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Problem Session 9 

Problem 9-1. Coin Crafting 

Ceal Naffrey is a thief in desperate need of money. He recently acquired n identical gold coins. Each 
coin has distinctive markings that would easily identify them as stolen if sold. However, using his amateur 
craftsman skills, Cael can melt down gold coins to craft other golden objects. Ceal has a buyer willing 
to purchase golden objects at different rates, but will only purchase one of any object. Ceal has compiled 
a list of the n golden objects, listing both the positive integer purchase price the buyer would be willing 
to pay for each object and each object’s positive integer melting number: the number of gold coins that 
would need to be melted to craft that object. Given this list, describe an efficient algorithm to determine the 
maximum revenue that Ceal could make, by melting down his coins to craft into golden objects to sell to his 
buyer. 

Solution: 

1. Subproblems 
• Label each craft-able object with a unique integer from 1 to n 

• Let pi be the purchase price of object j, with ki its melting number 
• x(i, j): the maximum revenue possible from i coins, being able to craft any of the objects from 

the objects from 1 to j 

2. Relate 
• Guess whether or not to craft object j 
• If i < ki, object j cannot be crafted 
• If object j is not crafted, may recurse on remaining items 
• If object j is crafted, receive pi in revenue and lose ki coins� 

x(i, j − 1) if i < ki• x(i, j) = 
max(pi + x(i − ki, j − 1), x(i, j − 1)) otherwise 

3. Topo. Order 
• Subproblem x(i, j) only depends on subproblems with strictly smaller j, so acyclic 

4. Base 
• If there are not more coins, or no more items, cannot gain any revenue 
• x(0, j) = 0 for i ∈ {0, . . . , n}
• x(i, 0) = 0 for j ∈ {0, . . . , n}

5. Original 
• x(n, n) is the maximum revenue possible from n coins, being able to craft any of the nobjects, as 

requested 

6. Time 
• # subproblems: (n + 1)2 = O(n2), x(i, j) for i, j ∈ {0, 1, . . . , n}
• work per subproblem: O(1) 
• O(n2) running time 
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Problem 9-2. Career Fair Optimization 

Tim the Beaver always attends the career fair, not to find a career, but to collect free swag. There are n 
booths at the career fair, each giving out one known type of swag. To collect a single piece of swag from 
booth i, having integer coolness ci and integer weight wi, requires standing in line at that booth for integer 
ti minutes. After obtaining a piece of swag from one booth, it will take Tim exactly 1 minute to get back in 
line at the same booth or any other. Tim’s backpack can hold at most weight b in swag; but at any time Tim 
may spend integer h minutes to run home, empty the backpack, and return to the fair, taking 1 additional 
minute to get back in a line. Given that the career fair lasts exactly k minutes, describe an O(nbk)-time 
algorithm to determine the maximum total coolness of swag Tim can collect during the career fair. 

Solution: 

1. Subproblems 
• x(i, j): the maximum total coolness of swag collectible in the next i minutes with j weight 

remaining in Tim’s backpack (where Tim is at the career fair and may immediately stand in line) 

2. Relate 
• Tim can either: 

– Collect no more swag 
– Stand in a line and collect a piece of swag 
– Go home and empty the backpack⎧ ⎨ 0 always 

• x(i, j) = max ck0 + x(i − tk0 − 1, j − wk0 ) for k0 ∈ {1, . . . , n} where wk0 ≤ j, tk0 < i⎩ 
x(i − h − 1, b) when i > h 

3. Topo. Order 
• Subproblem x(i, j) only depends on subproblems with strictly smaller i, so acyclic 

4. Base 
• Tim needs time to collect swag, so nothing possible if time is zero 
• x(0, j) = 0 for j ∈ {0, . . . , b}

5. Original 
• x(k, b) is the maximum total coolness of swag collectible in k minutes, starting with an empty 

backpack, as desired. 

6. Time 
• # subproblems: ≤ (k + 1)(b + 1) = O(kb), x(i, j) for i ∈ {0, . . . , k}, j ∈ {0, . . . , b}
• work per subproblem: O(n) 
• O(nbk) running time, which is psuedo-polynomial in b and k 

Problem 9-3. Protein Parsing 

Prof. Leric Ander’s lab performs experiments on DNA. After experimenting on any strand of DNA (a se-
quence of nucleotides, either A, C, G, or T), the lab will cut it up so that any useful protein markers can be 
used in future experiments. Ander’s lab has compiled a list P of known protein markers, where each protein 
marker corresponds to a sequence of at most k nucleotides. A division of a DNA strand S is an ordered 
sequence D = (d1, . . . , dm) of DNA strands, where the ordered concatenation of D results in S. The value 
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of a division D is the number of DNA strands in D that appear as protein markers in P . Given a DNA strand 
S and set of protein markers P , describe an O(k(|P | + k|S|))-time algorithm to determine the maximum 
value of any division of S. 

Solution: 

1. Subproblems 
• First construct a hash table containing the protein markers in P as keys 
• This hash table takes (expected) O(k|P |) time to construct (it could take O(k) time to compute 

the hash of each marker) 
• x(i): the maximum value of any division of the DNA strand suffix S[i :] 

2. Relate 
• Either the first nucleotide starts a protein marker or it does not 

– If it does not, recurse on remainder 
– If it does, guess its length (from 1 to k, or until the end of S) 

• Let m(i, j) be 1 if substring S[i : j] is a protein marker and 0 otherwise 
• We can evaluate m(i, j) in expected O(k) time by hash table look up 
• x(i) = max{m(i, j) + x(i + j) | j ∈ {1, . . . , min(k, |S| − i)}}

3. Topo. Order 
• Subproblem x(i) only depends on subproblems with strictly larger i, so acyclic 

4. Base 
• If no nucleotides in suffix, no division can have value 
• x(|S|) = 0 

5. Original 
• x(0) is the maximum value of any division of S, as desired 

6. Time 
• # subproblems: ≤ |S| + 1 = O(|S|), x(i) for i ∈ {0, . . . , |S|}
• work per subproblem: expected O(k) to look up each of the k m(i, j) 
• O(k(|P | + k|S|)) running time, which is polynomial in the size of the input 
• Note that it is possible to achieve O(k(|P | + |S|)) if each of the Θ(k|S|) lookups can be checked 

in O(1) time, i.e., via a rolling hash or suffix tree (not covered in this course). 

Problem 9-4. Lazy Egg Drop 
The classic egg drop problem asks for the minimum number of drops needed to determine the breaking floor 
of a building with n floors using at most k eggs, where the breaking floor is the lowest floor from which 
an egg could be dropped and break. This problem has a closed form solution, but can also be solved with 
dynamic programming (Exercise!). However, if the building does not have an elevator, one might instead 
want to minimize the total drop height: the sum of heights from which eggs are dropped. Suppose each of 
the n floors of the building has a known positive integer height hi, where floor heights strictly increase with 
i. Given these heights, describe an O(n3k)-time algorithm to return the minimum total drop height required 
to determine the breaking floor of the building using at most k eggs. 

Solution: 
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1. Subproblems 
• x(i, j, e) minimum total drop height needed to determine the breaking floor with e eggs, with 

floors i to j ≥ i remaining to check 

2. Relate 
• Next egg must be dropped from some remaining floor f (guess!) 
• If egg breaks, have one fewer egg and need to recurse on floors below 
• Otherwise, have same number of eggs and need to recurse on floors above 
• x(i, j, e) = min{hf + max{x(i, f − 1, e − 1), x(f + 1, j, e)} | f ∈ {i, . . . , j}} 

3. Topo. Order 
• Subproblem x(i, j, e) only depends on subproblems with strictly smaller j − i, so acyclic 

4. Base 
• Impossible if no more eggs but floors left to check 
• x(i, j, 0) = ∞ for i, j ∈ {0, . . . , n} with i ≤ j 

• No more drops needed if no more floors left to check 
• x(i, i − 1, e) = 0 for i ∈ {0, . . . , n} and e ∈ {0, . . . , k} 

5. Original 
• x(1, n, k) is the minimum total drop height needed to determine breaking floor with k eggs need-

ing to check all floors, as desired 

6. Time � � n• # subproblems: ≤ (k + 1) = O(n2k), x(i, j, e) for i, j ∈ {1, . . . , n} with i < j and2 
e ∈ {0, . . . , k}

• work per subproblem: O(max(1, j − i)) = O(n) time 
• O(n3k) running time, which is psuedo-polynomial in k. However, since you will never need to 

drop more than n eggs to check all n floors, it suffices to only compute subproblems for k ≤ n, 
so we could answer the problem in O(n3)-time by limiting the subproblems checked, which is 
polynomial in n. 

Problem 9-5. Building a Wall 

The pigs in Porkland from Problem Session 2, have decided to build a stone wall along their southern border 
for protection against the menacing wolf. The wall will be one meter thick, n meters long, and at most k 
meters tall. The wall will be built from a large supply of identical long stones: each a 1 × 1 × 2 meter rect-
angular prism. Long stones may be placed either vertically or horizontally in the wall. With much difficulty, 
a single long stone can be broken into two 1-meter cube stones, but the pigs prefer not using cube stones 
when possible. 

The ground along the southern border of Porkland is uneven, but the pigs have leveled each square meter 
along the border to an integer meter elevation. Let a border plan be an n × k array B correspond to what 
the border looks like before a wall has been built. B[j][i] corresponds to the cubic meter whose top is at 
elevation k − j, located at meter i along the border. B[j][i] is ’.’ if that cubic meter is empty and must 
be covered by a stone, and ’#’ if that cubic meter is dirt, so should not be covered. B has the property that 
if B[j][i] is covered by dirt, so is every cubic meter B[t][i] beneath it (for t ∈ {j, . . . , k − 1}), where 



5 Problem Session 9 

the top-most cubic meter B[0][i] in each column is initially empty. Below is an example B for n = 10 
and k = 5. 

A placement of stones into border plan B is a set of placement triples: 

• (i,j,’1’) places a cube stone to cover B[j][i]; 

• (i,j,’D’) places a long stone oriented down to cover B[j][i] and B[j + 1][i]; and 

• (i,j,’R’) places a long stone oriented right to cover B[j][i] and B[j][i + 1]. 

A placement is complete if every empty cubic meter in B is covered by some stone; and is non-overlapping 
if no cubic meter is covered by more than one stone and no stone overlaps dirt. Below is a complete non-
overlapping placement for B that uses 2 cube stones, and a pictorial depiction. 

1 B = [ P = [ 
2 ’..........’, (0,0,’D’), (0,2,’D’), (0,4,’R’), (1,0,’R’), (1,1,’R’), 
3 ’..........’, (1,2,’1’), (1,3,’R’), (2,2,’R’), (3,0,’D’), (3,3,’R’), 
4 ’..........’, (3,4,’R’), (4,0,’R’), (4,1,’R’), (4,2,’R’), (6,0,’D’), 
5 ’.....#.##.’, (6,2,’R’), (6,3,’1’), (7,0,’D’), (8,0,’D’), (8,2,’R’), 
6 ’..#..####.’, (9,0,’D’), (9,3,’D’), 
7 ] ] 

0
0 1 2 3 4 5 6 7 8 9

1

2

3

4

(a) Given n × k border plan B, describe an O(22kkn)-time algorithm to return a complete non-
overlapping placement for B using the fewest cube stones possible. 
Solution: 

1. Subproblems 
• The approach will be to repeatedly cover the highest uncovered cube in the left-most 

column with some stone 
• Placing a single stone will effect at most the first two columns, so our subproblems 

will remember the current covered state of the two left-most columns 
• Represent a partially-filled column c of the border as a length-k array of Boolean 

values, where Boolean c[j] is True if row j in the column still needs to be covered, and 
False otherwise 

• Let C0(i) correspond to the partially-filled column i in the input border plan B, where 
C0(i)[j] is True if B[j][i] = ’.’ and False if B[j][i] = ’#’ 

• Let C0(n) = C0(n + 1) = cF correspond to a column of all False values 
• x(i, c1, c2): the minimum number of cube stones needed to cover partially-covered 

columns c1 and c2 concatenated with original columns i + 2 to n − 1 

2. Relate 
• If all rows of the left-most column are covered, we can move on to cover uncovered 

cubes in the next column 
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• Otherwise, place a stone to cover the highest uncovered cube in the left-most column 
with either: 
– a cube stone; 
– a long stone vertically down (if the cube below is also uncovered); or 
– a long stone horizontally right (if the cube to the right is also uncovered). 

• Let f(c, k) correspond to the partially filled column resulting from changing element 
c[k] in column c to False 

• Let t(c) correspond to the index of the first (top-most) True in column c 
• x(i, c1, c2) = x(i + 1, c2, C0(i + 2)) if c1 is all False 
• Otherwise, t(c1) is defined:⎧⎨ 

⎫⎬1 + x(i, f(c1, t(c1)), c2) always 
• x(i, c1, c2) = min⎩ x(i, f(f(c1, t(c1)), t(c1) + 1), c2) if c1[t(c1) + 1] is True 

x(i, f(c1, t(c1)), f(c2, t(c1))) if c2[t(c1)] is True ⎭ 

3. Topo. Order 
• Subproblem x(i, c1, c2) either strictly increases i or strictly decreases the number of 

True values appearing in column c1 for the same i, so acyclic 
4. Base 

• No cube stones are required when nothing remains to be covered 
• x(n, cF , cF ) = 0 

5. Original 
• x(0, C0(0), C0(1)) corresponds to the minimum number of cube stones to fill the entire 

boarder plan, as desired 
• Store parent pointers to reconstruct an optimizing placement 

6. Time 
• There are 2k possible columns for each of c1 and c2 

• # subproblems: ≤ n2k2k = O(n22k) subproblems 
• work per subproblem: O(k) time to lookup in memo and/or to compute a new column 
• O(22kkn) running time, which is exponential in k (but polynomial in n) 

(b) Write a Python function build wall(B) that implements your algorithm from (a) for border 
plans with k = 5. 
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Solution: 

1 def get_col(B, i): 
2 if i < len(B[0]): 
3 return tuple(B[j][i] == ’.’ for j in range(5)) 
4 return tuple(False for j in range(5)) 

6 def build_wall(B): 
7 memo = {} 
8 def x(i, c1, c2): # top-down dynamic program 
9 key = (i, c1, c2) 

if key not in memo: # compute if not in memo 
11 j = 0 
12 while j < 5 and (not c1[j]): 
13 j += 1 
14 if j == 5: # column c1 is full 

if i == len(B[0]) - 1: # base case, last line 
16 memo[key] = (0, None, None) 
17 else: # shift to next pair of cols 
18 memo[key] = x(i + 1, c2, get_col(B, i + 2)) 
19 else: # need to cover (i, j) 

new_c1 = [i for i in c1] 
21 new_c1[j] = False 
22 test, _, _ = x(i, tuple(new_c1), c2) # place 1x1 
23 best = 1 + test 
24 move = (i, j, ’1’) 

parent = (i, tuple(new_c1), c2) 
26 if j < 4 and c1[j + 1]: # place 1x2 down 
27 new_c1[j + 1] = False 
28 test, _, _ = x(i, tuple(new_c1), c2) 
29 if test < best: 

best = test 
31 move = (i, j, ’D’) 
32 parent = (i, tuple(new_c1), c2) 
33 new_c1[j + 1] = True 
34 if c2[j]: # place 1x2 right 

new_c2 = [i for i in c2] 
36 new_c2[j] = False 
37 test, _, _ = x(i, tuple(new_c1), tuple(new_c2)) 
38 if test < best: 
39 best = test 

move = (i, j, ’R’) 
41 parent = (i, tuple(new_c1), tuple(new_c2)) 
42 memo[key] = (best, move, parent) 
43 return memo[key] 
44 best, move, parent = x(0, get_col(B, 0), get_col(B, 1)) 

P = [] # compute placement from parent pointers 
46 while parent: 
47 P.append(move) 
48 best, move, parent = memo[parent] 
49 return P 
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