
  

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 3 

Recitation 3 
Recall that in Recitation 2 we reduced the Set interface to the Sequence Interface (we simulated 
one with the other). This directly provides a Set data structure from an array (albeit a poor one). 

Data Structure 

Array 

Container 
build(X) 

n 

Operations O(·) 
Static Dynamic Order 
find(k) insert(x) find min() find prev(k) 

delete(k) find max() find next(k) 

n n n n 

We would like to do better, and we will spend the next five lectures/recitations trying to do exactly 
that! One of the simplest ways to get a faster Set is to store our items in a sorted array, where the 
item with the smallest key appears first (at index 0), and the item with the largest key appears last. 
Then we can simply binary search to find keys and support Order operations! This is still not great 
for dynamic operations (items still need to be shifted when inserting or removing from the middle 
of the array), but finding items by their key is much faster! But how do we get a sorted array in the 
first place? 

Data Structure 

Sorted Array 

Container 
build(X) 

? 

Operations O(·) 
Static Dynamic Order 
find(k) insert(x) find min() find prev(k) 

delete(k) find max() find next(k) 

log n n 1 log n 

1 class Sorted_Array_Set: 
2 def __init__(self): self.A = Array_Seq() # O(1) 
3 def __len__(self): return len(self.A) # O(1) 
4 def __iter__(self): yield from self.A # O(n) 
5 def iter_order(self): yield from self # O(n) 
6 

7 def build(self, X): # O(?) 
8 self.A.build(X) 
9 self._sort() 

10 

11 def _sort(self): # O(?) 
12 ?? 
13 

14 def _binary_search(self, k, i, j): # O(log n) 
15 if i >= j: return i 
16 m = (i + j) // 2 
17 x = self.A.get_at(m) 
18 if x.key > k: return self._binary_search(k, i, m - 1) 
19 if x.key < k: return self._binary_search(k, m + 1, j) 
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2 Recitation 3 

return m 

def find_min(self): # O(1) 
if len(self) > 0: return self.A.get_at(0) 
else: return None 

def find_max(self): # O(1) 
if len(self) > 0: return self.A.get_at(len(self) - 1) 
else: return None 

def find(self, k): # O(log n) 
if len(self) == 0: return None 
i = self._binary_search(k, 0, len(self) - 1) 
x = self.A.get_at(i) 
if x.key == k: return x 
else: return None 

def find_next(self, k): # O(log n) 
if len(self) == 0: return None 
i = self._binary_search(k, 0, len(self) - 1) 
x = self.A.get_at(i) 
if x.key > k: return x 
if i + 1 < len(self): return self.A.get_at(i + 1) 
else: return None 

def find_prev(self, k): # O(log n) 
if len(self) == 0: return None 
i = self._binary_search(k, 0, len(self) - 1) 
x = self.A.get_at(i) 
if x.key < k: return x 
if i > 0: return self.A.get_at(i - 1) 
else: return None 

def insert(self, x): # O(n) 
if len(self.A) == 0: 

self.A.insert_first(x) 
else: 

i = self._binary_search(x.key, 0, len(self.A) - 1) 
k = self.A.get_at(i).key 
if k == x.key: 

self.A.set_at(i, x) 
return False 

if k > x.key: self.A.insert_at(i, x) 
else: self.A.insert_at(i + 1, x) 

return True 

def delete(self, k): # O(n) 
i = self._binary_search(k, 0, len(self.A) - 1) 
assert self.A.get_at(i).key == k 
return self.A.delete_at(i) 
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Sorting 
Sorting an array A of comparable items into increasing order is a common subtask of many com-
putational problems. Insertion sort and selection sort are common sorting algorithms for sorting 
small numbers of items because they are easy to understand and implement. Both algorithms are 
incremental in that they maintain and grow a sorted subset of the items until all items are sorted. 
The difference between them is subtle: 

• Selection sort maintains and grows a subset the largest i items in sorted order. 

• Insertion sort maintains and grows a subset of the first i input items in sorted order. 

Selection Sort 
Here is a Python implementation of selection sort. Having already sorted the largest items into 
sub-array A[i+1:], the algorithm repeatedly scans the array for the largest item not yet sorted 
and swaps it with item A[i]. As can be seen from the code, selection sort can require Ω(n2) 
comparisons, but will perform at most O(n) swaps in the worst case. 

1 def selection_sort(A): # Selection sort array A 
2 for i in range(len(A) - 1, 0, -1): # O(n) loop over array 
3 m = i # O(1) initial index of max 
4 for j in range(i): # O(i) search for max in A[:i] 
5 if A[m] < A[j]: # O(1) check for larger value 
6 m = j # O(1) new max found 
7 A[m], A[i] = A[i], A[m] # O(1) swap 

Insertion Sort 
Here is a Python implementation of insertion sort. Having already sorted sub-array A[:i], the 
algorithm repeatedly swaps item A[i] with the item to its left until the left item is no larger than 
A[i]. As can be seen from the code, insertion sort can require Ω(n2) comparisons and Ω(n2) 
swaps in the worst case. 

1 def insertion_sort(A): # Insertion sort array A 
2 for i in range(1, len(A)): # O(n) loop over array 
3 j = i # O(1) initialize pointer 
4 while j > 0 and A[j] < A[j - 1]: # O(i) loop over prefix 
5 A[j - 1], A[j] = A[j], A[j - 1] # O(1) swap 
6 j = j - 1 # O(1) decrement j 

In-place and Stability 
Both insertion sort and selection sort are in-place algorithms, meaning they can each be imple-
mented using at most a constant amount of additional space. The only operations performed on 
the array are comparisons and swaps between pairs of elements. Insertion sort is stable, meaning 
that items having the same value will appear in the sort in the same order as they appeared in the 
input array. By comparison, this implementation of selection sort is not stable. For example, the 
input (2, 1, 10) would produce the output (10 , 1, 2). 
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Merge Sort 
In lecture, we introduced merge sort, an asymptotically faster algorithm for sorting large numbers 
of items. The algorithm recursively sorts the left and right half of the array, and then merges the 
two halves in linear time. The recurrence relation for merge sort is then T (n) = 2T (n/2) + Θ(n), 
which solves to T (n) = Θ(n log n). An Θ(n log n) asymptotic growth rate is much closer to 
linear than quadratic, as log n grows exponentially slower than n. In particular, log n grows slower 
than any polynomial nε for ε > 0. 

1 def merge_sort(A, a = 0, b = None): # Sort sub-array A[a:b] 
2 if b is None: # O(1) initialize 
3 b = len(A) # O(1) 
4 if 1 < b - a: # O(1) size k = b - a 
5 c = (a + b + 1) // 2 # O(1) compute center 
6 merge_sort(A, a, c) # T(k/2) recursively sort left 
7 merge_sort(A, c, b) # T(k/2) recursively sort right 
8 L, R = A[a:c], A[c:b] # O(k) copy 
9 i, j = 0, 0 # O(1) initialize pointers 

10 while a < b: # O(n) 
11 if (j >= len(R)) or (i < len(L) and L[i] < R[j]): # O(1) check side 
12 A[a] = L[i] # O(1) merge from left 
13 i = i + 1 # O(1) decrement left pointer 
14 else: 
15 A[a] = R[j] # O(1) merge from right 
16 j = j + 1 # O(1) decrement right pointer 
17 a = a + 1 # O(1) decrement merge pointer 

Merge sort uses a linear amount of temporary storage (temp) when combining the two halves, so 
it is not in-place. While there exist algorithms that perform merging using no additional space, 
such implementations are substantially more complicated than the merge sort algorithm. Whether 
merge sort is stable depends on how an implementation breaks ties when merging. The above 
implementation is not stable, but it can be made stable with only a small modification. Can you 
modify the implementation to make it stable? We’ve made CoffeeScript visualizers for the merge 
step of this algorithm, as well as one showing the recursive call structure. You can find them here: 

https://codepen.io/mit6006/pen/wEXOOq https://codepen.io/mit6006/pen/RYJdOG 

Build a Sorted Array 
With an algorithm to sort our array in Θ(n log n), we can now complete our table! We sacrifice 
some time in building the data structure to speed up order queries. This is a common technique 
called preprocessing. 

Operations O(·) 
Container Static Dynamic Order 

Data Structure build(X) find(k) insert(x) 

delete(k) 

find min() 

find max() 

find prev(k) 

find next(k) 

Array n n n n n 
Sorted Array n log n log n n 1 log n 

https://codepen.io/mit6006/pen/wEXOOq
https://codepen.io/mit6006/pen/RYJdOG
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Recurrences 
There are three primary methods for solving recurrences: 

• Substitution: Guess a solution and substitute to show the recurrence holds. 

• Recursion Tree: Draw a tree representing the recurrence and sum computation at nodes. 
This is a very general method, and is the one we’ve used in lecture so far. 

• Master Theorem: A general formula to solve a large class of recurrences. It is useful, but 
can also be hard to remember. 

Master Theorem 
The Master Theorem provides a way to solve recurrence relations in which recursive calls de-
crease problem size by a constant factor. Given a recurrence relation of the form T (n) = aT (n/b)+ 
f(n) and T (1) = Θ(1), with branching factor a ≥ 1, problem size reduction factor b > 1, and 
asymptotically non-negative function f(n), the Master Theorem gives the solution to the recur-

logb n logb arence by comparing f(n) to a = n , the number of leaves at the bottom of the recursion 
logb atree. When f(n) grows asymptotically faster than n , the work done at each level decreases 

geometrically so the work at the root dominates; alternatively, when f(n) grows slower, the work 
done at each level increases geometrically and the work at the leaves dominates. When their growth 
rates are comparable, the work is evenly spread over the tree’s O(log n) levels. 

n 

n 
b 

n 
bi 

1 alogb n × f(1) 

ai × f( n 
bi ) 

a × f(n 
b ) 

1 × f(n) 

case solution conditions 

1 logb a)T (n) = Θ(n f(n) = O(nlogb a−ε) for some constant ε > 0 

2 T (n) = Θ(nlogb a logk+1 n) f(n) = Θ(nlogb a logk n) for some constant k ≥ 0 

3 T (n) = Θ(f(n)) f(n) = Ω(nlogb a+ε) for some constant ε > 0 

and af(n/b) < cf(n) for some constant 0 < c < 1 

The Master Theorem takes on a simpler form when f(n) is a polynomial, such that the recurrence 
has the from T (n) = aT (n/b) + Θ(nc) for some constant c ≥ 0. 
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case solution conditions intuition 

1 logb a)T (n) = Θ(n c < logb a Work done at leaves dominates 

2 T (n) = Θ(nc log n) c = logb a Work balanced across the tree 

3 T (n) = Θ(nc) c > logb a Work done at root dominates 

This special case is straight-forward to prove by substitution (this can be done in recitation). To 
apply the Master Theorem (or this simpler special case), you should state which case applies, and 
show that your recurrence relation satisfies all conditions required by the relevant case. There are 
even stronger (more general) formulas1 to solve recurrences, but we will not use them in this class. 

Exercises 
1. Write a recurrence for binary search and solve it. 

Solution: T (n) = T (n/2) + O(1) so T (n) = O(log n) by case 2 of Master Theorem. 

2. T (n) = T (n − 1) + O(1) 

Solution: T (n) = O(n), length n chain, O(1) work per node. 

3. T (n) = T (n − 1) + O(n) 

Solution: T (n) = O(n2), length n chain, O(k) work per node at height k. 

4. T (n) = 2T (n − 1) + O(1) 

Solution: T (n) = O(2n), height n binary tree, O(1) work per node. 

5. T (n) = T (2n/3) + O(1) 

Solution: T (n) = O(log n), length log3/2(n) chain, O(1) work per node. 

6. T (n) = 2T (n/2) + O(1) 

Solution: T (n) = O(n), height log2 n binary tree, O(1) work per node. 

7. T (n) = T (n/2) + O(n) 

Solution: T (n) = O(n), length log2 n chain, O(2k) work per node at height k. 

8. T (n) = 2T (n/2) + O(n log n) 

Solution: T (n) = O(n log2 n) (special case of Master Theorem does not apply because 
n log n is not polynomial), height log2 n binary tree, O(k · 2k) work per node at height k. 

9. T (n) = 4T (n/2) + O(n) 

Solution: T (n) = O(n2), height log2 n degree-4 tree, O(2k) work per node at height k. 

1http://en.wikipedia.org/wiki/Akra-Bazzi_method 

http://en.wikipedia.org/wiki/Akra-Bazzi_method
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