MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lecture 10: Sorting III: Linear Bounds Linear-Time Sorting

Lecture Overview

- Sorting lower bounds
 - Decision Trees
- Linear-Time Sorting
 - Counting Sort

Readings

$CLRS \ 8.1-8.4$

Comparison Sorting

Insertion sort, merge sort and heap sort are all comparison sorts. The best worst case running time we know is $O(n \lg n)$. Can we do better?

Decision-Tree Example

Sort $\langle a_1, a_2, \cdots a_n \rangle$.

Figure 1: Decision Tree

Each internal node labeled i: j, compare a_i and a_j , go left if $a_i \leq a_j$, go right otherwise.

Example

Lecture 10

Sort $\langle a_1, a_2, a_3 \rangle = \langle 9, 4, 6 \rangle$ Each leaf contains a permutation, i.e., a total ordering.

Figure 2: Decision Tree Execution

Decision Tree Model

Can model execution of any comparison sort. In order to sort, we need to generate a total ordering of elements.

- One tree size for each input size n
- Running time of algo: length of path taken
- Worst-case running time: height of the tree

Theorem

Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof: Tree must contain $\geq n!$ leaves since there are n! possible permutations. A height-h binary tree has $\leq 2^{h}$ leaves. Thus,

$$n! \leq 2^{h}$$

$$\implies h \geq \lg(n!) \quad (\geq \lg((\frac{n}{e})^{n}) \text{ Stirling})$$

$$\geq n \lg n - n \lg e$$

$$= \Omega(n \lg n)$$

Lecture 10

Sorting in Linear Time

Counting Sort: no comparisons between elements

Input: A[1...n] where $A[j] \in \{1, 2, \cdots, k\}$

Output: $B[1 \dots n]$ sorted

Auxiliary Storage: $C[1 \dots k]$

Intuition

Since elements are in the range $\{1, 2, \dots, k\}$, imagine collecting all the j's such that A[j] = 1, then the j's such that A[j] = 2, etc.

Don't compare <u>elements</u>, so it is not a comparison sort!

A[j]'s <u>index</u> into appropriate positions.

Pseudo Code and Analysis

$$\theta(\mathbf{k}) \begin{cases} \text{for } \mathbf{i} \leftarrow 1 \text{ to } \mathbf{k} \\ \text{do } \mathbf{C} [\mathbf{i}] = \mathbf{0} \end{cases}$$

$$\theta(\mathbf{n}) \begin{cases} \text{for } \mathbf{j} \leftarrow 1 \text{ to } \mathbf{n} \\ \text{do } \mathbf{C} [\mathbf{A}[\mathbf{j}]] = \mathbf{C} [\mathbf{A}[\mathbf{j}]] + 1 \end{cases}$$

$$\theta(\mathbf{k}) \begin{cases} \text{for } \mathbf{i} \leftarrow 2 \text{ to } \mathbf{k} \\ \text{do } \mathbf{C} [\mathbf{i}] = \mathbf{C} [\mathbf{i}] + \mathbf{C} [\mathbf{i} - 1] \end{cases}$$

$$\theta(\mathbf{n}) \begin{cases} \text{for } \mathbf{j} \leftarrow \mathbf{n} \text{ downto } 1 \\ \text{do } \mathbf{B}[\mathbf{C} [\mathbf{A}[\mathbf{j}]]] = \mathbf{A}[\mathbf{j}] \\ \mathbf{C} [\mathbf{A}[\mathbf{j}]] = \mathbf{C} [\mathbf{A}[\mathbf{j}]] - 1 \end{cases}$$

$$\theta(\mathbf{n} + \mathbf{k})$$

Figure 3: Counting Sort

Lecture 10

Example

Note: Records may be associated with the A[i]'s.

Figure 4: Counting Sort Execution

$$A[n] = A[5] = 3$$

$$C[3] = 3$$

$$B[3] = A[5] = 3, C[3] \text{ decr.}$$

$$A[4] = 4$$

$$C[4] = 5$$

$$B[5] = A[4] = 4, C[4] \text{ decr.} \text{ and so on } \dots$$