

	

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 3

Problem Set 3
Please write your solutions in the LATEX and Python templates provided. Aim for concise
solutions; convoluted and obtuse descriptions might receive low marks, even when they are
correct.

Problem 3-1. [5 points] Hash Practice

(a) [2 points] Insert integer keys A = [47, 61, 36, 52, 56, 33, 92] in order into
a hash table of size 7 using the hash function h(k) = (10k + 4) mod 7. Each slot of
the hash table stores a linked list of the keys hashing to that slot, with later insertions
being appended to the end of the list. Draw a picture of the hash table after all keys
have been inserted.

(b) [3 points] Suppose the hash function were instead h(k) = ((10k + 4) mod c) mod 7
for some positive integer c. Find the smallest value of c such that no collisions occur
when inserting the keys from A.

Problem 3-2. [15 points] Dorm Hashing
MIT wants to assign 2n new students to n rooms, numbered 0 to n − 1, in Pseudorandom Hall.
Each MIT student will have an ID: a postive integer less than u, with u � 2n. No two students
can have the same ID, but new students are allowed to choose their own IDs after the start of term.

MIT wants to find students quickly given their IDs, so will assign students to rooms by hashing
their IDs to a room number. So as not to appear biased, MIT will publish a family H of hash
functions online before the start of term (before new students choose their IDs), and then after
students choose IDs, MIT will choose a rooming hash function uniformly at random from H.

New MIT freshmen Rony Stark and Tiri Williams want to be roommates. For each hash family
below, show that either:

• Rony and Tiri can choose IDs k1 and k2 so as to guarantee that they’ll be roommates, or

• prove that no such choice is possible and compute the highest probability they could possibly
achieve of being roommates.

(a) [5 points] H = {hab(k) = (ak + b) mod n | a, b ∈ {0, . . . , n − 1} and a 6= 0}� �� � �
(b) [5 points] H = ha(k) = kn

u + a mod n | a ∈ {0, . . . , u − 1}
(c) [5 points] H = {hab(k) = ((ak + b) mod p) mod n | a, b ∈ {0, . . . , p − 1} and a 6= 0}

for fixed prime p > u (this is the universal hash family from Lecture 4)

2 Problem Set 3

Problem 3-3. [20 points] The Cold is Not Bothersome Anyway
Ice cores are long cylindrical plugs drilled out of deep glaciers, which are accumulations of snow
piled on top of each other and compressed into ice. Scientists can divide an ice core into distinct
slices, each representing one year of deposits. For each of the following scenerios, describe an
efficient1 algorithm to sort n slices collected from multiple ice cores. Justify your answers.

(a) [5 points] Every ice core is given a unique core identifier for bookkeeping, which is
a string of exactly 16dlog4(

√
n)e ASCII characters.2 Sort the slices by core identifier.

(b) [5 points] The deepest ice cores in the database are up to 800,000 years old. Sort the
slices by their age: the integer number of years since the slice was formed.

(c) [5 points] Variation in the amount of snowfall each year will cause a glacier to accu-
mulate at different rates over time. Sort the slices by thickness, a rational number of
centimeters of the form m/n3 between 0 and 4, where m is an integer.

(d) [5 points] Elna of Northendelle has discovered that water has memory, but is unable
to quantify the memory of a given slice. Luckily, given two slices, she can distinguish
which has more memory in O(1) time using her “two-finger algorithm” (touching the
slices with her two index fingers). Sort the slices by memory.

Problem 3-4. [20 points] Pushing Paper
Farryl Dilbin is a forklift operator at Munder Difflin paper company’s central warehouse. She
needs to ship exactly r reams of paper to a customer. In the warehouse are n boxes of paper,
each one foot in width, lined up side-by-side covering an n-foot wall. Each box contains a known
positive integer number of reams, where no two boxes contain the same number of reams. Let
B = (b0, . . . bn−1) be the number of reams per box, where box i located i feet from the left end of
the wall contains bi reams of paper, where bi 6= bj for all i =6 j. To minimize her effort, Pharryl
wants to know whether there is a close pair (bi, bj) of boxes, meaning that |i − j| < n/10, that will
fulfill order r, meaning that bi + bj = r.

(a) [10 points] Given B and r, describe an expected O(n)-time algorithm to determine
whether B contains a close pair that fulfills order r.

(b) [10 points] Now suppose that r < n2 . Describe a worst-case O(n)-time algorithm to
determine whether B contains a close pair that fulfills order r.

1By “efficient”, we mean that asymptotically faster correct algorithms will receive more points than slower ones.
2You may assume a string of k ASCII characters is a pointer to a contiguous sequence of k bytes in memory, where

each byte stores an integer from 0 to 127 inclusive representing an ASCII character.
https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/ASCII

3 Problem Set 3

Problem 3-5. [40 points] Anagram Archaeology
String A is an anagram of another string B if A is a permutation of the letters in B; for example,
(indicatory, dictionary) and (brush, shrub) are pairs of words that are anagrams of
each other. In this problem, all strings will be ASCII strings containing only the lowercase English
letters a to z.

Given two strings A and B, the anagram substring count of B in A is the number of contiguous
substrings of A that are anagrams of B. For example, if A = ’esleastealaslatet’ and B =
’tesla’, then, of the 13 contiguous substrings in A of length |B| = 5, exactly 3 of them are
anagrams of B, namely (’least’, ’steal’, ’slate’), so the anagram substring count of
B in A is 3.

(a) [12 points] Given string A and a positive integer k, describe a data structure that can
be built in O(|A|) time, which will then support a single operation: given a different
string B with |B| = k, return the anagram substring count of B in A in O(k) time.

(b) [3 points] Given string T and an array of n length-k strings S = (S0, . . . , Sn−1)
satisfying 0 < k < |T |, describe an O(|T | + nk)-time algorithm to return an array A
= (a0, . . . , an−1) for which ai is the anagram substring count of Si in T for all i ∈
{0, . . . , n − 1}.

(c) [25 points] Write a Python function count anagram substrings(T, S) that
implements your algorithm from part (b). Note the built-in Python function ord(c)
returns the ASCII integer corresponding to ASCII character c in O(1) time. You can
download a code template containing some test cases from the website.

1 def count_anagram_substrings(T, S):
’’’2

3 Input: T | String
4 S | Tuple of strings S_i of equal length k < |T|
5 Output: A | Tuple of integers a_i:
6 | the anagram substring count of S_i in T

’’’7

8 A = []
9 ##################

10 # YOUR CODE HERE #
11 ##################
12 return tuple(A)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

