Lecture 9: Breadth-First Search

New Unit: Graphs!
- Quiz 1 next week covers lectures L01 - L08 on Data Structures and Sorting
- Today, start new unit, lectures L09 - L14 on Graph Algorithms

Graph Applications
- Why? Graphs are everywhere!
- any network system has direct connection to graphs
- e.g., road networks, computer networks, social networks
- the state space of any discrete system can be represented by a transition graph
- e.g., puzzle & games like Chess, Tetris, Rubik’s cube
- e.g., application workflows, specifications

Graph Definitions

\[G_1 = \begin{array}{ccc}
0 & 1 \\
2 & 3
\end{array} \]

\[G_2 = \begin{array}{ccc}
0 & 1 & 2
\end{array} \]

\[G_3 = \begin{array}{ccc}
a & s & d & f \\
b & c & e & g
\end{array} \]

- Graph \(G = (V, E) \) is a set of vertices \(V \) and a set of pairs of vertices \(E \subseteq V \times V \).
- Directed edges are ordered pairs, e.g., \((u, v)\) for \(u, v \in V \)
- Undirected edges are unordered pairs, e.g., \(\{u, v\} \) for \(u, v \in V \) i.e., \((u, v)\) and \((v, u)\)
- In this class, we assume all graphs are simple:
 - edges are distinct, e.g., \((u, v)\) only occurs once in \(E \) (though \((v, u)\) may appear), and
 - edges are pairs of distinct vertices, e.g., \(u \neq v \) for all \((u, v)\in E \)
 - Simple implies \(|E| = O(|V|^2) \), since \(|E| \leq \binom{|V|}{2} \) for undirected, \(\leq 2\binom{|V|}{2} \) for directed
Neighbor Sets/Adjacencies
- The **outgoing neighbor set** of \(u \in V \) is \(\text{Adj}^+(u) = \{ v \in V \mid (u, v) \in E \} \)
- The **incoming neighbor set** of \(u \in V \) is \(\text{Adj}^-(u) = \{ v \in V \mid (v, u) \in E \} \)
- The **out-degree** of a vertex \(u \in V \) is \(\deg^+(u) = |\text{Adj}^+(u)| \)
- The **in-degree** of a vertex \(u \in V \) is \(\deg^-(u) = |\text{Adj}^-(u)| \)
- For undirected graphs, \(\text{Adj}^-(u) = \text{Adj}^+(u) \) and \(\deg^-(u) = \deg^+(u) \)
- Dropping superscript defaults to outgoing, i.e., \(\text{Adj}(u) = \text{Adj}^+(u) \) and \(\deg(u) = \deg^+(u) \)

Graph Representations
- To store a graph \(G = (V, E) \), we need to store the outgoing edges \(\text{Adj}(u) \) for all \(u \in V \)
- First, need a Set data structure \(\text{Adj} \) to map \(u \) to \(\text{Adj}(u) \)
- Then for each \(u \), need to store \(\text{Adj}(u) \) in another data structure called an **adjacency list**
- Common to use direct access array or hash table for \(\text{Adj} \), since want lookup fast by vertex
- Common to use array or linked list for each \(\text{Adj}(u) \) since usually only iteration is needed\(^1\)
- For the common representations, \(\text{Adj} \) has size \(\Theta(|V|) \), while each \(\text{Adj}(u) \) has size \(\Theta(\deg(u)) \)
- Since \(\sum_{u \in V} \deg(u) \leq 2|E| \) by handshaking lemma, graph storable in \(\Theta(|V| + |E|) \) space
- Thus, for algorithms on graphs, linear time will mean \(\Theta(|V| + |E|) \) (linear in size of graph)

Examples
- Examples 1 and 2 assume vertices are labeled \(\{0, 1, \ldots, |V| - 1\} \), so can use a direct access array for \(\text{Adj} \), and store \(\text{Adj}(u) \) in an array. Example 3 uses a hash table for \(\text{Adj} \).

<table>
<thead>
<tr>
<th>Ex 1 (Undirected)</th>
<th>Ex 2 (Directed)</th>
<th>Ex 3 (Undirected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2, 1], # 0</td>
<td>[2], # 0</td>
<td>[a: {s, b}, b: {a}, s: {a, c}, c: {s, d, e}, d: {c, e, f}, e: {c, d, f}, f: {d, e}, g: []]</td>
</tr>
<tr>
<td>[2, 0, 3], # 1</td>
<td>[2, 0], # 1</td>
<td>[1], # 2</td>
</tr>
<tr>
<td>[1, 3, 0], # 2</td>
<td>[1], # 2</td>
<td>[f: {d, e}, g: []]</td>
</tr>
<tr>
<td>[1, 2], # 3</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

- Note that in an undirected graph, connections are symmetric as every edge is outgoing twice

\(^1\)A hash table for each \(\text{Adj}(u) \) can allow checking for an edge \((u, v) \in E\) in \(O(1) \) time
Lecture 9: Breadth-First Search

Paths

- A path is a sequence of vertices $p = (v_1, v_2, \ldots, v_k)$ where $(v_i, v_{i+1}) \in E$ for all $1 \leq i < k$.
- A path is simple if it does not repeat vertices\(^2\)
- The length $\ell(p)$ of a path p is the number of edges in the path
- The distance $\delta(u, v)$ from $u \in V$ to $v \in V$ is the minimum length of any path from u to v, i.e., the length of a shortest path from u to v
 (by convention, $\delta(u, v) = \infty$ if u is not connected to v)

Graph Path Problems

- There are many problems you might want to solve concerning paths in a graph:
 - **SINGLE_PAIR_REACHABILITY**(G, s, t): is there a path in G from $s \in V$ to $t \in V$?
 - **SINGLE_PAIR_SHORTEST_PATH**(G, s, t): return distance $\delta(s, t)$, and a shortest path in $G = (V, E)$ from $s \in V$ to $t \in V$
 - **SINGLE_SOURCE_SHORTEST_PATHS**(G, s): return $\delta(s, v)$ for all $v \in V$, and a shortest-path tree containing a shortest path from s to every $v \in V$ (defined below)

Each problem above is at least as hard as every problem above it
(i.e., you can use a black-box that solves a lower problem to solve any higher problem)

- We won’t show algorithms to solve all of these problems
- Instead, show one algorithm that solves the hardest in $O(|V| + |E|)$ time!

Shortest Paths Tree

- How to return a shortest path from source vertex s for every vertex in graph?
- Many paths could have length $\Omega(|V|)$, so returning every path could require $\Omega(|V|^2)$ time
- Instead, for all $v \in V$, store its parent $P(v)$: second to last vertex on a shortest path from s
- Let $P(s)$ be null (no second to last vertex on shortest path from s to s)
- Set of parents comprise a shortest paths tree with $O(|V|)$ size!
 (i.e., reversed shortest paths back to s from every vertex reachable from s)

\(^2\)A path in 6.006 is a “walk” in 6.042. A “path” in 6.042 is a simple path in 6.006.
Breadth-First Search (BFS)

- How to compute $\delta(s, v)$ and $P(v)$ for all $v \in V$?
- Store $\delta(s, v)$ and $P(v)$ in Set data structures mapping vertices v to distance and parent
- (If no path from s to v, do not store v in P and set $\delta(s, v)$ to ∞)
- **Idea!** Explore graph nodes in increasing order of distance

Goal: Compute level sets $L_i = \{ v \mid v \in V \text{ and } d(s, v) = i \}$ (i.e., all vertices at distance i)

- Claim: Every vertex $v \in L_i$ must be adjacent to a vertex $u \in L_{i-1}$ (i.e., $v \in \text{Adj}(u)$)
- Claim: No vertex that is in L_j for some $j < i$, appears in L_i
- **Invariant:** $\delta(s, v)$ and $P(v)$ have been computed correctly for all v in any L_j for $j < i$

Base case ($i = 1$): $L_0 = \{ s \}$, $\delta(s, s) = 0$, $P(s) = \text{None}$

Inductive Step: To compute L_i:
- for every vertex u in L_{i-1}:
 - for every vertex $v \in \text{Adj}(u)$ that does not appear in any L_j for $j < i$:
 - add v to L_i, set $\delta(s, v) = i$, and set $P(v) = u$
- Repeatedly compute L_i from L_j for $j < i$ for increasing i until L_i is the empty set
- Set $\delta(s, v) = \infty$ for any $v \in V$ for which $\delta(s, v)$ was not set

Breadth-first search correctly computes all $\delta(s, v)$ and $P(v)$ by induction

Running time analysis:
- Store each L_i in data structure with $\Theta(|L_i|)$-time iteration and $O(1)$-time insertion (i.e., in a dynamic array or linked list)
- Checking for a vertex v in any L_j for $j < i$ can be done by checking for v in P
- Maintain δ and P in Set data structures supporting dictionary ops in $O(1)$ time (i.e., direct access array or hash table)
- Algorithm adds each vertex u to ≤ 1 level and spends $O(1)$ time for each $v \in \text{Adj}(u)$
- Work upper bounded by $O(1) \times \sum_{u \in V} \text{deg}(u) = O(|E|)$ by handshake lemma
- Spend $\Theta(|V|)$ at end to assign $\delta(s, v)$ for vertices $v \in V$ not reachable from s
- So breadth-first search runs in linear time! $O(|V| + |E|)$

- Run breadth-first search from s in the graph in Example 3