
  

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Quiz 3 Review 

Quiz 3 Review 

Scope 

• Quiz 1 & Quiz 2 material fair game but explicitly not emphasized 

• 4 lectures on dynamic programming, L15-L18, 2 Problem Sets, PS7-PS8 

• Recursive framework (SRTBOT) 

• Dynamic Programming: subproblem dependencies overlap, forming a DAG 

Recursive Framework (SRT BOT) 
1. Subproblem definition 

• Describe meaning of subproblem in words, in terms of parameters x ∈ X 

• Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence 
• Often multiply possible subsets across multiple inputs 
• Often “remember” information by maintaining some auxiliary state (expansion) 
• Often expand based on state of integers in problem space (pseudopolynomial?) 

2. Relate recursively 

• Relate subproblem solutions recursively x(i) = f(x(j), . . .) for one or more j < i 

• Identify question about subproblem solution whose answer would let you reduce to 
smaller subproblem(s), then locally brute-force all possible answers to the question 

3. Topological order 

• Argue relation is acyclic (defines “smaller” subproblems), subproblems form a DAG 

4. Base cases 

• State solutions for all (reachable) independent subproblems where relation breaks down 

5. Original problem 

• Show how to compute solution to original problem from solutions to subproblem(s) 
• Possibly use parent pointers to recover actual solution, not just objective function 

6. Time analysis P 
• work(x), or if work(x) = O(W ) for all x ∈ X , then |X| · O(W )x∈X 

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time 
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Problem 1. Future Investing (adapted from S18 PS9) 

Tiffany Bannen stumbles upon a lottery chart dropped by a time traveler from the future, which 
lists winning lottery numbers and positive integer cash payouts for the next n days. Tiffany wants 
to use this information to make money, but is worried if she plays winning numbers every day, 
lottery organizers will get suspicious. As such, she decides to play the lottery infrequently: at 
most twice in any seven day period. Describe a O(n)-time algorithm to determine the maximum 
amount of lottery winnings Tiff can win in the next n days by playing the lottery infrequently. 

Solution: 

1. Subproblems 

• Let L(i) be the cash payout of playing the lottery on day i ∈ {1, . . . , n}
• Need to keep track of most recent two plays (or equivalently, restrictions on future plays) 
• x(i, j): maximum lottery winnings playing on suffix of days from i to n, 

assuming play on day i and next allowable play is on day i + j 
• for i ∈ {1, . . . , n} and j ∈ {1, . . . , 6}

2. Relate 

• Tiffany will play again on some day in future. Guess! 
• It is never optimal to go 11 days without playing the lottery, as playing on the 6th day 

would be valid and strictly increase winnings 
• The next play can be on day i + k for k ∈ {j, . . . , 11}
• If next play on i + k for k ∈ {1, . . . , 6}, next allowable play is on day i + 7 
• If next play on i + k for k ∈ {7, . . . , 11}, next allowable play is on day i + k + 1 
• x(i, j) = L(i) + max{x(i + k, max{1, 7 − k}) | k ∈ {i, . . . , 11} and i + k ≤ n}

3. Topo 

• Subproblems x(i, j) only depend on strictly larger i, so acyclic 

4. Base 

• x(n, j) = L(i) for all j ∈ {1, . . . , 6}
5. Original 

• Solve subproblems via recursive top down or iterative bottom up 
• Guess first play (within first seven days) 
• Solution to original problem is max{x(i, 1) | i ∈ {1, . . . , 7}}
• (Can store parent pointers to reconstruct days played) 

6. Time 

• # subproblems: 6n 
• work per subproblem: O(1) 
• work for original: O(1) 
• O(n) running time 
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Problem 2. Oh Charlie, Where Art Thou? (adapted from S18 PS9) 

A wealthy family, Alice, Bob, and their young son Charlie are sailing around the world when they 
encounter a massive storm. Charlie is thrown overboard, presumed drowned. Twenty years later, 
a man comes to Alice and Bob claiming to be Charlie. Alice and Bob are excited, but skeptical. 
Alice and Bob order a DNA matching test from the genetic testing company 46AndThee. Given 
three length-n DNA sequences from Alice, Bob, and Charlie, the testing center will determine 
ancestry as follows: if Charlie’s DNA can be partitioned into two (not necessarily contiguous) 
subsequences of equal length, where one is a subsequence of Alice’s DNA, and the other is a 
subsequence of Bob’s DNA, the Charlie is their son. For example, suppose Alice’s DNA is AATT 
and Bob’s DNA is CCGG. If Charlie’s DNA were CATG, he would be matched as their son, since 
CATG can be partitioned into disjoint subsequences CG and AT which are subsequences of Alice 
and Bob’s DNA respectively. However, Charlie would be found to be an imposter if his DNA were 
AGTC. Describe an O(n4)-time algorithm to determine whether Charlie is a fraud. 

Solution: 
1. Subproblems 

• Let A, B, and C be the relevant length-n DNA sequences from Alice, Bob, and Charlie. 
• Want to match some characters of A and B to all characters of C 

• x(i, j, ki, kj): true if can match a length-ki subsequence of suffix A[i :] and a length-kj 
characters from prefix B[j :] to all characters in suffix C[(n − ki − kj ) :] (the suffix 
containing the last ki + kj characters), and false otherwise. 

• for i, j ∈ {0, . . . , n} and ki, kj ∈ {0, . . . , n/2} (assume n is even) 

2. Relate 

• Must match character C[i]; if A[i] = C[i] or B[i] = C[i] recurse on remainder 
• Alternatively, do not use either A[i] or B[i]⎧ ⎫ 

x(i + 1, j, ki + 1, kj ) if A[i] = C[n − ki − kj ] and ki > 0,⎪ ⎪⎨ ⎬ x(i, j + 1, ki, kj + 1) if B[j] = C[n − ki − kj ] and kj > 0,
• x(i, j, ki, kj) = OR 

x(i + 1, j, ki, kj ) if i < n,⎪ ⎪⎩ ⎭ 
x(i, j + 1, ki, kj ) if j < n 

3. Topo 

• Subproblem x(i, j, ki, kj) only depends on strictly smaller i + j, so acyclic 

4. Base 

• x(n, n, 0, 0) is true (all matched!) 
• x(n, j, ki, kj ) false if ki > 0 (no more characters in A) 
• x(i, n, ki, kj ) false if kj > 0 (no more characters in B) 

5. Original 
• Solve subproblems via recursive top down or iterative bottom up 
• Solution to original problem is x(n, n, n/2, n/2) 
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6. Time 

• # subproblems: O(n4) 

• work per subproblem: O(1) 

• O(n4) running time 

Problem 3. Sweet Tapas (adapted from S18 Final) 

Obert Ratkins is having dinner at an upscale tapas bar, where he will order many small plates. 
There are n plates of food on the menu, where information for plate i is given by a triple of non-
negative integers (vi, ci, si): the plate’s volume vi, calories ci, and sweetness si ∈ {0, 1} (the plate 
is sweet if si = 1 and not sweet if si = 0). Obert is on a diet: he wants to eat no more than k 
calories during his meal, but wants to fill his stomach as much as possible. He also wants to order 
exactly s < n sweet plates, without purchasing the same dish twice. Describe an O(nks)-time 
algorithm to find the maximum volume of food Obert can eat given his diet. 

Solution: 

1. Subproblems 

• x(i, j, s0): maximum volume of food possible purchasing a suffix of plates pi to pn−1, 
using at most j calories, ordering exactly s0 sweet plates 

• for i ∈ {0, . . . , n}, j ∈ {0, . . . , k}, s0 ∈ {0, . . . , s}
2. Relate 

• Either order plate pi or not. Guess! 
• If order pi, get vi in volume but use ci calories 
• If pi is sweet, need to order one fewer sweet plate ( ) 

vi + x(i + 1, j − ci, s0 − si) if ci ≤ j and si ≤ s0 ,
• x(i, j, s0) = max 

x(i + 1, j, s0) always 

3. Topo 

• Subproblems x(i, j, s0) only depend on strictly larger i, so acyclic 

4. Base 

• x(n, j, 0) = 0 and any j (no more plates to eat) 
• x(n, j, s0) = −∞ for s0 > 0 and any j (no more plates, but still need to eat sweet) 

5. Original 
• Solution given by x(0, k, s) 

6. Time 

• # subproblems: O(nks) 

• work per subproblem: O(1) 

• O(nks) running time 
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Problem 4. Gokemon Po (adapted from S18 Final) 

Kash Etchum wants to play Gokemon Po, a new augmented reality game. The goal is to catch 
a set of n monsters who reside at specific locations in her town. Monsters must be obtained in a 
specific order: before Kash can obtain monster mi, she must have already obtained all monsters 
mj for j < i. To obtain monster mi, Kash may either purchase the monster in-game for positive 
integer ci dollars, or she may catch mi for free from that monster’s location. If Kash is not at the 
monster’s location, she will have to pay a ride share service to drive her there. The minimum 
possible cost to transport from the location of monster mi to the location of monster mj via ride 
sharing is denoted by the positive integer s(i, j). Given the price lists of in-game purchases and 
ride sharing trips between all pairs of monsters, describe an O(n2)-time algorithm to determine the 
minimum amount of money Kash must spend in order to catch all n monsters, assuming that she 
starts at the location of monster m1. 

Solution: 

1. Subproblems 

• x(i, j): min cost of catching monsters mi to mn starting at location mj for j ≤ i 

2. Relate 

• If at location of monster, catch it for free! 
• Otherwise, either acquire monster mi by purchasing or ride-sharing to location. Guess! 
• If purchase spend ci dollars, else need to ride share to mi from mj( 

x(i + 1, j) if j = i 
• x(i, j) = 

min{ci + x(i + 1, j), s(j, i) + x(i, i)} otherwise 

3. Topo 

• Subproblems x(i, j) only depend on strictly larger i + j so acyclic 

4. Base 

• x(n + 1, j) = 0 for any j (no cost to collect no monsters) 

5. Original 
• Solution given by x(1, 1) 

6. Time 

• # subproblems: O(n2) 

• work per subproblem: O(1) 

• O(n2) running time 
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