Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Recitation 7

Balanced Binary Trees

Previously, we discussed binary trees as a general data structure for storing items, without bounding the maximum height of the tree. The ultimate goal will be to keep our tree balanced: a tree on \(n \) nodes is balanced if its height is \(O(\log n) \). Then all the \(O(h) \)-time operations we talked about last time will only take \(O(\log n) \) time.

There are many ways to keep a binary tree balanced under insertions and deletions (Red-Black Trees, B-Trees, 2-3 Trees, Splay Trees, etc.). The oldest (and perhaps simplest) method is called an AVL Tree. Every node of an AVL Tree is height-balanced (i.e., satisfies the AVL Property) where the left and right subtrees of a height-balanced node differ in height by at most 1. To put it a different way, define the skew of a node to be the height of its right subtree minus the height of its left subtree (where the height of an empty subtree is \(-1\)). Then a node is height-balanced if its skew is either \(-1\), 0, or 1. A tree is height-balanced if every node in the tree is height-balanced. Height-balance is good because it implies balance!

Exercise: A height-balanced tree is balanced.

Solution: Balanced means that \(h = O(\log n) \). Equivalently, balanced means that \(\log n \) is lower bounded by \(\Omega(h) \) so that \(n = 2^{\Omega(h)} \). So if we can show the minimum number of nodes in a height-balanced tree is at least exponential in \(h \), then it must also be balanced. Let \(F(h) \) denote the fewest nodes in any height-balanced tree of height \(h \). Then \(F(h) \) satisfies the recurrence:

\[
F(h) = 1 + F(h - 1) + F(h - 2) \geq 2F(h - 2),
\]

since the subtrees of the root’s children should also contain the fewest nodes. As base cases, the fewest nodes in a height-balanced tree of height 0 is one, i.e., \(F(0) = 1 \), while the fewest nodes in a height-balanced tree of height 1 is two, i.e., \(F(1) = 2 \). Then this recurrence is lower bounded by \(F(h) \geq 2^{h/2} = 2^{\Omega(h)} \) as desired.
Rotations

As we add or remove nodes to our tree, it is possible that our tree will become imbalanced. We will want to change the structure of the tree without changing its traversal order, in the hopes that we can make the tree’s structure more balanced. We can change the structure of a tree using a local operation called a rotation. A rotation takes a subtree that locally looks like one of the following two configurations and modifies the connections between nodes in $O(1)$ time to transform it into the other configuration.

1. \[\begin{array}{c} \text{<D>} \\ \text{} \end{array} \]
 \[\text{rotate_right(<D>)} \]
 \[\begin{array}{c} \text{} \\ \text{<E>} \end{array} \]

2. \[\begin{array}{c} \text{} \\ \text{<E>} \end{array} \]
 \[\begin{array}{c} \text{<A>} \\ \text{<C>} \\ \text{<D>} \end{array} \]
 \[\text{=><} \]
 \[\begin{array}{c} \text{<A>} \\ \text{<C>} \\ \text{<E>} \end{array} \]

3. \[\begin{array}{c} \text{<A>} \\ \text{<C>} \\ \text{<D>} \end{array} \]
 \[\begin{array}{c} \text{} \\ \text{<E>} \end{array} \]
 \[\text{=><} \]
 \[\begin{array}{c} \text{<A>} \\ \text{<C>} \\ \text{<E>} \end{array} \]

This operation preserves the traversal order of the tree while changing the depth of the nodes in subtrees <A> and <E>. Next time, we will use rotations to enforce that a balanced tree stays balanced after inserting or deleting a node.

```python
1 def subtree_rotate_right(D):
   assert D.left
   B, E = D.left, D.right
   A, C = B.left, B.right
   D, B = B, D
   D.item, B.item = B.item, D.item
   if A:
     A.parent = B
   if E:
     E.parent = D
   # B.subtree_update()
   # D.subtree_update()
   return D
2 def subtree_rotate_left(B):
   assert B.right
   A, D = B.left, B.right
   C, E = D.left, D.right
   B, D = D, B
   B.item, D.item = D.item, B.item
   if A:
     A.parent = B
   if E:
     E.parent = D
   # B.subtree_update()
   # D.subtree_update()
   return B
```

Maintaining Height-Balance

Suppose we have a height-balanced AVL tree, and we perform a single insertion or deletion by adding or removing a leaf. Either the resulting tree is also height-balanced, or the change in leaf has made at least one node in the tree have magnitude of skew greater than 1. In particular, the only nodes in the tree whose subtrees have changed after the leaf modification are ancestors of that leaf (at most $O(h)$ of them), so these are the only nodes whose skew could have changed and they could have changed by at most 1 to have magnitude at most 2. As shown in lecture via a brief case analysis, given a subtree whose root has skew is 2 and every other node in its subtree is height-balanced, we can restore balance to the subtree in at most two rotations. Thus to rebalance the entire tree, it suffices to walk from the leaf to the root, rebalancing each node along the way, performing at most $O(\log n)$ rotations in total. A detailed proof is outlined in the lecture notes and is not repeated here; but the proof may be reviewed in recitation if students would like to see the
Recitation 7

full argument. Below is code to implement the rebalancing algorithm presented in lecture.

```python
def skew(A):
    return height(A.right) - height(A.left)
def rebalance(A):
    if A.skew() == 2:
        if A.right.skew() < 0:
            A.right.subtree_rotate_right()
            A.subtree_rotate_left()
        else:
            A.left.subtree_rotate_left()
            A.subtree_rotate_right()
def maintain(A):
    A.rebalance()
    A.subtree_update()
    if A.parent:
        A.parent.maintain()
```

Unfortunately, it’s not clear how to efficiently evaluate the skew of a node to determine whether or not we need to perform rotations, because computing a node’s height naively takes time linear in the size of the subtree. The code below to compute height recurses on every node in <A’s subtree, so takes at least \(\Omega(n) \) time.

```python
def height(A):
    if A is None: return -1
    return 1 + max(height(A.left), height(A.right))
```

Rebalancing requires us to check at least \(\Omega(\log n) \) heights in the worst-case, so if we want rebalancing the tree to take at most \(O(\log n) \) time, we need to be able to evaluate the height of a node in \(O(1) \) time. Instead of computing the height of a node every time we need it, we will speed up computation via augmentation: in particular each node stores and maintains the value of its own subtree height. Then when we’re at a node, evaluating its height is as simple as reading its stored value in \(O(1) \) time. However, when the structure of the tree changes, we will need to update and recompute the height at nodes whose height has changed.

```python
def height(A):
    if A: return A.height
    else: return -1
```

```python
def subtree_update(A):
    A.height = 1 + max(height(A.left), height(A.right))
```

In the dynamic operations presented in R06, we put commented code to call update on every node whose subtree changed during insertions, deletions, or rotations. A rebalancing insertion or deletion operation only calls subtree_update on at most \(O(\log n) \) nodes, so as long as updating a
node takes at most $O(1)$ time to recompute augmentations based on the stored augmentations of the node’s children, then the augmentations can be maintained during rebalancing in $O(\log n)$ time.

In general, the idea behind augmentation is to store additional information at each node so that information can be queried quickly in the future. You’ve done some augmentation already in PS1, where you augmented a singly-linked list with back pointers to make it faster to evaluate a node’s predecessor. To augment the nodes of a binary tree with a subtree property $P(<x>)$, you need to:

- clearly define what property of $<x>$’s subtree corresponds to $P(<x>)$, and
- show how to compute $P(<x>)$ in $O(1)$ time from the augmentations of $<x>$’s children.

If you can do that, then you will be able to store and maintain that property at each node without affecting the $O(\log n)$ running time of rebalancing insertions and deletions. We’ve shown how to traverse around a binary tree and perform insertions and deletions, each in $O(h)$ time while also maintaining height-balance so that $h = O(\log n)$. Now we are finally ready to implement an efficient Sequence and Set.

Binary Node Implementation with AVL Balancing

```python
def height(A):
    if A:
        return A.height
    else:
        return -1

class Binary_Node:
    def __init__(A, x):
        # O(1)
        A.item = x
        A.left = None
        A.right = None
        A.parent = None
        A.subtree_update()

def subtree_update(A):
    # O(1)
    A.height = 1 + max(height(A.left), height(A.right))

def skew(A):
    # O(1)
    return height(A.right) - height(A.left)

def subtree_iter(A):
    # O(n)
    if A.left:
        yield from A.left.subtree_iter()
    yield A
    if A.right:
        yield from A.right.subtree_iter()
```
def subtree_first(A):
 # O(log n)
 if A.left:
 return A.left.subtree_first()
 else:
 return A

def subtree_last(A):
 # O(log n)
 if A.right:
 return A.right.subtree_last()
 else:
 return A

def successor(A):
 # O(log n)
 if A.right:
 return A.right.subtree_first()
 while A.parent and (A is A.parent.right):
 A = A.parent
 return A.parent

def predecessor(A):
 # O(log n)
 if A.left:
 return A.left.subtree_last()
 while A.parent and (A is A.parent.left):
 A = A.parent
 return A.parent

def subtree_insert_before(A, B):
 # O(log n)
 if A.left:
 A = A.left.subtree_last()
 A.right, B.parent = B, A
 else:
 A.left, B.parent = B, A
 A.maintain()

def subtree_insert_after(A, B):
 # O(log n)
 if A.right:
 A = A.right.subtree_first()
 A.left, B.parent = B, A
 else:
 A.right, B.parent = B, A
 A.maintain()

def subtree_delete(A):
 # O(log n)
 if A.left or A.right:
 if A.left:
 B = A.predecessor()
 else:
 B = A.successor()
 A.item, B.item = B.item, A.item
 return B.subtree_delete()
 if A.parent:
 if A.parent.left is A:
 A.parent.left = None
 else:
 A.parent.right = None
 A.parent.maintain()
 return A
def subtree_rotate_right(D): # O(1)
 assert D.left
 B, E = D.left, D.right
 A, C = B.left, B.right
 D, B = B, D
 D.item, B.item = B.item, D.item
 B.left, B.right = A, D
 D.left, D.right = C, E
 if A: A.parent = B
 if E: E.parent = D
 B.subtree_update()
 D.subtree_update()

def subtree_rotate_left(B): # O(1)
 assert B.right
 A, D = B.left, B.right
 C, E = D.left, D.right
 B, D = D, B
 B.item, D.item = D.item, B.item
 D.left, D.right = B, E
 B.left, B.right = A, C
 if A: A.parent = B
 if E: E.parent = D
 B.subtree_update()
 D.subtree_update()

def rebalance(A): # O(1)
 if A.skew() == 2:
 if A.right.skew() < 0:
 A.right.subtree_rotate_right()
 A.subtree_rotate_left()
 elif A.skew() == -2:
 if A.left.skew() > 0:
 A.left.subtree_rotate_left()
 A.subtree_rotate_right()

def maintain(A): # O(log n)
 A.rebalance()
 A.subtree_update()
 if A.parent: A.parent.maintain()
Application: Set

Using our new definition of `Binary_Node` that maintains balance, the implementation presented in R06 of the `Binary_Tree_Set` immediately supports all operations in $h = O(\log n)$ time, except `build(X)` and `iter()` which run in $O(n \log n)$ and $O(n)$ time respectively. This data structure is what’s normally called an AVL tree, but what we will call a Set AVL.

Application: Sequence

To use a Binary Tree to implement a Sequence interface, we use the traversal order of the tree to store the items in Sequence order. Now we need a fast way to find the ith item in the sequence because traversal would take $O(n)$ time. If we knew how many items were stored in our left subtree, we could compare that size to the index we are looking for and recurse on the appropriate side. In order to evaluate subtree size efficiently, we augment each node in the tree with the size of its subtree. A node’s size can be computed in constant time given the sizes of its children by summing them and adding 1.

```python
class Size_Node(Binary_Node):
    def subtree_update(A):
        super().subtree_update()  # O(1)
        A.size = 1
        if A.left:
            A.size += A.left.size
        if A.right:
            A.size += A.right.size

    def subtree_at(A, i):
        assert 0 <= i
        if A.left:
            L_size = A.left.size
        else:
            L_size = 0
        if i < L_size:
            return A.left.subtree_at(i)
        elif i > L_size:
            return A.right.subtree_at(i - L_size - 1)
        else:
            return A
```

Once we are able to find the ith node in a balanced binary tree in $O(\log n)$ time, the remainder of the Sequence interface operations can be implemented directly using binary tree operations. Further, via the first exercise in R06, we can build such a tree from an input sequence in $O(n)$ time. We call this data structure a Sequence AVL.

Implementations of both the Sequence and Set interfaces can be found on the following pages. We’ve made a CoffeeScript Balanced Binary Search Tree visualizer which you can find here:

`https://codepen.io/mit6006/pen/NOWddZ`
class Seq_Binary_Tree(Binary_Tree):
 def __init__(self): super().__init__(Size_Node)

 def build(self, X):
 def build_subtree(X, i, j):
 c = (i + j) // 2
 root = self.Node_Type(A[c])
 if i < c:
 root.left = build_subtree(X, i, c - 1)
 root.left.parent = root
 if c < j:
 root.right = build_subtree(X, c + 1, j)
 root.right.parent = root
 root.subtree_update()
 return root
 self.root = build_subtree(X, 0, len(X) - 1)
 self.size = self.root.size

 def get_at(self, i):
 assert self.root
 return self.root.subtree_at(i).item

 def set_at(self, i, x):
 assert self.root
 self.root.subtree_at(i).item = x

 def insert_at(self, i, x):
 new_node = self.Node_Type(x)
 if i == 0:
 if self.root:
 node = self.root.subtree_first()
 node.subtree_insert_before(new_node)
 else:
 self.root = new_node
 else:
 node = self.root.subtree_at(i - 1)
 node.subtree_insert_after(new_node)
 self.size += 1

 def delete_at(self, i):
 assert self.root
 node = self.root.subtree_at(i)
 ext = node.subtree_delete()
 if ext.parent is None: self.root = None
 self.size -= 1
 return ext.item

 def insert_first(self, x): self.insert_at(0, x)
 def delete_first(self): return self.delete_at(0)
 def insert_last(self, x): self.insert_at(len(self), x)
 def delete_last(self): return self.delete_at(len(self) - 1)
Exercise: Make a Sequence AVL Tree or Set AVL Tree (Balanced Binary Search Tree) by inserting student chosen items one by one. If any node becomes height-imbalanced, rebalance its ancestors going up the tree. Here’s a Sequence AVL Tree example that may be instructive (remember to update subtree heights and sizes as you modify the tree!).

```python
T = Seq_Binary_Tree()
T.build([10, 6, 8, 5, 1, 3])
T.get_at(4)
T.set_at(4, -4)
T.insert_at(4, 18)
T.insert_at(4, 12)
T.delete_at(2)
```

Solution:

<table>
<thead>
<tr>
<th>Line #</th>
<th>Result</th>
<th>2, 3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6 5 3</td>
<td>6 5 3</td>
<td>6 5 3</td>
<td>6 12 3</td>
<td>10 5 18 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Also labeled with subtree height H, size #:

```
10H1#2____  _1H1#3___
   6H0#1  5H0#1  3H0#1

10H1#2___  _1H1#3___
   6H0#1  5H0#1  3H0#1

10H1#2___  _4H1#3___
   6H0#1  5H0#1  3H0#1

10H1#2___  _4H2#4___
   6H0#1  5H1#2___  3H0#1

10H1#2___  _4H2#5___
   6H0#1  12H1#3___  3H0#1

10H1#2___  _4H1#3___
   6H1#3___  -4H1#3___
```

```
Exercise: Maintain a sequence of $n$ bits that supports two operations, each in $O(\log n)$ time:

- flip($i$): flip the bit at index $i$
- count$_ones_upto(i)$: return the number of bits in the prefix up to index $i$ that are one

Solution: Maintain a Sequence Tree storing the bits as items, augmenting each node $A$ with $A.subtree.ones$, the number of 1 bits in its subtree. We can maintain this augmentation in $O(1)$ time from the augmentations stored at its children.

```python
def update(A):
 A.subtree.ones = A.item
 if A.left:
 A.subtree.ones += A.left.subtree.ones
 if A.right:
 A.subtree.ones += A.right.subtree.ones
```

To implement flip($i$), find the $i^{th}$ node $A$ using subtree_node_at($i$) and flip the bit stored at $A.item$. Then update the augmentation at $A$ and every ancestor of $A$ by walking up the tree in $O(\log n)$ time.

To implement count$_ones_upto(i)$, we will first define the subtree-based recursive function subtree_count$_ones_upto(A, i)$ which returns the number of 1 bits in the subtree of node $A$ that are at most index $i$ within $A$’s subtree. Then count$_ones_upto(i)$ is syntactically equivalent to subtree_count$_ones_upto(T=root, i)$. Since each recursive call makes at most one recursive call on a child, operation takes $O(\log n)$ time.

```python
def subtree_count$_ones_upto(A, i):
 assert 0 <= i < A.size
 out = 0
 if A.left:
 if i < A.left.size:
 return subtree_count$_ones_upto(A.left, i)
 out += A.left.subtree.ones
 i -= A.left.size
 out += A.item
 if i > 0:
 assert A.right
 out += subtree_count$_ones_upto(A.right, i - 1)
 return out
```