
   

  
               

             
 

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 1 

Problem Set 1 
Please write your solutions in the LATEX and Python templates provided. Aim for concise 

solutions; convoluted and obtuse descriptions might receive low marks, even when they are 
correct. 

Problem 1-1. [20 points] Asymptotic behavior of functions 

For each of the following sets of five functions, order them so that if fa appears before fb in your 
sequence, then fa = O(fb). If fa = O(fb) and fb = O(fa) (meaning fa and fb could appear in 
either order), indicate this by enclosing fa and fb in a set with curly braces. For example, if the 
functions are: 

√ √ 
f1 = n, f2 = n, f3 = n + n, 

the correct answers are (f2, {f1, f3}) or (f2, {f3, f1}). 
Note: Recall that abc means a(bc), not (ab)c , and that log means log2 unless a different base is 
specified explicitly. Stirling’s approximation may help for comparing factorials. 

a) b) c) d) 

n)f1 = log(n 

f2 = (log n)n 

6006)f3 = log(n 

= (log n)6006f4 

f5 = log log(6006n) 

f1 

f2 

f3 

f4 

f5 

= 2n 

= 6006n 

= 26006
n 

= 60062
n 

2 
= 6006n

f1 

f2 

f3 

f4 

f5 

n = n� � 
n 

= 
n − 6 

= (6n)!� � 
n 

= 
n/6 
6 = n 

f1 

f2 

f3 

f4 

f5 

n+4 = n + n! 
√ 

7 n = n 

= 43n log n 

2 
= 7n

12+1/n= n 

Solution: 
a. (f5, f3, f4, f1, f2). Using exponentiation and logarithm rules, we can simplify these to f1 = 
Θ(n log n), f2 = Θ((log n)n), f3 = Θ(log n), f4 = Θ((log n)6006), and f5 = Θ(log log n). 
For f2, note that (log n)n > 2n for large n, so this function grows at least exponentially and 
is therefore bigger than the rest. 

b. (f1, f2, f5, f4, f3). This order follows after converting all the exponent bases to 2. (For exam-
= 2log(6006)nple, f5 

2 .) Remember that asymptotic growth is much more sensitive to changes 
in exponents: even if the exponents are both Θ(f(n)) for some function f(n), the functions 
will not be the same asymptotically unless their exponents only differ by a constant. 
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c. ({f2, f5}, f4, f1, f3). This order follows from the definition of the binomial coefficient and 
Stirling’s approximation. f2 has most terms cancel in the numerator and denominator, leav-√ 
ing a polynomial with leading term n6/6!. The trickiest one is f4 = Θ((6/(55/6))n/ n) (by√ 
repeated use of Stirling), which is about Θ(1.57n/√n). Thus f4 is bigger than the polynomi-

nals but smaller than the factorial and n . f3 = Θ( n(6n/e)6n) which grows asymptotically 
faster than nn by a factor of Θ(n5n+(1/2)(6/e)6n). (Originally, f3 was presented as 6n! which 
could reasonably be interpretted as 6(n!), which would put f3 before f1 in the order. Because 
of this, graders should accept f1 and f3 in either order.) 

d. (f5, f2, f1, f3, f4). It is easiest to see this by taking the logarithms of the functions, which√ 
give us Θ(n log n), Θ( n log n), Θ(n log n), Θ(n2), Θ(log n) respectively. However, asymp-
totically similar logarithms do not imply that the functions are asymptotically the same, so 

(4log n)3n log 4)3n 6nwe consider f1 and f3 further. Note that f3 = = (n = n . This is bigger 
(by about a factor of n5n) than the larger of f1’s terms, so f3 is asymptotically larger. 

Rubric: 

• 5 points per set for a correct order 

• −1 point per inversion 

• −1 point per grouping mistake, e.g., ({f1, f2, f3}) instead of (f2, f1, f3) is −2 points because 
they differ by two splits. 

• 0 points minimum 
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Problem 1-2. [16 points] Given a data structure D that supports Sequence operations: 

• D.build(X) in O(n) time, and 

• D.insert at(i, x) and D.delete at(i), each in O(log n) time, 

where n is the number of items stored in D at the time of the operation, describe algorithms to 
implement the following higher-level operations in terms of the provided lower-level operations. 
Each operation below should run in O(k log n) time. Recall, delete at returns the deleted item. 

(a) reverse(D, i, k): Reverse in D the order of the k items starting at index i (up to 
index i + k − 1). 
Solution: Thinking recursively, to reverse the k-item subsequence from index i to 
index i + k − 1, we can swap the items at index i and index i + k − 1, and then 
recursively reverse the rest of the subsequence. As a base case, no work needs to be 
done to reverse a subsequence containing fewer than 2 items. This procedure would 
then be correct by induction. 
It remains to show how to actually swap items at index i and index i + k − 1. Note 
that removing an item will shift the index values at all later items. So to keep index 
values consistent, we will delete at the later index i + k − 1 first (storing item as 
x2), and then delete at index i (storing item as x1). Then we insert them back in 
the opposite order, insert at item x2 at index i, and then insert at item x1 at 
index i + k − 1. This swap is correct by the definitions of these operations. 
The swapping sub procedure performs four O(log n)-time operations, so occurs in 
O(log n) time. Then the recursive reverse procedure makes no more than k/2 = O(k) 
recursive calls before reaching a base case, doing one swap per call, so the algorithm 
runs in O(k log n) time. 

1 def reverse(D, i, k): 
2 if k < 2: # base case 
3 return 
4 x2 = D.delete_at(i + k - 1) # swap items i and i + k - 1 
5 x1 = D.delete_at(i) 
6 D.insert_at(i, x2) 
7 D.insert_at(i + k - 1, x1) 
8 reverse(D, i + 1, k - 2) # recurse on remainder 

Rubric: 

• 5 points for description of algorithm 
• 1 point for argument of correctness 
• 2 point for argument of running time 
• Partial credit may be awarded 
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(b) move(D, i, k, j): Move the k items in D starting at index i, in order, to be in front 
of the item at index j. Assume that expression i ≤ j < i + k is false. 
Solution: Thinking recursively, to move the k-item subsequence starting at i in front 
of the item at index j, it suffices to move the item at index i in front of the item B 
at index j, and then recursively move the remainder (the (k − 1)-item subsequence 
starting at index i in front of . As a base case, no work needs to be done to move a 
subsequence containing fewer than 1 item. If we maintain that: i is the index of the 
first item to be moved, k is number of items to be moved, and j denotes the index of 
the item in front of which we must place items, then this procedure will be correct by 
induction. 
Note that after removing the item A at index i, if j > i, item B will shift down to be 
at index j − 1. Similarly, after inserting A in front of B, item B will be at an index 
that is one larger than before, while the next item in the subsequence to be moved will 
also be at a larger index if i > j. Maintaining these indices then results in a correct 
algorithm. 
This recursive procedure makes no more than k = O(k) recursive calls before reach-
ing a base case, doing O(log n) work per call, so the algorithm runs in O(k log n) 
time. 

1 def move(D, i, k, j): 
2 if k < 1: 
3 return 
4 x = D.delete_at(i) 
5 if j > i 
6 j = j - 1 
7 D.insert_at(j, x) 
8 j = j + 1 
9 if i > j 

10 i = i + 1 
11 move(D, i, k - 1, j) 

Rubric: 
• 5 points for description of algorithm 
• 1 point for argument of correctness 
• 2 point for argument of running time 
• Partial credit may be awarded 
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Problem 1-3. [20 points] Binder Bookmarks 

Sisa Limpson is a very organized second grade student who keeps all of her course notes on indi-
vidual pages stored in a three-ring binder. If she has n pages of notes in her binder, the first page 
is at index 0 and the last page is at index n − 1. While studying, Sisa often reorders pages of her 
notes. To help her reorganize, she has two bookmarks, A and B, which help her keep track of 
locations in the binder. 

Describe a database to keep track of pages in Sisa’s binder, supporting the following operations, 
where n is the number of pages in the binder at the time of the operation. Assume that both 
bookmarks will be placed in the binder before any shift or move operation can occur, and that 
bookmark A will always be at a lower index than B. For each operation, state whether your 
running time is worst-case or amortized. 

build(X) Initialize database with pages from iterator X in O(|X|) time. 
place mark(i, m) Place bookmark m ∈ {A, B} between the page at index i and 

the page at index i + 1 in O(n) time. 
read page(i) Return the page at index i in O(1) time. 
shift mark(m, d) Take the bookmark m ∈ {A, B}, currently in front of the page at 

index i, and move it in front of the page at index i + d 
for d ∈ {−1, 1} in O(1) time. 

move page(m) Take the page currently in front of bookmark m ∈ {A, B}, 
and move it in front of the other bookmark in O(1) time. 

Solution: There are many possible solutions. First note that the problem specifications ask for a 
constant-time read page(i) operation, which can only be supported using array-based imple-
mentations, so linked-list approaches will be incorrect. Also note that that until both bookmarks 
are placed, we can simply store all pages in a static array of size n, since no operations can change 
the sequence of pages until both bookmarks are placed. We present a solution generalizing the 
dynamic array we discussed in class. Another common approach could be to reduce to using two 
dynamic arrays (one on either end of bookmarks A and B), together with an array-based deque as 
described in Problem Session 1 to store the pages between bookmarks A and B. 

For our approach, after both bookmarks have been placed, we will store the n pages in a static 
array S of size 3n, which we can completely re-build in O(n) time whenever build(X) or 
place mark(i, m) are called (assuming n = |X|). To build S: 

• place the subsequence P1 of pages from index 0 up to bookmark A at the beginning of S, 

• followed by n empty array locations, 

• followed by the subsequence of pages P2 between bookmarks A and B, 

• followed by n empty array locations, 

• followed by the subsequence of pages P3 from bookmark B to index n − 1. 

We will maintain the separation invariant that P1, P2, and P3 are stored contiguously in S with a 
non-zero number of empty array slots between them. We also maintain four indices with semantic 
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invariants: a1 pointing to the end of P1, a2 pointing to the start of P2, b1 pointing to the end of P2, 
and b2 pointing to the start of P3. 

To support read page(i), there are three cases: either i is the index of a page in P1, P2, or P3. 

• If i < n1, where n1 = |P1| = ai + 1, then the page is in P1, and we return page S[i]. 

• Otherwise, if n1 ≤ i < n1 + n2, where n2 = |P2| = (b1 − a2 + 1), then the page is in P2, and 
we return page S[a2 + (i − n1)]. 

• Otherwise, i > a1 + n2, so the page is in P3, and we return page S[b2 + (i − n1 − n2)]. 

This algorithm returns the correct page as long as the invariants on the stored indices are main-
tained, and returns in worst-case O(1) time based on some arithmetic operations and a single array 
index lookup. 

To support shift mark(m, d), move the relevant page at one of indices (a1, a2, b1, b2) to the 
index location (a2 − 1, a1 +1, b2 − 1, b1 + 1) respectively, and then increment the stored indices to 
maintain the invariants. This algorithm maintains the invariants of the data structure so is correct, 
and runs in O(1) time based on one array index lookup, and one index write. Note that this 
operation does not change the amount of extra space between sections P1, P2, and P3, so the 
running time of this operation is worst-case. 

To support move page(m), move the relavent page at one of indices (a1, b1) to the index location 
(b1 + 1, a1 + 1) respectively, and then increment the stored indices to maintain the invariants. If 
performing this move breaks the separation invariant (i.e., either pair (a1, a2) or (b1, b2) become 
adjacent), rebuild the entire data structure as described above. This algorithm maintains the invari-
ants of the data structure, so is correct. Note that this algorithm: rebuilds any time the extra space 
between two adjacent sections closes; after rebuilding, there is n extra space between adjacent 
sections; and the extra space between adjacent sections changes by at most one per move page 
operation. Thus, since this operation takes O(n) time at most once every n operations, and O(1) 
time otherwise, this operation runs in amortized O(1) time. 

Rubric: 

• 4 points for general description of a correct database 

• 1 point for description of a correct build(X) 

• 2 points for description of a correct place mark(i, m) 

• 3 points for description of a correct read page(i) 

• 2 points for description of a correct shift mark(m, d) 

• 3 points for description of a correct move page(m) 

• 1 point for analysis of running time for each operation (5 points total) 

• Partial credit may be awarded 
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Problem 1-4. [44 points] Doubly Linked List 

In Lecture 2, we described a singly linked list. In this problem, you will implement a doubly 
linked list, supporting some additional constant-time operations. Each node x of a doubly linked 
list maintains an x.prev pointer to the node preceeding it in the sequence, in addition to an 
x.next pointer to the node following it in the sequence. A doubly linked list L maintains a pointer 
to L.tail, the last node in the sequence, in addition to L.head, the first node in the sequence. 
For this problem, doubly linked lists should not maintain their length. 

(a) [8 points] Given a doubly linked list as described above, describe algorithms to im-
plement the following sequence operations, each in O(1) time. 

insert first(x) insert last(x) delete first() delete last() 

Solution: Below are descriptions of algorithms supporting the requested operations. 
Each of these algorithm performs each constant-sized task directly, so no additional 
argument of correctness is necessary. Each runs in O(1) time by relinking a constant 
number of pointers (and possibly constructing a single node). 
insert first(x): Construct a new doubly linked list node a storing x. If the 
doubly linked list is empty, (i.e., the head and tail are unlinked), then link both the 
head and tail of the list to a. Otherwise, the linked list has a head node b, so make a’s 
next pointer point to b, make b’s previous pointer point to a, and set the list’s head to 
point to a. 
insert last(x): Construct a new doubly linked list node a storing x. If the doubly 
linked list is empty, (i.e., the head and tail are unlinked), then link both the head and 
tail of the list to a. Otherwise, the linked list has a tail node b, so make a’s previous 
pointer point to b, make b’s next pointer point to a, and set the list’s tail to point to a. 
delete first(): This method only makes sense for a list containing at least one 
node, so assume the list has a head node. Extract and store the item x from the head 
node of the list. Then set the head to point to the node a pointed to by the head node’s 
next pointer. If a is not a node, then we removed the last item from the list, so set 
the tail to None (head is already set to None). Otherwise, set the new head’s previous 
pointer to None. Then return item x. 
delete last(): This method only makes sense for a list containing at least one 
node, so assume the list has a tail node. Extract and store the item x from the tail 
node of the list. Then set the tail to point to the node a pointed to by the tail node’s 
previous pointer. If a is not a node, then we removed the last item from the list, so 
set the head to None (tail is already set to None). Otherwise, set the new tail’s next 
pointer to None. Then return item x. 
Rubric: 

• 2 points for description and analysis of each correct operation 
• Partial credit may be awarded 
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(b) [5 points] Given two nodes x1 and x2 from a doubly linked list L, where x1 occurs 
before x2, describe a constant-time algorithm to remove all nodes from x1 to x2 in-
clusive from L, and return them as a new doubly linked list. 
Solution: Construct a new empty list L2 in O(1) time, and set its head and tail to be 
x1 and x2 respectively. To extract this sub-list, care must be taken when x1 or x2 are 
the head or tail of L respectively. If x1 is the head of L, set the new head of L to be 
the node a pointed to by x2’s next pointer; otherwise, set the next pointer of the node 
pointed to by x1’s previous pointer to a. Similarly, if x2 is the tail of L, set the new tail 
of L to be the node b pointed to by x1’s previous pointer; otherwise, set the previous 
pointer of the node pointed to by x2’s next pointer to b. 
This algorithm removes the nodes from x1 to x2 inclusive directly, so it is correct, and 
runs in O(1) time by relinking a constant number of pointers. 
Rubric: 
• 3 points for description of a correct algorithm 
• 1 point for argument of correctness 
• 1 point for argument of running time 
• Partial credit may be awarded 

(c) [6 points] Given node x from a doubly linked list L1 and second doubly linked list L2, 
describe a constant-time algorithm to splice list L2 into list L1 after node x. After the 
splice operation, L1 should contain all items previously in either list, and L2 should 
be empty. 
Solution: First, let x1 and x2 be the head and tail nodes of L2 respectively, and let xn be 
the node pointed to by the next pointer of x (which may be None). We can remove all 
nodes from L2 by setting both it’s head and tail to None. Then to splice in the nodes, 
first set the previous pointer of x1 to be x, and set the next pointer of x to be x1. 
Similarly, set the next pointer of x2 to be xn. If xn is None, then set x2 to be the new tail 
of L; otherwise, set the previous pointer of xn to point back to x2. 
This algorithm inserts the nodes from L2 directly into L, so it is correct, and runs in 
O(1) time by relinking a constant number of pointers. 
Rubric: 
• 4 points for description of a correct algorithm 
• 1 point for argument of correctness 
• 1 point for argument of running time 
• Partial credit may be awarded 

(d) [25 points] Implement the operations above in the Doubly Linked List Seq 
class in the provided code template; do not modify the Doubly Linked List Node 
class. You can download the code template including some test cases from the web-
site. 
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Solution: 

1 class Doubly_Linked_List_Seq: 
2 # other template methods omitted 
3 

4 def insert_first(self, x): 
new_node = Doubly_Linked_List_Node(x) 

6 if self.head is None: 
7 self.head = new_node 
8 self.tail = new_node 
9 else: 

new_node.next = self.head 
11 self.head.prev = new_node 
12 self.head = new_node 
13 

14 def insert_last(self, x): 
new_node = Doubly_Linked_List_Node(x) 

16 if self.tail is None: 
17 self.head = new_node 
18 self.tail = new_node 
19 else: 

new_node.prev = self.tail 
21 self.tail.next = new_node 
22 self.tail = new_node 
23 

24 def delete_first(self): 
assert self.head 

26 x = self.head.item 
27 self.head = self.head.next 
28 if self.head is None: self.tail = None 
29 else: self.head.prev = None 

return x 
31 

32 def delete_last(self): 
33 assert self.tail 
34 x = self.tail.item 

self.tail = self.tail.prev 
36 if self.tail is None: self.head = None 
37 else: self.tail.next = None 
38 return x 
39 

def remove(self, x1, x2): 
41 L2 = Doubly_Linked_List_Seq() 
42 L2.head = x1 
43 L2.tail = x2 
44 if x1 == self.head: self.head = x2.next 

else: x1.prev.next = x2.next 
46 if x2 == self.tail: self.tail = x1.prev 
47 else: x2.next.prev = x1.prev 
48 x1.prev = None 
49 x2.next = None 

return L2 
51 

52 def splice(self, x, L2): 
53 xn = x.next 
54 x1 = L2.head 

x2 = L2.tail 
56 L2.head = None 
57 L2.tail = None 
58 x1.prev = x 
59 x.next = x1 

x2.next = xn 
61 if xn: xn.prev = x2 
62 else: self.tail = x2 
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