MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 10: Sorting III: Linear Bounds Linear-Time Sorting

Lecture Overview

- Sorting lower bounds
- Decision Trees
- Linear-Time Sorting
- Counting Sort

Readings

CLRS 8.1-8.4

Comparison Sorting

Insertion sort, merge sort and heap sort are all comparison sorts.
The best worst case running time we know is $O(n \lg n)$. Can we do better?

Decision-Tree Example

Sort $<a_{1}, a_{2}, \cdots a_{n}>$.

Figure 1: Decision Tree
Each internal node labeled $i: j$, compare a_{i} and a_{j}, go left if $a_{i} \leq a_{j}$, go right otherwise.

Example

Sort $<a_{1}, a_{2}, a_{3}>=<9,4,6>$ Each leaf contains a permutation, i.e., a total ordering.

Figure 2: Decision Tree Execution

Decision Tree Model

Can model execution of any comparison sort. In order to sort, we need to generate a total ordering of elements.

- One tree size for each input size n
- Running time of algo: length of path taken
- Worst-case running time: height of the tree

Theorem

Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof: Tree must contain $\geq n$! leaves since there are n ! possible permutations. A height- h binary tree has $\leq 2^{h}$ leaves. Thus,

$$
\begin{aligned}
n! & \leq 2^{h} \\
\Longrightarrow h & \geq \lg (n!) \quad\left(\geq \lg \left(\left(\frac{n}{e}\right)^{n}\right) \text { Stirling }\right) \\
& \geq n \lg n-n \lg e \\
& =\Omega(n \lg n)
\end{aligned}
$$

Sorting in Linear Time

Counting Sort: no comparisons between elements
Input: $A[1 \ldots n]$ where $A[j] \in\{1,2, \cdots, k\}$
Output: $B[1 \ldots n]$ sorted
Auxiliary Storage: $C[1 \ldots k]$

Intuition

Since elements are in the range $\{1,2, \cdots, k\}$, imagine collecting all the j 's such that $A[j]=1$, then the j 's such that $A[j]=2$, etc.

Don't compare elements, so it is not a comparison sort!
$A[j]$'s index into appropriate positions.

Pseudo Code and Analysis

$$
\begin{aligned}
& \theta(\mathrm{k}) \quad\left\{\begin{array}{l}
\text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \\
\text { do } \mathrm{C}[\mathrm{i}]=0
\end{array}\right. \\
& \theta(n) \quad\left\{\begin{array}{l}
\text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \\
\mathrm{do} \mathrm{C}[\mathrm{~A}[\mathrm{j}]]=\mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1
\end{array}\right. \\
& \theta(\mathrm{k}) \quad\left\{\begin{array}{l}
\text { for } \mathrm{i} \leftarrow 2 \text { to } \mathrm{k} \\
\text { do } \mathrm{C}[\mathrm{i}]=\mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]
\end{array}\right. \\
& \theta(\mathrm{n}) \quad\left\{\begin{array}{l}
\text { for } \mathrm{j} \leftarrow \mathrm{n} \text { downto } 1 \\
\text { do } \mathrm{B}[\mathrm{C}[\mathrm{~A}[\mathrm{j}]]]=\mathrm{A}[\mathrm{j}]
\end{array}\right. \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]]=\mathrm{C}[\mathrm{~A}[\mathrm{j}]]-1 \\
& \theta(\mathrm{n}+\mathrm{k})
\end{aligned}
$$

Figure 3: Counting Sort

Example

Note: Records may be associated with the $A[i]$'s.

Figure 4: Counting Sort Execution

$$
\begin{aligned}
A[n] & =A[5]=3 \\
C[3] & =3 \\
B[3] & =A[5]=3, C[3] \text { decr. } \\
A[4] & =4 \\
C[4] & =5 \\
B[5] & =A[4]=4, C[4] \text { decr. and so on } \cdots
\end{aligned}
$$

