MIT OpenCourseWare
http://ocw.mit.edu

### 6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## Lecture 14: Searching III: Toplogical Sort and NP-completeness

Lecture Overview: Search 3 of $3 \&$ NP-completeness

- BFS vs. DFS
- job scheduling
- topological sort
- intractable problems
- P, NP, NP-completeness


## Readings

CLRS, Sections 22.4 and 34.1-34.3 (at a high level)

## Recall:

- Breadth-First Search (BFS): level by level
- Depth-First Search (DFS): backtrack as necc.
- both $O(V+E)$ worst-case time $\Longrightarrow$ optimal
- BFS computes shortest paths (min. $\sharp$ edges)
- DFS is a bit simpler \& has useful properties


## Job Scheduling:

Given Directed Acylic Graph (DAG), where vertices represent tasks \& edges represent dependencies, order tasks without violating dependencies


Figure 1: Dependence Graph

## Source

$$
\begin{aligned}
\text { Source } & =\text { vertex with no incoming edges } \\
& =\text { schedulable at beginning }(\mathrm{A}, \mathrm{G}, \mathrm{I})
\end{aligned}
$$

## Attempt

BFS from each source:


Figure 2: BFS-based Scheduling

## Topological Sort

Reverse of DFS finishing times (time at which node's outgoing edges finished)
Exercise: prove that no constraints are violated

## Intractability

- DFS \& BFS are worst-case optimal if problem is really graph search (to look at graph)
- what if graph ...
- is implicit?
- has special structure?
- is infinite?

The first 2 characteristics (implicitness and special structure) apply to the Rubik's Cube problem.
The third characteristic (infiniteness) applies to the Halting Problem.

## Halting Problem:

Given a computer program, does it ever halt (stop)?
decision problem: answer is YES or NO
UNDECIDABLE: no algorithm solves this problem (correctly in finite time on all inputs)
Most decision problems are undecidable:

- $\operatorname{program} \approx$ binary string $\approx$ nonneg. integer $\epsilon \aleph$
- decision problem $=$ a function from binary strings to $\{Y E S, N O\}$. Binary strings refer to $\approx$ nonneg. integers while $\{Y E S, N O\} \approx\{0,1\}$
- $\approx$ infinite sequence of bits $\approx$ real number $\epsilon \Re$
- $\aleph \ll \Re$ : non assignment of unique nonneg. integers to real numbers ( $\Re$ uncountable)
- $\Longrightarrow$ not nearly enough programs for all problems \& each program solves only one problem
- $\Longrightarrow$ almost all problems cannot be solved
$n \times n \times n$ Rubik's cube:
- $n=2$ or 3 is easy algorithmically: $O(1)$ time
in practice, $n=3$ still unsolved
- graph size grows exponentially with $n$
- solvability decision question is easy (parity check)
- finding shortest solution: UNSOLVED
$n \times n$ Chess:
Given $n \times n$ board \& some configuration of pieces, can WHITE force a win?
- can be formulated as $(\alpha \beta)$ graph search
- every algorithm needs time exponential in $n$ :
"EXPTIME-complete" [Fraenkel \& Lichtenstein 1981]
$n^{2}-1$ Puzzle:
Given $n \times n$ grid with $n^{2}-1$ pieces, sort pieces by sliding (see Figure 3).
- similar to Rubik's cube:
- solvability decision question is easy (parity check)
- finding shortest solution: NP-COMPLETE [Ratner \& Warmuth 1990]


Figure 3: Puzzle

## Tetris:

Given current board configuration \& list of pieces to come, stay alive

- NP-COMPLETE [Demaine, Hohenberger, Liben-Nowell 2003]


## P, NP, NP-completeness

$\underline{\mathrm{P}} \quad=$ all (decision) problems solvable by a polynomial $\left(O\left(n^{c}\right)\right)$ time algorithm (efficient)
NP = all decision problems whose YES answers have short (polynomial-length) "proofs" checkable by a polynomial-time algorithm
e.g., Rubik's cube and $n^{2}-1$ puzzle:
is there a solution of length $\leq k$ ?
YES $\Longrightarrow$ easy-to-check short proof(moves)
Tetris $\epsilon$ NP
but we conjecture Chess not NP (winning strategy is big- exponential in $n$ )
$\underline{\mathrm{P} \neq \mathrm{NP}: ~ B i g ~ c o n j e c t u r e ~(w o r t h ~} \$ 1,000,000) \approx$ generating proofs/solutions is harder than checking them

NP-complete $=$ in NP \& NP-hard
NP-hard $=$ as hard as every problem in NP
$=$ every problem in NP can be efficiently converted into this problem
$\Longrightarrow$ if this problem $\epsilon \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$ (so probably this problem not in P )

