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Lecture 10: Sorting III: Linear Bounds 

Linear-Time Sorting 

Lecture Overview 

• Sorting lower bounds 

– Decision Trees 

• Linear-Time Sorting 

– Counting Sort 

Readings 

CLRS 8.1-8.4 

Comparison Sorting 

Insertion sort, merge sort and heap sort are all comparison sorts.

The best worst case running time we know is O(n lg n). Can we do better?


Decision-Tree Example 

Sort < a1, a2, an >.· · · 

1:2

2:3 1:3

1:3
2:3

231 321
312132

123 213

Figure 1: Decision Tree 

Each internal node labeled i : j, compare ai and aj , go left if ai ≤ aj , go right otherwise. 
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Example 

Sort < a1, a2, a3 >=< 9, 4, 6 > Each leaf contains a permutation, i.e., a total ordering. 

1:3
2:3

2:3

231

1:2 9 > 4  (a1 > a2)

(a2 ≤ a3) 4 ≤  6

9 > 6  (a1 > a3)

4 ≤  6 ≤  9

Figure 2: Decision Tree Execution 

Decision Tree Model 

Can model execution of any comparison sort. In order to sort, we need to generate a total 
ordering of elements. 

• One tree size for each input size n 

• Running time of algo: length of path taken 

• Worst-case running time: height of the tree 

Theorem 

Any decision tree that can sort n elements must have height Ω(n lg n). 

Proof: Tree must contain ≥ n! leaves since there are n! possible permutations. A height-h 
binary tree has ≤ 2h leaves. Thus, 

n! ≤ 2h 

n 
= ⇒ h ≥ lg(n!) (≥ lg((

e 
)n) Stirling) 

≥ n lg n − n lg e 

= Ω(n lg n) 
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Sorting in Linear Time 

Counting Sort: no comparisons between elements


Input: A[1 . . . n] where A[j] � {1, 2, , k}
· · · 

Output: B[1 . . . n] sorted


Auxiliary Storage: C[1 . . . k]


Intuition 

Since elements are in the range {1, 2, , k}, imagine collecting all the j’s such that A[j] = 1, · · · 
then the j’s such that A[j] = 2, etc. 

Don’t compare elements, so it is not a comparison sort! 

A[j]’s index into appropriate positions. 

Pseudo Code and Analysis 

θ(k) 

θ(n) 

θ(k) 

θ(n) 

{ for i ← 1 to k
do C [i] = 0

{ for j ← 1 to n
do C [A[j]] = C [A[j]] + 1

{ for i ← 2 to k
do C [i] = C [i] + C [i-1]

{ for j ← n downto 1
do B[C [A[j]]] = A[j]
     C [A[j]] = C [A[j]] - 1

θ(n+k) 

Figure 3: Counting Sort 
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Example 

Note: Records may be associated with the A[i]’s. 

14 3 4 3

1     2     3     4     5

31 3 4 4

1     2     3      4      5 

A:

B:

00 0 0

1     2     3     4   
C:

01 2 2C:

11 3 5

1     2     3     4   
C:

2 4

Figure 4: Counting Sort Execution 

A[n] = A[5] = 3


C[3] = 3


B[3] = A[5] = 3, C[3] decr.


A[4] = 4


C[4] = 5


B[5] = A[4] = 4, C[4] decr. and so on . . . 
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