Lecture 6: Binary Trees I

Previously and New Goal

			Operations C	$\mathcal{D}(\cdot)$		
Sequence	Container	Static		Dynamic		
Data Structure	build(X)	get_at(i)	insert_first(x)	insert_last(x)	insert_at(i, x)	
		<pre>set_at(i,x)</pre>	delete_first()	<pre>delete_last()</pre>	delete_at(i)	
Array	n	1	n	n	n	
Linked List	n	n	1	n	n	
Dynamic Array	n	1	n	$1_{(a)}$	n	
Goal	n	$\log n$	$\log n$	$\log n$	$\log n$	
			Operations C	$O(\cdot)$		
Set	Container	Static	Dynamic	Order		
Data Structure	build(X)	find(k)	insert(x)	find_min()	find_prev(k)	
			delete(k)	find_max()	find_next(k)	
Array	n	n	n	n	n	
Sorted Array	$n \log n$	$\log n$	n	1	$\log n$	

1

 $\log n$

 $1_{(a)(e)}$

u

n

 $\log n$

u

n

 $\log n$

How? Binary Trees!

Direct Access Array

Hash Table

Goal

• Pointer-based data structures (like Linked List) can achieve worst-case performance

1

 $\log n$

 $1_{(e)}$

- Binary tree is pointer-based data structure with three pointers per node
- Node representation: node. {item, parent, left, right}

u

 $n \log n$

 $n_{(e)}$

• Example:

1		<a>		node	<a>		<c></c>	<d></d>	<e></e>	<f></f>	
2			<c></c>	item	А	В	С	D	Ε	F	
3	<d></d>	<e></e>		parent	-	<a>	<a>			<d></d>	
4	<f></f>			left		<c></c>	-	<f></f>	-	-	
5				right	<c></c>	<d></d>	-	-	-	-	

Terminology

- The root of a tree has no parent (Ex: <A>)
- A leaf of a tree has no children (Ex: <C>, <E>, and <F>)
- Define depth(<x>) of node <x> in a tree rooted at <R> to be length of path from <x> to <R>
- Define height(<x>) of node <x> to be max depth of any node in the subtree rooted at <x>
- Idea: Design operations to run in O(h) time for root height h, and maintain $h = O(\log n)$
- A binary tree has an inherent order: its traversal order
 - every node in node <x>'s left subtree is **before** <x>
 - every node in node <x>'s right subtree is after <x>
- List nodes in traversal order via a recursive algorithm starting at root:
 - Recursively list left subtree, list self, then recursively list right subtree
 - Runs in O(n) time, since O(1) work is done to list each node
 - Example: Traversal order is $(\langle F \rangle, \langle D \rangle, \langle B \rangle, \langle E \rangle, \langle A \rangle, \langle C \rangle)$
- Right now, traversal order has no meaning relative to the stored items
- Later, assign semantic meaning to traversal order to implement Sequence/Set interfaces

Tree Navigation

- Find first node in the traversal order of node <x>'s subtree (last is symmetric)
 - If <x> has left child, recursively return the first node in the left subtree
 - Otherwise, <x> is the first node, so return it
 - Running time is O(h) where h is the height of the tree
 - **Example:** first node in <A>'s subtree is <F>
- Find successor of node <x> in the traversal order (predecessor is symmetric)
 - If <x> has right child, return first of right subtree
 - Otherwise, return lowest ancestor of <x> for which <x> is in its left subtree
 - Running time is O(h) where h is the height of the tree
 - Example: Successor of: is <E>, <E> is <A>, and <C> is None

Dynamic Operations

- Change the tree by a single item (only add or remove leaves):
 - add a node after another in the traversal order (before is symmetric)
 - remove an item from the tree
- Insert node <y> after node <x> in the traversal order
 - If <x> has no right child, make <y> the right child of <x>
 - Otherwise, make <Y> the left child of <X>'s successor (which cannot have a left child)
 - Running time is O(h) where h is the height of the tree
- **Example:** Insert node <G> before <E> in traversal order

1	<	<i></i> ₹>			<a< th=""><th>.></th></a<>	.>
2		<c></c>	=>			<c></c>
3	<d> <e></e></d>		_	_ <d></d>	_ <e></e>	
4	<f></f>		<f< th=""><th>> <</th><th>G></th><th></th></f<>	> <	G>	

• Example: Insert node <H> after <A> in traversal order

1	-	<	<u></u> 4>		_	<	<i></i> 4>
2	<]	3>	<c></c>	=>	<b< th=""><th>\$></th><th><c></c></th></b<>	\$>	<c></c>
3	<d></d>	<e></e>			<d></d>	<e></e>	<h></h>
4	<f></f>	<g></g>		<	F>	<g></g>	

- **Delete** the item in node <x> from <x>'s subtree
 - If <x> is a leaf, detach from parent and return
 - Otherwise, <x> has a child
 - * If <x> has a left child, swap items with the predecessor of <x> and recurse
 - * Otherwise <X> has a right child, swap items with the successor of <X> and recurse
 - Running time is O(h) where h is the height of the tree
 - **Example:** Remove <F> (a leaf)

- **Example:** Remove <A> (not a leaf, so first swap down to a leaf)

Application: Set

- Idea! Set Binary Tree (a.k.a. Binary Search Tree / BST): Traversal order is sorted order increasing by key
 - Equivalent to **BST Property**: for every node, every key in left subtree \leq node's key \leq every key in right subtree
- Then can find the node with key k in node $\langle x \rangle$'s subtree in O(h) time like binary search:
 - If k is smaller than the key at <x>, recurse in left subtree (or return None)
 - If k is larger than the key at <x>, recurse in right subtree (or return None)
 - Otherwise, return the item stored at <x>
- Other Set operations follow a similar pattern; see recitation

Application: Sequence

- Idea! Sequence Binary Tree: Traversal order is sequence order
- How do we find *i*th node in traversal order of a subtree? Call this operation subtree_at (*i*)
- Could just iterate through entire traversal order, but that's bad, O(n)
- However, if we could compute a subtree's size in O(1), then can solve in O(h) time
 - How? Check the size n_L of the left subtree and compare to i
 - If $i < n_L$, recurse on the left subtree
 - If $i > n_L$, recurse on the right subtree with $i' = i n_L 1$
 - Otherwise, $i = n_L$, and you've reached the desired node!
- Maintain the size of each node's subtree at the node via augmentation
 - Add node.size field to each node
 - When adding new leaf, add +1 to a.size for all ancestors a in O(h) time
 - When deleting a leaf, add -1 to a.size for all ancestors a in O(h) time
- Sequence operations follow directly from a fast subtree_at(i) operation
- Naively, build (X) takes O(nh) time, but can be done in O(n) time; see recitation

So Far

		Operations $O(\cdot)$							
Set	Container	Static	Dynamic	O	rder				
Data Structure	build(X)	find(k)	insert(x)	find_min()	find_prev(k)				
			delete(k)	find_max()	find_next(k)				
Binary Tree	$n\log n$	h	h	h h					
Goal	$n\log n$	$\log n$	$\log n$	$\log n$	$\log n$				
	$Operations O(\cdot)$								
			Operations C	$\mathcal{O}(\cdot)$					
Sequence	Container	Static	Operations C	D(·) Dynamic					
Sequence Data Structure	Container build(X)	Static get_at(i)	Operations C	D(·) Dynamic insert_last(x)	<pre>insert_at(i, x)</pre>				
Sequence Data Structure	Container build(X)	Static get_at(i) set_at(i,x)	Operations C insert_first(x) delete_first()	D(·) Dynamic insert_last(x) delete_last()	<pre>insert_at(i, x) delete_at(i)</pre>				
Sequence Data Structure Binary Tree	Container build(X)	Static get_at(i) set_at(i,x) h	Operations C insert_first(x) delete_first() h	D(() Dynamic insert_last(x) delete_last() h	insert_at(i, x) delete_at(i) h				

Next Time

- Keep a binary tree **balanced** after insertion or deletion
- Reduce O(h) running times to $O(\log n)$ by keeping $h = O(\log n)$

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>