

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 8: Binary Heaps

Lecture 8: Binary Heaps

Priority Queue Interface

• Keep track of many items, quickly access/remove the most important

– Example: router with limited bandwidth, must prioritize certain kinds of messages

– Example: process scheduling in operating system kernels

– Example: discrete-event simulation (when is next occurring event?)

– Example: graph algorithms (later in the course)

• Order items by key = priority so Set interface (not Sequence interface)

• Optimized for a particular subset of Set operations:

build(X) build priority queue from iterable X
insert(x) add item x to data structure
delete max() remove and return stored item with largest key
find max() return stored item with largest key

• (Usually optimized for max or min, not both)

• Focus on insert and delete max operations: build can repeatedly insert;
find max() can insert(delete min())

Priority Queue Sort
• Any priority queue data structure translates into a sorting algorithm:

– build(A), e.g., insert items one by one in input order

– Repeatedly delete min() (or delete max()) to determine (reverse) sorted order

• All the hard work happens inside the data structure

• Running time is Tbuild + n · Tdelete max ≤ n · Tinsert + n · Tdelete max

• Many sorting algorithms we’ve seen can be viewed as priority queue sort:

Priority Queue Operations O(·) Priority Queue Sort
Data Structure build(A) insert(x) delete max() Time In-place?
Dynamic Array n 1(a) n 2n Y
Sorted Dynamic Array n log n n 1(a)

2n Y
Set AVL Tree n log n log n log n n log n N

Goal n log n(a) log n(a) n log n Y

Selection Sort
Insertion Sort
AVL Sort

Heap Sort

2 Lecture 8: Binary Heaps

Priority Queue: Set AVL Tree

• Set AVL trees support insert(x), find min(), find max(), delete min(), and
delete max() in O(log n) time per operation

• So priority queue sort runs in O(n log n) time

– This is (essentially) AVL sort from Lecture 7

• Can speed up find min() and find max() to O(1) time via subtree augmentation

• But this data structure is complicated and resulting sort is not in-place

• Is there a simpler data structure for just priority queue, and in-place O(n lg n) sort?
YES, binary heap and heap sort

• Essentially implement a Set data structure on top of a Sequence data structure (array), using
what we learned about binary trees

Priority Queue: Array

• Store elements in an unordered dynamic array

• insert(x): append x to end in amortized O(1) time

• delete max(): find max in O(n), swap max to the end and remove

• insert is quick, but delete max is slow

• Priority queue sort is selection sort! (plus some copying)

Priority Queue: Sorted Array

• Store elements in a sorted dynamic array

• insert(x): append x to end, swap down to sorted position in O(n) time

• delete max(): delete from end in O(1) amortized

• delete max is quick, but insert is slow

• Priority queue sort is insertion sort! (plus some copying)

• Can we find a compromise between these two array priority queue extremes?

3 Lecture 8: Binary Heaps

Array as a Complete Binary Tree

• Idea: interpret an array as a complete binary tree, with maximum 2i nodes at depth i except
at the largest depth, where all nodes are left-aligned

1 d0 ______O____
2 d1 ____O____ __O__
3 d2 __O__ __O O O
4 d3 O O O

• Equivalently, complete tree is filled densely in reading order: root to leaves, left to right

• Perspective: bijection between arrays and complete binary trees

1 Q = [0,1,2,3,4,5,6,7,8,9]
2 d0 0 -> ______0____
3 d1 1 2 -> ____1____ __2__
4 d2 3 4 5 6 -> __3__ __4 5 6
5 d3 7 8 9 -> 7 8 9

• Height of complete tree perspective of array of n item is dlg ne, so balanced binary tree

Implicit Complete Tree

• Complete binary tree structure can be implicit instead of storing pointers

• Root is at index 0

• Compute neighbors by index arithmetic:

left(i) = 2i + 1

right(i) = 2i + 2 � �
i − 1

parent(i) =
2

4 Lecture 8: Binary Heaps

Binary Heaps

• Idea: keep larger elements higher in tree, but only locally

• Max-Heap Property at node i: Q[i] ≥ Q[j] for j ∈ {left(i), right(i)}

• Max-heap is an array satisfying max-heap property at all nodes

• Claim: In a max-heap, every node i satisfies Q[i] ≥ Q[j] for all nodes j in subtree(i)

• Proof:

– Induction on d = depth(j) − depth(i)

– Base case: d = 0 implies i = j implies Q[i] ≥ Q[j] (in fact, equal)

– depth(parent(j)) − depth(i) = d − 1 < d, so Q[i] ≥ Q[parent(j)] by induction

– Q[parent(j)] ≥ Q[j] by Max-Heap Property at parent(j)

• In particular, max item is at root of max-heap

Heap Insert
• Append new item x to end of array in O(1) amortized, making it next leaf i in reading order

• max heapify up(i): swap with parent until Max-Heap Property

– Check whether Q[parent(i)] ≥ Q[i] (part of Max-Heap Property at parent(i))

– If not, swap items Q[i] and Q[parent(i)], and recursively max heapify up(parent(i))

• Correctness:

– Max-Heap Property guarantees all nodes ≥ descendants, except Q[i] might be > some
of its ancestors (unless i is the root, so we’re done)

– If swap necessary, same guarantee is true with Q[parent(i)] instead of Q[i]

• Running time: height of tree, so Θ(log n)!

5 Lecture 8: Binary Heaps

Heap Delete Max

• Can only easily remove last element from dynamic array, but max key is in root of tree

• So swap item at root node i = 0 with last item at node n − 1 in heap array

• max heapify down(i): swap root with larger child until Max-Heap Property

– Check whether Q[i] ≥ Q[j] for j ∈ {left(i), right(i)} (Max-Heap Property at i)

– If not, swap Q[i] with Q[j] for child j ∈ {left(i), right(i)} with maximum key, and
recursively max heapify down(j)

• Correctness:

– Max-Heap Property guarantees all nodes ≥ descendants, except Q[i] might be < some
descendants (unless i is a leaf, so we’re done)

– If swap is necessary, same guarantee is true with Q[j] instead of Q[i]

• Running time: height of tree, so Θ(log n)!

Heap Sort
• Plugging max-heap into priority queue sort gives us a new sorting algorithm

• Running time is O(n log n) because each insert and delete max takes O(log n)

• But often include two improvements to this sorting algorithm:

In-place Priority Queue Sort
• Max-heap Q is a prefix of a larger array A, remember how many items |Q| belong to heap

• |Q| is initially zero, eventually |A| (after inserts), then zero again (after deletes)

• insert() absorbs next item in array at index |Q| into heap

• delete max() moves max item to end, then abandons it by decrementing |Q|

• In-place priority queue sort with Array is exactly Selection Sort

• In-place priority queue sort with Sorted Array is exactly Insertion Sort

• In-place priority queue sort with binary Max Heap is Heap Sort

6 Lecture 8: Binary Heaps

Linear Build Heap

• Inserting n items into heap calls max heapify up(i) for i from 0 to n − 1 (root down):
n−1 n−1X X

worst-case swaps ≈ depth(i) = lg i = lg(n!) ≥ (n/2) lg(n/2) = Ω(n lg n)
i=0 i=0

• Idea! Treat full array as a complete binary tree from start, then max heapify down(i)
for i from n − 1 to 0 (leaves up):

n−1 n−1 � �X X n nn n
worst-case swaps ≈ height(i) = (lg n−lg i) = lg = Θ lg √ = O(n)

n! n(n/e)n
i=0 i=0

• So can build heap in O(n) time

• (Doesn’t speed up O(n lg n) performance of heap sort)

Sequence AVL Tree Priority Queue

• Where else have we seen linear build time for an otherwise logarithmic data structure?
Sequence AVL Tree!

• Store items of priority queue in Sequence AVL Tree in arbitrary order (insertion order)

• Maintain max (and/or min) augmentation:
node.max = pointer to node in subtree of node with maximum key

– This is a subtree property, so constant factor overhead to maintain

• find min() and find max() in O(1) time

• delete min() and delete max() in O(log n) time

• build(A) in O(n) time

• Same bounds as binary heaps (and more)

Set vs. Multiset
• While our Set interface assumes no duplicate keys, we can use these Sets to implement

Multisets that allow items with duplicate keys:

– Each item in the Set is a Sequence (e.g., linked list) storing the Multiset items with the
same key, which is the key of the Sequence

• In fact, without this reduction, binary heaps and AVL trees work directly for duplicate-key
items (where e.g. delete max deletes some item of maximum key), taking care to use ≤
constraints (instead of < in Set AVL Trees)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	L08.pdf
	cover.pdf
	Blank Page

