

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 7

Recitation 7

Balanced Binary Trees

Previously, we discussed binary trees as a general data structure for storing items, without bound-
ing the maximum height of the tree. The ultimate goal will be to keep our tree balanced: a tree on
n nodes is balanced if its height is O(log n). Then all the O(h)-time operations we talked about
last time will only take O(log n) time.

There are many ways to keep a binary tree balanced under insertions and deletions (Red-Black
Trees, B-Trees, 2-3 Trees, Splay Trees, etc.). The oldest (and perhaps simplest) method is called
an AVL Tree. Every node of an AVL Tree is height-balanced (i.e., satisfies the AVL Property)
where the left and right subtrees of a height-balanced node differ in height by at most 1. To put it
a different way, define the skew of a node to be the height of its right subtree minus the height of
its left subtree (where the height of an empty subtree is −1. Then a node is height-balanced if it’s
skew is either −1, 0, or 1. A tree is height-balanced if every node in the tree is height-balanced.
Height-balance is good because it implies balance!

Exercise: A height-balanced tree is balanced.
Solution: Balanced means that h = O(log n). Equivalently, balanced means that log n is lower
bounded by Ω(h) so that n = 2Ω(h). So if we can show the minimum number of nodes in a height-
balanced tree is at least exponential in h, then it must also be balanced. Let F (h) denote the fewest
nodes in any height-balanced tree of height h. Then F (h) satisfies the recurrence:

F (h) = 1 + F (h − 1) + F (h − 2) ≥ 2F (h − 2),

since the subtrees of the root’s children should also contain the fewest nodes. As base cases, the
fewest nodes in a height-balanced tree of height 0 is one, i.e., F (0) = 1, while the fewest nodes in
a height-balanced tree of height 1 is two, i.e., F (1) = 2. Then this recurrence is lower bounded by
F (h) ≥ 2h/2 = 2Ω(h) as desired.

Recitation 7 2

Rotations

As we add or remove nodes to our tree, it is possible that our tree will become imbalanced. We
will want to change the structure of the tree without changing its traversal order, in the hopes that
we can make the tree’s structure more balanced. We can change the structure of a tree using a local
operation called a rotation. A rotation takes a subtree that locally looks like one the following two
configurations and modifies the connections between nodes in O(1) time to transform it into the
other configuration.

1 _____<D>__ rotate_right(<D>) _______
2 ____ <E> => <A> __<D>__
3 <A> <C> / \ / \ <C> <E>
4 / \ / \ /___\ <= /___\ / \ / \
5 /___\ /___\ rotate_left() /___\ /___\

This operation preserves the traversal order of the tree while changing the depth of the nodes
in subtrees <A> and <E>. Next time, we will use rotations to enforce that a balanced tree stays
balanced after inserting or deleting a node.

1 def subtree_rotate_right(D): def subtree_rotate_left(B): # O(1)
2 assert D.left assert B.right
3 B, E = D.left, D.right A, D = B.left, B.right
4 A, C = B.left, B.right C, E = D.left, D.right
5 D, B = B, D B, D = D, B
6 D.item, B.item = B.item, D.item B.item, D.item = D.item, B.item
7 B.left, B.right = A, D D.left, D.right = B, E
8 D.left, D.right = C, E B.left, B.right = A, C
9 if A: A.parent = B if A: A.parent = B

10 if E: E.parent = D if E: E.parent = D
11 # B.subtree_update() # B.subtree_update() # wait for R07!
12 # D.subtree_update() # D.subtree_update() # wait for R07!

Maintaining Height-Balance

Suppose we have a height-balanced AVL tree, and we perform a single insertion or deletion by
adding or removing a leaf. Either the resulting tree is also height-balanced, or the change in leaf
has made at least one node in the tree have magnitude of skew greater than 1. In particular, the
only nodes in the tree whose subtrees have changed after the leaf modification are ancestors of
that leaf (at most O(h) of them), so these are the only nodes whose skew could have changed and
they could have changed by at most 1 to have magnitude at most 2. As shown in lecture via a
brief case analysis, given a subtree whose root has skew is 2 and every other node in its subtree is
height-balanced, we can restore balance to the subtree in at most two rotations. Thus to rebalance
the entire tree, it suffices to walk from the leaf to the root, rebalancing each node along the way,
performing at most O(log n) rotations in total. A detailed proof is outlined in the lecture notes and
is not repeated here; but the proof may be reviewed in recitation if students would like to see the

3 Recitation 7

full argument. Below is code to implement the rebalancing algorithm presented in lecture.

1 def skew(A): # O(?)
2 return height(A.right) - height(A.left)
3

4 def rebalance(A): # O(?)
5 if A.skew() == 2:
6 if A.right.skew() < 0:
7 A.right.subtree_rotate_right()
8 A.subtree_rotate_left()
9 elif A.skew() == -2:

10 if A.left.skew() > 0:
11 A.left.subtree_rotate_left()
12 A.subtree_rotate_right()
13

14 def maintain(A): # O(h)
15 A.rebalance()
16 A.subtree_update()
17 if A.parent: A.parent.maintain()

Unfortunately, it’s not clear how to efficiently evaluate the skew of a a node to determine whether
or not we need to perform rotations, because computing a node’s height naively takes time linear in
the size of the subtree. The code below to compute height recurses on every node in <A>’s subtree,
so takes at least Ω(n) time.

1 def height(A): # Omega(n)
2 if A is None: return -1
3 return 1 + max(height(A.left), height(A.right))

Rebalancing requires us to check at least Ω(log n) heights in the worst-case, so if we want rebal-
ancing the tree to take at most O(log n) time, we need to be able to evaluate the height of a node
in O(1) time. Instead of computing the height of a node every time we need it, we will speed up
computation via augmentation: in particular each node stores and maintains the value of its own
subtree height. Then when we’re at a node, evaluating its height is a simple as reading its stored
value in O(1) time. However, when the structure of the tree changes, we will need to update and
recompute the height at nodes whose height has changed.

1 def height(A):
2 if A: return A.height
3 else: return -1

1 def subtree_update(A): # O(1)
2 A.height = 1 + max(height(A.left), height(A.right))

In the dynamic operations presented in R06, we put commented code to call update on every node
whose subtree changed during insertions, deletions, or rotations. A rebalancing insertion or dele-
tion operation only calls subtree update on at most O(log n) nodes, so as long as updating a

4 Recitation 7

node takes at most O(1) time to recompute augmentations based on the stored augmentations of
the node’s children, then the augmentations can be maintained during rebalancing in O(log n) time.

In general, the idea behind augmentation is to store additional information at each node so that
information can be queried quickly in the future. You’ve done some augmentation already in PS1,
where you augmented a singly-linked list with back pointers to make it faster to evaluate a node’s
predecessor. To augment the nodes of a binary tree with a subtree property P(<X>), you need to:

• clearly define what property of <X>’s subtree corresponds to P(<X>), and

• show how to compute P(<X>) in O(1) time from the augmentations of <X>’s children.

If you can do that, then you will be able to store and maintain that property at each node without
affecting the O(log n) running time of rebalancing insertions and deletions. We’ve shown how
to traverse around a binary tree and perform insertions and deletions, each in O(h) time while
also maintaining height-balance so that h = O(log n). Now we are finally ready to implement an
efficient Sequence and Set.

Binary Node Implementation with AVL Balancing

1 def height(A):
2 if A: return A.height
3 else: return -1
4

5 class Binary_Node:
6 def __init__(A, x): # O(1)
7 A.item = x
8 A.left = None
9 A.right = None

10 A.parent = None
11 A.subtree_update()
12

13 def subtree_update(A): # O(1)
14 A.height = 1 + max(height(A.left), height(A.right))
15

16 def skew(A): # O(1)
17 return height(A.right) - height(A.left)
18

19 def subtree_iter(A): # O(n)
20 if A.left: yield from A.left.subtree_iter()
21 yield A
22 if A.right: yield from A.right.subtree_iter()

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

5 Recitation 7

def subtree_first(A): # O(log n)
if A.left: return A.left.subtree_first()
else: return A

def subtree_last(A): # O(log n)
if A.right: return A.right.subtree_last()
else: return A

def successor(A): # O(log n)
if A.right: return A.right.subtree_first()
while A.parent and (A is A.parent.right):

A = A.parent
return A.parent

def predecessor(A): # O(log n)
if A.left: return A.left.subtree_last()
while A.parent and (A is A.parent.left):

A = A.parent
return A.parent

def subtree_insert_before(A, B): # O(log n)
if A.left:

A = A.left.subtree_last()
A.right, B.parent = B, A

else:
A.left, B.parent = B, A

A.maintain()

def subtree_insert_after(A, B): # O(log n)
if A.right:

A = A.right.subtree_first()
A.left, B.parent = B, A

else:
A.right, B.parent = B, A

A.maintain()

def subtree_delete(A): # O(log n)
if A.left or A.right:

if A.left: B = A.predecessor()
else: B = A.successor()
A.item, B.item = B.item, A.item
return B.subtree_delete()

if A.parent:
if A.parent.left is A: A.parent.left = None
else: A.parent.right = None
A.parent.maintain()

return A

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

6 Recitation 7

def subtree_rotate_right(D): # O(1)
assert D.left
B, E = D.left, D.right
A, C = B.left, B.right
D, B = B, D
D.item, B.item = B.item, D.item
B.left, B.right = A, D
D.left, D.right = C, E
if A: A.parent = B
if E: E.parent = D
B.subtree_update()
D.subtree_update()

def subtree_rotate_left(B): # O(1)
assert B.right
A, D = B.left, B.right
C, E = D.left, D.right
B, D = D, B
B.item, D.item = D.item, B.item
D.left, D.right = B, E
B.left, B.right = A, C
if A: A.parent = B
if E: E.parent = D
B.subtree_update()
D.subtree_update()

def rebalance(A): # O(1)
if A.skew() == 2:

if A.right.skew() < 0:
A.right.subtree_rotate_right()

A.subtree_rotate_left()
elif A.skew() == -2:

if A.left.skew() > 0:
A.left.subtree_rotate_left()

A.subtree_rotate_right()

def maintain(A): # O(log n)
A.rebalance()
A.subtree_update()
if A.parent: A.parent.maintain()

7 Recitation 7

Application: Set
Using our new definition of Binary Node that maintains balance, the implementation presented
in R06 of the Binary Tree Set immediately supports all operations in h = O(log n) time,
except build(X) and iter() which run in O(n log n) and O(n) time respectively. This data
structure is what’s normally called an AVL tree, but what we will call a Set AVL.

Application: Sequence

To use a Binary Tree to implement a Sequence interface, we use the traversal order of the tree to
store the items in Sequence order. Now we need a fast way to find the ith item in the sequence
because traversal would take O(n) time. If we knew how many items were stored in our left
subtree, we could compare that size to the index we are looking for and recurse on the appropriate
side. In order to evaluate subtree size efficiently, we augment each node in the tree with the size
of its subtree. A node’s size can be computed in constant time given the sizes of its children by
summing them and adding 1.

1 class Size_Node(Binary_Node):
2 def subtree_update(A): # O(1)
3 super().subtree_update()
4 A.size = 1
5 if A.left: A.size += A.left.size
6 if A.right: A.size += A.right.size
7

8 def subtree_at(A, i): # O(h)
9 assert 0 <= i

10 if A.left: L_size = A.left.size
11 else: L_size = 0
12 if i < L_size: return A.left.subtree_at(i)
13 elif i > L_size: return A.right.subtree_at(i - L_size - 1)
14 else: return A

Once we are able to find the ith node in a balanced binary tree in O(log n) time, the remainder of
the Sequence interface operations can be implemented directly using binary tree operations. Fur-
ther, via the first exercise in R06, we can build such a tree from an input sequence in O(n) time.
We call this data structure a Sequence AVL.

Implementations of both the Sequence and Set interfaces can be found on the following pages.
We’ve made a CoffeeScript Balanced Binary Search Tree visualizer which you can find here:

https://codepen.io/mit6006/pen/NOWddZ

https://codepen.io/mit6006/pen/NOWddZ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

8 Recitation 7

class Seq_Binary_Tree(Binary_Tree):
def __init__(self): super().__init__(Size_Node)

def build(self, X):
def build_subtree(X, i, j):

c = (i + j) // 2
root = self.Node_Type(A[c])
if i < c:

root.left = build_subtree(X, i, c - 1)
root.left.parent = root

if c < j:
root.right = build_subtree(X, c + 1, j)
root.right.parent = root

root.subtree_update()
return root

self.root = build_subtree(X, 0, len(X) - 1)
self.size = self.root.size

def get_at(self, i):
assert self.root
return self.root.subtree_at(i).item

def set_at(self, i, x):
assert self.root
self.root.subtree_at(i).item = x

def insert_at(self, i, x):
new_node = self.Node_Type(x)
if i == 0:

if self.root:
node = self.root.subtree_first()
node.subtree_insert_before(new_node)

else:
self.root = new_node

else:
node = self.root.subtree_at(i - 1)
node.subtree_insert_after(new_node)

self.size += 1

def delete_at(self, i):
assert self.root
node = self.root.subtree_at(i)
ext = node.subtree_delete()
if ext.parent is None: self.root = None
self.size -= 1
return ext.item

def insert_first(self, x): self.insert_at(0, x)
def delete_first(self): return self.delete_at(0)
def insert_last(self, x): self.insert_at(len(self), x)
def delete_last(self): return self.delete_at(len(self) - 1)

9 Recitation 7

Exercise: Make a Sequence AVL Tree or Set AVL Tree (Balanced Binary Search Tree) by inserting
student chosen items one by one. If any node becomes height-imbalanced, rebalance its ancestors
going up the tree. Here’s a Sequence AVL Tree example that may be instructive (remember to
update subtree heights and sizes as you modify the tree!).

1 T = Seq_Binary_Tree()
2 T.build([10,6,8,5,1,3])
3 T.get_at(4)
4 T.set_at(4, -4)
5 T.insert_at(4, 18)
6 T.insert_at(4, 12)
7 T.delete_at(2)

Solution:

1

2

3

4

5

6

Line #

Result

1

None

| 2,3 | 4 | 5
| | |
| ___8__ | ___8___ | ___8_____
| 10_ _1_ | 10_ _-4_ | 10_ ___-4_
| 6 5 3 | 6 5 3 | 6 5__ 3
| | | 18

| 6
|
| ___8
| 10_
| 6
|

____-4_

_12__ 3
5 18

|
|
|
|
|
|

7

__1
__6_
10 5

2____
__-4_
18 3

7

8 Also labeled with subtree height H, size #:
9

10 None
11

12

13

___________8H2#6__________
10H1#2_____ _____1H1#3_____

6H0#1 5H0#1 3H0#1
14

15

16

17

___________8H2#6__________
10H1#2_____ _____1H1#3_____

6H0#1 5H0#1 3H0#1
18

19

20

21

___________8H2#6___________
10H1#2_____ _____-4H1#3_____

6H0#1 5H0#1 3H0#1
22

23

24

25

26

___________8H3#7_________________
10H1#2_____ ___________-4H2#4_____

6H0#1 5H1#2______ 3H0#1
18H0#1

27

28

29

30

31

___________8H3#8_______________________
10H1#2_____ ____________-4H2#5_____

6H0#1 _____12H1#3______ 3H0#1
5H0#1 18H0#1

32

33

34

35

__________12H2#7____________
______6H1#3_____ ______-4H1#3_____
10H0#1 5H0#1 18H0#1 3H0#1

10 Recitation 7

Exercise: Maintain a sequence of n bits that supports two operations, each in O(log n) time:

• flip(i): flip the bit at index i

• count ones upto(i): return the number of bits in the prefix up to index i that are one

Solution: Maintain a Sequence Tree storing the bits as items, augmenting each node A with
A.subtree ones, the number of 1 bits in its subtree. We can maintain this augmentation in
O(1) time from the augmentations stored at its children.

1

2

3

4

5

6

def update(A):
A.subtree_ones = A.item
if A.left:

A.subtree_ones += A.left.subtree_ones
if A.right:

A.subtree_ones += A.right.subtree_ones

To implement flip(i), find the ith node A using subtree node at(i) and flip the bit stored
at A.item. Then update the augmentation at A and every ancestor of A by walking up the tree in
O(log n) time.

To implement count ones upto(i), we will first define the subtree-based recursive function
subtree count ones upto(A, i) which returns the number of 1 bits in the subtree of node
A that are at most index i within A’s subtree. Then count ones upto(i) is symantically equiv-
ilent to subtree count ones upto(T.root, i). Since each recursive call makes at most
one recursive call on a child, operation takes O(log n) time.

1

2

3

4

5

6

7

8

9

10

11

12

13

def subtree_count_ones_upto(A, i):
assert 0 <= i < A.size
out = 0
if A.left:

if i < A.left.size:
return subtree_count_ones_upto(A.left, i)

out += A.left.subtree_ones
i -= A.left.size

out += A.item
if i > 0:

assert A.right
out += subtree_count_ones_upto(A.right, i - 1)

return out

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

