
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.006 Recitation

Build 2008.last

6.006 Proudly Presents

• Life After 6.006: Options

• Daydream:Theory

• Pick Skillz: Competitions

• Go Pro: Master the Art [of Programming]

• Final Review

After 6.006: Daydream

• This is the best time to do it

• Web 2.0 → a lot of data sources to play

with: Google, eBay, Facebook, Flickr, ...

• Algorithms in 6.006 can be do cool stuff

• Web 2.0 → you can build an app that
makes a real impact quickly

After 6.006: Pick Skillz

• Warm up with HS competitions

• www.usaco.org - USA training site

• google “IOI” - International Olympiad

• College: the ACM ICPC

• google “acm problems”

• Top Coder - www.topcoder.com

http://www.usaco.org
http://www.usaco.org

After 6.006: Pick Skillz

• Pros

• (almost) Instant gratification

• Learn to pwn exams

• Free trips, prizes, rep (ask recruiters)

• Cons

• Lower level coding: C, maybe Java

• Luck matters a lot

After 6.006: Go Pro

• Read:“Hackers and Painters - Big Ideas
from the Computer Age” by Paul Graham

• Get in the habit of writing beautiful code

• Take communication classes: code that is

hard to understand can’t be beautiful

• Learn from the masters: agile programming,
pragmatic programmers

After 6.006: Go Pro

• Have a weapon at every level: n00bs (Java),

low (C / C++), high (Python, Ruby, Erlang)

• General knowledge in all aspects of coding:
architecture and OSes, networks, security,
parallel processing, databases, web

• MIT classes covering all of the above

• Learn a new language a year

• CODE

After 6.006: Go Pro

• Pros

• Every interviewer will love you

• Can do contract work to make quick $$

• Build cool stuff

• Cons

• Results take more time to show

• Lots of competition

After 6.006:Wrap-up

• The options above are not disjoint

Thank you!

mailto:victor@costan.us
mailto:victor@costan.us

Warm-up: Sort Strings

• N strings, O(1) alphabet
size, want to sort them

• Easy: each string has M
characters, sort in
O(MN)

• Hard: string i has Ci

characters, sort in
O(ΣCi)

blend acids
arums acidy
acids acing
blent acini
acing → ackee
acini acold
ackee arums
acold blend
acidy blent

Warm-up: Solutions

• Easy

• Radix sort, strings are M-digit numbers

• Hard

• let M = max(C1, C2 ... Cn)

• use radix sort w/M rounds, 0...M-1

• add string i at round M - Ci, its smaller
than all existing strings

P1: String Suffixes

• Given a string s of N
characters, O(1)
alphabet size

• The string’s suffixes are
suffi=s[1...i]

• Want an array so that
a[j] = i means that suffi is
the jth in the sorted
order

aardvark
Suffixes Sorted

1 aardvark 1 aardvark
2 ardvark 2 ardvark
3 rdvark 6 ark
4 dvark 4 dvark
5 vark 8 k
6 ark 3 rdvark
7 rk 7 rk
8 k 5 vark

a = [1, 2, 6, 4, 8, 3, 7, 5]

P1: Solution

• Radix sort, log(N)

rounds 0...log(N)-1

• Round k sorts a[i...i+2k]
(suffixes truncated to up
to 2k characters)

• Round 0: simple
sorting letters = digits

• Round i: use the
results of round i-1

• Notice a[i...i+2k] =
a[i...i+2k-1] +
a[i+2k-1+1...i+2k]

• So can use ranks
computed in round i
to represent a[i...i+2k]
as 2 base-N digits

• O(N) per round, for a
total running time of
O(Nlog(N))

P2: Longest Palindrome

• Given a string of N
characters, find the
longest palindrome
substring

• Substring: s[i...j]
(continuous)

• Palindrome: if you read it
backwards it’s the same

funabccbafun

No straw warts here

GATTACA

3141592653589790

want atoyota

P2: Solution

d

P3: Feed the Drones

of types in last 3 items Widgets

• drones produce widgets
when given food

1 1
2 2

• 3 types of food: (Fish,
Meat, Bread)

• drones like variety: Sample production given food

3 3

remember the last 3
crates they were fed and
produce widgets
according to variety W 1 2 2 2 1 2 3 2 1

F B M B B B M F F F

P3: Feed the Drones

• Given: 2 work sites , a
sequence of N crates of
food (of specific types)

• Have to assign each
crate to one of the two
sites, want to maximize
production

• Cannot throw away or
reorder the crates

Sample input and answer

I B M F F M B F F

A 1 2 1 2 1 2 1 2

Production achieved

B F M F M F B F

+1 +2 +3 +2 +1 +2 +3 +2

Widgets at both sites: 16

P3: Solution

• Dynamic Programming

• State

• the current crate

• the types of the last 2
crates delivered at
each of the 2 work
sites

• adding N as the 4th

type, means Nothing

• DP[i][(u1,u2)][(v1, v2)] =
max. production for the
first i crates, so that the
last 2 crates at site 1
were of types u1, u2, and
the last 2 crates at site 2
were of types v1, v2

• Recursion: exercise

• Running time: O(N)

P4: Light up the House

• House of rooms, and
paths between rooms;
unique path between any
two rooms

• Light switch in room R
toggles the light in R and
its neighbors

• Start with all lights off,
end with all lights on,
min. number of switches

P4: Solutions

• Structural DP (missed it?)

• Strategy: solve subtrees before parents

• State: light on or off; used switch at node

• DP[node][l][s] = min. number of switches
to light up everything under “node”; node is
light up if l = true, and the switch at “node”
is used is on if s = true

P5: Partial Sums v2

• Start out with array of
numbers a[1...N]

• Want to answer M
operations, an op can be:

• Update: a[i] = v

• Query: Σa[i...j]

