MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

#### 6.006 Recitation

Build 2008.14

#### Coming up next...

- Open addressing
- Karp-Rabin
  - coming back from the dead to hunt us

#### Open Addressing

• Goal: use nothing but the table

- Hoping for less code, better caching
- Hashing  $\Rightarrow$  we must handle collisions
  - Solution: try another location

# Easy Collision handling

- h(x) = standard hash function
- if T[h(x)] is taken
  - try T[h(x)+1]
  - then T[h(x) + 2]
  - then T[h(x) + 3]
- just like parking a car



H(29, 0)

- h(k) grows up to H(k, i) where i is the attempt number
- first try T[H(k, 0)]

|               | 0 | taken |
|---------------|---|-------|
|               |   | taken |
|               | 2 | taken |
|               | 3 | taken |
|               | 4 | taken |
|               | 5 | taken |
|               | 6 | taken |
|               | 7 | taken |
|               | 8 | taken |
| $\rightarrow$ | 9 | taken |
|               |   |       |

- h(k) grows up to H(k, i) where i is the attempt number
- first try T[H(k, 0)]
  - then T[H(k, I)]

taken 0 H(29, I) taken taken 3 taken taken 4 5 taken taken 6 taken 8 taken H(29, 0) → taken

- h(k) grows up to H(k, i) where i is the attempt number
- first try T[H(k, 0)]
  - then T[H(k, I)]
  - then T[H(k, 2)]

taken 0 H(29, I) → taken taken 3 taken H(29, 2)taken 5 taken taken 6 taken 8 taken H(29, 0) → taken

- h(k) grows up to H(k, i) where i is the attempt number
- first try T[H(k, 0)]
  - then T[H(k, I)]
  - then T[H(k, 2)]
- stop after trying all

 $H(29,3) \rightarrow 0$ taken H(29, I) → I taken  $H(29,4) \rightarrow 2$ taken  $H(29,9) \rightarrow 3$ taken  $H(29,2) \rightarrow 4$ taken H(29, 5) → 5 taken H(29, 6) → 6 taken  $H(29,7) \rightarrow 7$ taken H(29, 8) → 8 taken H(29,0) → 9 taken

#### Collision Handling: Abstracting it Up $H(29,3) \rightarrow 0$ taken

- H(k) =
  <H(k, 0), H(k, 1), H(k, 2) ... >
- Linear probing, h(29) =
   4, H<sub>linear</sub>(29) = ?

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>

• General properties?

 $H(29,3) \rightarrow 0$ H(29, I) → I  $H(29,4) \rightarrow 2$  $H(29,9) \rightarrow 3$  $H(29,2) \rightarrow 4$  $H(29,5) \rightarrow 5$ H(29, 6) → 6  $H(29,7) \rightarrow 7$ H(29, 8) → 8  $H(29,0) \rightarrow 9$ 

taken taken taken taken taken taken taken taken taken

- Any collision handling strategy comes to:
  - for key k, probe H(k,0), then H(k,1) etc.
- No point in trying the same place twice
- Probes should cover the whole table (otherwise we raise 'table full' prematurely)
- Conclusion: H(k, 0), H(k, 1) ... H(k, m-1) are a permutation of {1, 2, 3 ... m}

#### Linear Probing and Permutations

h(29) = 4; H(29) =

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>

•  $h(k) = h_0 (mod m); H(k) =$ 

 $<h_0 \mod m$ ,  $(h_0 + I) \mod I$ m,  $(h_0 + 2) \mod m$ , ...  $(h_0 + m - 1) \mod m >$ 

m permutations (max m!)

taken taken 3 h(29) → 4 taken h(29) + I → 5 taken h(29) + 2 → 6 taken  $h(29) + 3 \rightarrow 7$ here 😳 8 9

taken

#### Ideal Collision Handling

- Simple Hashing (collision by chaining)
  - Ideal hashing function: uniformly distributes keys across hash values
- Open Addressing
  - Ideal hashing function: uniformly distributes keys across permutations
  - a.k.a. uniform hashing

#### Uniform Hashing: Achievable?

- Simple mapping between permutations of m and numbers I ... m!
- Convert key to big number, then use permutation number (bignum mod m!)
- ... right?

| n | k mod 6 | Permutation |
|---|---------|-------------|
|   | 0       | <1, 2, 3>   |
|   | ]       | <1,3,2>     |
|   | 2       | <2,  , 3>   |
|   | 3       | <2, 3,  >   |
|   | 4       | <3, I, 2>   |
|   | 5       | <3.2. >     |

#### Uniform Hashing: Achievable?

| <ul> <li>Number of digits in m!</li> </ul>           | k mod 6 | Permutation |
|------------------------------------------------------|---------|-------------|
| <ul> <li>O(log(m!))</li> </ul>                       | 0       | <1,2,3>     |
| <ul> <li>O(m*log(m))</li> </ul>                      | l       | <1,3,2>     |
|                                                      | 2       | <2, I, 3>   |
| <ul> <li>Working mod m! is slow</li> </ul>           | 3       | <2, 3, I>   |
| <ul> <li>check your Python<br/>cost model</li> </ul> | 4       | <3, I, 2>   |
|                                                      | 5       | <3, 2,  >   |

# Working Compromise

• Why does linear probing suck?

- We jump in the table once, then walk
- Improvement
  - Keep jumping after the initial jump
  - Jumping distance: 2<sup>nd</sup> hash function
  - Name: double hashing

 h<sub>1</sub>(k) and h<sub>2</sub>(k) are hashing functions



 h<sub>1</sub>(k) and h<sub>2</sub>(k) are hashing functions

•  $H(k, 0) = h_1(k)$ 



 $h_1(k)$  and  $h_2(k)$  are 0 taken hashing functions 2 taken  $H(k,0) = h_1(k)$ 3 h₁(29) →  $H(k, I) = h_1(k) + h_2(k)$ 4 taken 5 taken taken 6  $h_1(29)+h_2(29) \rightarrow$ taken 8 9 taken

| • | $h_1(k)$ and $h_2(k)$ are   | h₁(29)+2·h₂(29) →             | 0 | taken |
|---|-----------------------------|-------------------------------|---|-------|
|   | hashing functions           |                               | I |       |
| • | $H(k, 0) = h_1(k)$          |                               | 2 | taken |
|   |                             |                               | 3 |       |
| • | $H(k, I) = h_1(k) + h_2(k)$ | h₁(29) →                      | 4 | taken |
|   |                             |                               | 5 | taken |
|   |                             |                               | 6 | taken |
|   |                             | $h_1(29)+h_2(29) \rightarrow$ | 7 | taken |
|   |                             |                               | 8 |       |
|   |                             |                               | 9 | taken |

| • | h <sub>1</sub> (k) and h <sub>2</sub> (k) are<br>hashing functions | $h_1(29)+2 \cdot h_2(29) \rightarrow$   | 0<br> | taken  |
|---|--------------------------------------------------------------------|-----------------------------------------|-------|--------|
| • | $H(k, 0) = h_1(k)$                                                 |                                         | 2     | taken  |
|   |                                                                    | $h_1(29) + 3 \cdot h_2(29) \rightarrow$ | 3     | here 😳 |
| • | $H(k, I) = h_1(k) + h_2(k)$                                        | h₁(29) →                                | 4     | taken  |
|   |                                                                    |                                         | 5     | taken  |
|   |                                                                    |                                         | 6     | taken  |
|   |                                                                    | h₁(29)+h₂(29) →                         | 7     | taken  |
|   |                                                                    |                                         | 8     |        |
|   |                                                                    |                                         | 9     | taken  |

- $h_1(k)$  and  $h_2(k)$  are  $h_1(29)+2 \cdot h_2(29) \rightarrow$ 0 taken hashing functions taken  $H(k, 0) = h_1(k)$  $h_1(29) + 3 \cdot h_2(29) \rightarrow$ 3 here 🙂 h₁(29) →  $H(k, I) = h_1(k) + h_2(k)$ 4 taken 5 taken •  $H(k, i) = h_1(k) + i \cdot h_2(k)$ 6 taken  $h_1(29) + h_2(29) \rightarrow$ taken mod m 8 9 taken
  - you knew that, right?

#### Double Hashing Trap

| <ul> <li>gcd(h<sub>2</sub>(k), m) must be I</li> </ul> | $h_1(29)+2 \cdot h_2(29) \rightarrow$   | 0 | taken  |
|--------------------------------------------------------|-----------------------------------------|---|--------|
| • colution (coov to got)                               |                                         |   |        |
| <ul> <li>solution I (easy to get)</li> </ul>           |                                         | 2 | taken  |
| • m prime, $h_2(k) = k$                                | $h_1(29) + 3 \cdot h_2(29) \rightarrow$ | 3 | here 🙂 |
| mod q (where q < m)                                    | h₁(29) →                                | 4 | taken  |
|                                                        |                                         | 5 | taken  |
| <ul> <li>solution 2 (faster, better)</li> </ul>        |                                         | 6 | taken  |
| • m = 2 <sup>r</sup> (table can grow)                  | h₁(29)+h₂(29) →                         | 7 | taken  |
| • $\Pi = Z$ (table call grow)                          |                                         | 8 |        |
| b.(k) is odd (not over)                                |                                         | 9 | takon  |

taken

• h<sub>2</sub>(k) is odd (not even)

# Open Addressing: Deleting Keys

- Suppose we want to delete k<sub>d</sub> stored at 7
- Can't simply wipe the entry, because key 29 wouldn't be found anymore
  - rember H(29) =
     <4, 7, 0, 3 ...>

 $h_1(29) + 3 \cdot h_2(29) \rightarrow h_1(29) \rightarrow$ 

 $h_1(29) + 2 \cdot h_2(29) \rightarrow$ 

 $h_1(29) + h_2(29) \rightarrow$ 

| ) | taken  |
|---|--------|
|   |        |
| 2 | taken  |
| 3 | here 😊 |
| 4 | taken  |
| 5 | taken  |
| 6 | taken  |
| 7 | kd     |
| 3 |        |
| 9 | taken  |

# Open Addressing: Deleting Keys

- Entry meaning 'deleted'
- Handling 'deleted'
  - Search: Keep looking
  - Insert: Stop, replace 'deleted' with the new key/value

 $h_1(29) + 3 \cdot h_2(29) \rightarrow h_1(29) \rightarrow$ 

 $h_1(29) + 2 \cdot h_2(29) \rightarrow$ 

 $h_1(29) + h_2(29) \rightarrow$ 

| 0 | taken   |
|---|---------|
|   |         |
| 2 | taken   |
| 3 | here 😊  |
| 4 | taken   |
| 5 | taken   |
| 6 | taken   |
| 7 | deleted |
| 8 |         |
| 9 | taken   |

- Design: implementing a collection in Python
  - \_\_\_\_\_\_(self, key)
    - return key item or raise KeyError(key)
  - \_\_\_\_\_(self, key, item)
    - insert / replace (key, item)
  - \_\_delitem\_\_(self, key)

- Closures: not for n00bs
- def compute\_modulo is local to the mod\_m call
- the function created by def compute\_modulo is returned like any object
- the object remembers the context around the def (the value of m)

```
1 def mod_m(m):
2     def compute_modulo(n):
3         return (n % m)
4         return compute_modulo
5
6 >>> m5 = mod_m(5)
7 >>> m3 = mod_m(3)
8 >>> m5(9)
9 4
10 >>> m3(9)
11 0
```

```
1 def linear_probing(m = 1009):
      def hf(key, attempt):
 2
          return (hash(key) + attempt) % m
 3
 4
      return hf
 5
   def double_hashing(hf2, m = 1009):
 6
      def hf(key, attempt):
 7
          return (hash(key) + attempt * hf2(key)) % m
 8
 9
      return hf
10
   class DeletedEntry:
11
12
      pass
13
   class OpenAddressingTable:
14
15
      def __init__(self, hash_function, m = 1009):
          self.entries = [None for i in range(m)]
16
          self.hash = hash_function
17
18
          self.deleted_entry = DeletedEntry()
```

```
14 class OpenAddressingTable:
15
      def __init__(self, hash_function, m = 1009):
16
          self.entries = [None for i in range(m)]
          self.hash = hash_function
17
18
          self.deleted_entry = DeletedEntry()
19
20
      def get_entry(self, key):
21
          for attempt in xrange(len(self.entries)):
22
              h = self.hash(key, attempt)
23
              if self.entries[h] is None:
24
                  return None
25
              if self.entries[h] is not self.deleted_entry and \setminus
26
                 self.entries[h][0] == key:
27
                   return self.entries[h]
28
29
      def __getitem__(self, key):
30
          entry = self.get_entry(key)
31
          if entry is None:
32
              raise KeyError(key)
33
          return entry[1]
34
35
      def __contains__(self, key):
36
          return self.get_entry(key) is not None
```

```
14 class OpenAddressingTable:
      def __init__(self, hash_function, m = 1009):
15
          self.entries = [None for i in range(m)]
16
          self.hash = hash function
17
          self.deleted_entry = DeletedEntry()
18
19
37
      def __setitem__(self, key, value):
38
          if value is None: raise 'Cannot set value to None'
39
          del self[key]
          for attempt in xrange(len(self.entries)):
40
              h = self.hash(key, attempt)
41
              if self.entries[h] is None or \
42
                 self.entries[h] is self.deleted_entry:
43
                  self.entries[h] = (key, value)
44
45
                  return
46
          raise 'Table full'
```

```
14 class OpenAddressingTable:
15
      def __init__(self, hash_function, m = 1009):
16
          self.entries = [None for i in range(m)]
17
          self.hash = hash_function
18
          self.deleted_entry = DeletedEntry()
19
47
      def __delitem__(self, key):
48
          for attempt in xrange(len(self.entries)):
49
              h = self.hash(key, attempt)
50
              if self.entries[h] is None:
51
                   return
52
              if self.entries[h] is not self.deleted_entry and \setminus
53
                 self.entries[h][0] == key:
54
                   self.entries[h] = self.deleted_entry
55
                   return
56
          return
```

# Getting Rolling Hashes Right

#### Modular Arithmetic

#### • Foundation:

- (a + b) mod m = ((a mod m) + (b mod m)) mod m
- From that, it follows that:
  - (a · b) mod m = ((a mod m) · (b mod m)) mod m
    - induction: multiplication is repeated +

#### Modular Gotcha

- Never give mod a negative number
  - want q =  $(a b) \mod m$ , but a b < 0
  - $q \mod m = (a (b \mod m)) \mod m$
  - but (b mod m) is < m</li>
  - so (a + m (b mod m)) > 0
  - $q = (a + m (b \mod m)) \mod m$

#### Modular Arithmetic-Fu

- Multiplicative inverses: assume p is prime
- For every a and p, there is a<sup>-1</sup> so that:
  - $(a * a^{-1}) \mod p = 1$
  - example: p = 23,  $a = 8 \Rightarrow a^{-1} = 3$ 
    - check: 8 \* 23 = 24, 24 mod 23 = 1
- Multiplying by a<sup>-1</sup> is like dividing by a

#### Modular Arithmetic-Fu

- How do we compute a<sup>-1</sup>?
- Fermat's Little Theorem:
  - p prime  $\Rightarrow a^{a-1} \mod p = 1$
- Huh?
  - $a^{a-1} \mod p = a * a^{a-2} \mod p = 1$
  - so (for p)  $a^{-1} \mod p = a^{a-2} \mod p$

#### Back to Rolling Hashes

- Data Structure (just like hash table)
  - start with empty list
  - append(val): appends val at the end of list
  - skip(): removes the first list element
  - hash(): computes a hash of the list