing: Achievable?

- Number of digits in m !
- $O(\log (m!))$
- $O\left(m^{*} \log (m)\right)$
- Working mod m ! is slow
- check your Python cost model
k mod 6 Permutation
$0<1,2,3>$
I <1,3,2>
$2<2,1,3>$
3
4
<3, I, 2>
5
$<3,2$, | $>$

Working Compromise

- Why does linear probing suck?
- We jump in the table once, then walk
- Improvement
- Keep jumping after the initial jump
- Jumping distance: $2^{\text {nd }}$ hash function
- Name: double hashing

Double Hashing: Math

- $h_{1}(k)$ and $h_{2}(k)$ are hashing functions

0	taken
2	taken
3	
	taken
5	taken
6	taken
7	taken
8	
9	taken

Double Hashing: Math

- $h_{1}(k)$ and $h_{2}(k)$ are hashing functions
- $H(k, 0)=h_{1}(k)$

Double Hashing: Math

- $h_{1}(k)$ and $h_{2}(k)$ are hashing functions
- $H(k, 0)=h_{1}(k)$
- $H(k, l)=h_{1}(k)+h_{2}(k)$

Double Hashing: Math

- $h_{1}(k)$ and $h_{2}(k)$ are hashing functions
- $H(k, 0)=h_{1}(k)$
- $H(k, I)=h_{1}(k)+h_{2}(k)$

$$
\begin{array}{rl|l|}
h_{1}(29)+2 \cdot h_{2}(29) & 0 & \text { taken } \\
& 1 & \\
& 2 & \text { taken } \\
& 3 & \\
h_{1}(29) \rightarrow & & \text { taken } \\
& 5 & \text { taken } \\
& 6 & \text { taken } \\
h_{1}(29)+h_{2}(29) & 7 & \text { taken } \\
& 8 & \\
& 9 & \text { taken } \\
\hline
\end{array}
$$

Double Hashing: Math

- $h_{1}(k)$ and $h_{2}(k)$ are hashing functions
- $H(k, 0)=h_{1}(k)$
- $H(k, I)=h_{1}(k)+h_{2}(k)$

$h_{1}(29)+2 \cdot h_{2}(29) \rightarrow$	taken
	taken
$\begin{aligned} \mathrm{h}_{1}(29)+3 \cdot \mathrm{~h}_{2}(29) & \rightarrow \\ \mathrm{h}_{1}(29) & \rightarrow \end{aligned}$	here ()
	taken
	taken
	taken
$h_{1}(29)+h_{2}(29) \rightarrow$	taken
	taken

Double Hashing: Math

- $h_{1}(k)$ and $h_{2}(k)$ are hashing functions
- $H(k, 0)=h_{1}(k)$

$\mathrm{h}_{1}(29)+2 \cdot \mathrm{~h}_{2}(29) \rightarrow$	taken
	taken
$\begin{aligned} \mathrm{h}_{1}(29)+3 \cdot \mathrm{~h}_{2}(29) & \rightarrow \\ \mathrm{h}_{1}(29) & \rightarrow\end{aligned}$	here ${ }^{(3)}$
	taken
	taken
$h_{1}(29)+h_{2}(29) \rightarrow$	taken
	taken
8	
	taken

Double Hashing Trap

- $\operatorname{gcd}\left(\mathrm{h}_{2}(\mathrm{k}), \mathrm{m}\right)$ must be I
- solution I (easy to get)
- m prime, $\mathrm{h}_{2}(\mathrm{k})=\mathrm{k}$ $\bmod \mathrm{q}($ where $\mathrm{q}<\mathrm{m})$
- solution 2 (faster, better)
- $m=2^{r}$ (table can grow)
- $h_{2}(k)$ is odd (not even)

$h_{1}(29)+2 \cdot h_{2}(29) \rightarrow$	taken
	taken
$\mathrm{h}_{1}(29)+3 \cdot \mathrm{~h}_{2}(29) \rightarrow$	here ${ }^{\text {() }}$
	taken
$h_{1}(29)+h_{2}(29) \rightarrow$	taken
	taken
	taken
	taken

Open Addressing:

 Deleting Keys- Suppose we want to delete k_{d} stored at 7
- Can't simply wipe the entry, because key 29 wouldn't be found anymore
- rember $\mathrm{H}(29)=$ <4, 7, 0, 3 ...>

$\mathrm{h}_{1}(29)+2 \cdot \mathrm{~h}_{2}(29) \rightarrow$	taken
	taken
$\mathrm{h}_{1}(29)+3 \cdot \mathrm{~h}_{2}(29) \rightarrow$	here ${ }^{\text {() }}$
$h_{1}(29) \rightarrow$	taken
$h_{1}(29)+h_{2}(29) \rightarrow$	taken
	taken
	$\mathrm{k}_{\text {d }}$
9	taken

Open Addressing:

 Deleting Keys

Open Addressing:Code

- Design: implementing a collection in Python
- __getitem_(self, key)
- return key item or raise KeyError(key)
- __setitem__(self, key, item)
- insert / replace (key, item)
- __delitem__(self, key)

Open Addressing: Code

- Closures: not for n00bs
- def compute_modulo is local to the mod_m call
- the function created by def compute_modulo is returned like any object
- the object remembers the context around the def (the value of m)

```
1 def mod_m(m):
2 def compute_modulo(n):
return (n % m)
    return compute_modulo
5
6 >>> m5 = mod_m(5)
7 >>> m3 = mod_m(3)
8 >>> m5(9)
94
10 >>> m3(9)
1 1 0
```


Open Addressing:Code

```
1 def linear_probing(m = 1009):
2 def hf(key, attempt):
3 return (hash(key) + attempt) % m
4 return hf
5
6 def double_hashing(hf2, m = 1009):
7 def hf(key, attempt):
            return (hash(key) + attempt * hf2(key)) % m
    return hf
1 0
1 1 \text { class DeletedEntry:}
12 pass
13
1 4 ~ c l a s s ~ O p e n A d d r e s s i n g T a b l e : ~
15 def __init__(self, hash_function, m = 1009):
16 self.entries = [None for i in range(m)]
17 self.hash = hash_function
18 self.deleted_entry = DeletedEntry()
```


Open Addressing: Code

```
14 class OpenAddressingTable:
15 def __init__(self, hash_function, m = 1009):
            self.entries = [None for i in range(m)]
            self.hash = hash_function
            self.deleted_entry = DeletedEntry()
def get_entry(self, key):
            for attempt in xrange(len(self.entries)):
            h = self.hash(key, attempt)
            if self.entries[h] is None:
                return None
            if self.entries[h] is not self.deleted_entry and \
                self.entries[h][0] == key:
                    return self.entries[h]
def __getitem__(self, key):
            entry = self.get_entry(key)
            if entry is None:
            raise KeyError(key)
            return entry[1]
def __contains__(self, key):
    return self.get_entry(key) is not None
```


Open Addressing: Code

```
14 class OpenAddressingTable:
15 def __init__(self, hash_function, m = 1009):
16 self.entries = [None for i in range(m)]
17
18
19
37
38
39
4 0
4 1
4 2
43
44
45
46
def __setitem__(self, key, value):
    if value is None: raise 'Cannot set value to None'
    del self[key]
    for attempt in xrange(len(self.entries)):
        h = self.hash(key, attempt)
        if self.entries[h] is None or \
        self.entries[h] is self.deleted_entry:
                        self.entries[h] = (key, value)
                                return
        raise 'Table full'
```


Open Addressing: Code

```
14 class OpenAddressingTable:
15 def __init__(self, hash_function, m = 1009):
    self.entries = [None for i in range(m)]
    self.hash = hash_function
    self.deleted_entry = DeletedEntry()
        def __delitem__(self, key):
            for attempt in xrange(len(self.entries)):
            h = self.hash(key, attempt)
            if self.entries[h] is None:
                        return
                        if self.entries[h] is not self.deleted_entry and
                        self.entries[h][0] == key:
                        self.entries[h] = self.deleted_entry
                        return
            return
```


Ghosts of Karp \& Rabin

Getting Rolling Hashes Right

Modular Arithmetic

- Foundation:
- $(\mathrm{a}+\mathrm{b}) \bmod \mathrm{m}=((\mathrm{a} \bmod \mathrm{m})+(\mathrm{b} \bmod \mathrm{m}))$ $\bmod m$
- From that, it follows that:
- $(\mathrm{a} \cdot \mathrm{b}) \bmod \mathrm{m}=((\mathrm{a} \bmod \mathrm{m}) \cdot(\mathrm{b} \bmod \mathrm{m}))$ $\bmod m$
- induction: multiplication is repeated +

Modular Gotcha

- Never give mod a negative number
- want $\mathrm{q}=(\mathrm{a}-\mathrm{b}) \bmod \mathrm{m}$, but $\mathrm{a}-\mathrm{b}<0$
- $\mathrm{q} \bmod \mathrm{m}=(\mathrm{a}-(\mathrm{b} \bmod \mathrm{m})) \bmod \mathrm{m}$
- but (b mod m) is < m
- so $(a+m-(b \bmod m))>0$
- $\mathrm{q}=(\mathrm{a}+\mathrm{m}-(\mathrm{b} \bmod \mathrm{m})) \bmod \mathrm{m}$

Modular Arithmetic-Fu

- Multiplicative inverses: assume p is prime
- For every a and p, there is a^{-1} so that:
- $\left(a^{*} a^{-1}\right) \bmod p=1$
- example: $p=23, a=8 \Rightarrow a^{-1}=3$
- check: $8 * 23=24,24 \bmod 23=1$
- Multiplying by a^{-1} is like dividing by a

Modular Arithmetic-Fu

- How do we compute a^{-1} ?
- Fermat's Little Theorem:
- p prime $\Rightarrow a^{a-1} \bmod p=1$
- Huh?
- $a^{a-l} \bmod p=a * a^{a-2} \bmod p=1$
- so (for p) $a^{-1} \bmod p=a^{a-2} \bmod p$

Back to Rolling Hashes

- Data Structure (just like hash table)
- start with empty list
- append(val): appends val at the end of list
- skip(): removes the first list element
- hash(): computes a hash of the list

