Lecture 8: Binary Heaps

Priority Queue Interface

- Keep track of many items, quickly access/remove the most important
 - Example: router with limited bandwidth, must prioritize certain kinds of messages
 - Example: process scheduling in operating system kernels
 - Example: discrete-event simulation (when is next occurring event?)
 - Example: graph algorithms (later in the course)
- Order items by key = priority so **Set interface** (not Sequence interface)
- Optimized for a particular subset of Set operations:

build(X)	build priority queue from iterable x
insert(x)	add item x to data structure
<pre>delete_max()</pre>	remove and return stored item with largest key
find_max()	return stored item with largest key

- (Usually optimized for max or min, not both)
- Focus on insert and delete_max operations: build can repeatedly insert; find_max() can insert(delete_min())

Priority Queue Sort

- Any priority queue data structure translates into a sorting algorithm:
 - build (A), e.g., insert items one by one in input order
 - Repeatedly delete_min() (or delete_max()) to determine (reverse) sorted order
- All the hard work happens inside the data structure
- Running time is $T_{\texttt{build}} + n \cdot T_{\texttt{delete}_max} \le n \cdot T_{\texttt{insert}} + n \cdot T_{\texttt{delete}_max}$
- Many sorting algorithms we've seen can be viewed as priority queue sort:

Priority Queue	Operations $O(\cdot)$			Priority Queue Sort		
Data Structure	build(A)	insert(x)	delete_max()	Time	In-place?	
Dynamic Array	n	$1_{(a)}$	n	n^2	Y	Selection Sort
Sorted Dynamic Array	$n\log n$	n	$1_{(a)}$	n^2	Y	Insertion Sort
Set AVL Tree	$n\log n$	$\log n$	$\log n$	$n\log n$	N	AVL Sort
Goal	n	$\log n_{(a)}$	$\log n_{(a)}$	$n \log n$	Y	Heap Sort

Priority Queue: Set AVL Tree

- Set AVL trees support insert(x), find_min(), find_max(), delete_min(), and delete_max() in $O(\log n)$ time per operation
- So priority queue sort runs in $O(n \log n)$ time
 - This is (essentially) AVL sort from Lecture 7
- Can speed up find_min() and find_max() to O(1) time via subtree augmentation
- But this data structure is complicated and resulting sort is not in-place
- Is there a simpler data structure for just priority queue, and in-place $O(n \lg n)$ sort? YES, binary heap and heap sort
- Essentially implement a Set data structure on top of a Sequence data structure (array), using what we learned about binary trees

Priority Queue: Array

- Store elements in an **unordered** dynamic array
- insert (x): append x to end in amortized O(1) time
- delete_max(): find max in O(n), swap max to the end and remove
- insert is quick, but delete_max is slow
- Priority queue sort is selection sort! (plus some copying)

Priority Queue: Sorted Array

- Store elements in a **sorted** dynamic array
- insert (x): append x to end, swap down to sorted position in O(n) time
- delete_max(): delete from end in O(1) amortized
- delete_max is quick, but insert is slow
- Priority queue sort is insertion sort! (plus some copying)
- Can we find a compromise between these two array priority queue extremes?

Array as a Complete Binary Tree

• Idea: interpret an array as a complete binary tree, with maximum 2^i nodes at depth *i* except at the largest depth, where all nodes are **left-aligned**

- Equivalently, complete tree is filled densely in reading order: root to leaves, left to right
- Perspective: bijection between arrays and complete binary trees

• Height of complete tree perspective of array of n item is $\lceil \lg n \rceil$, so **balanced** binary tree

Implicit Complete Tree

- Complete binary tree structure can be implicit instead of storing pointers
- Root is at index 0
- Compute neighbors by index arithmetic:

$$left(i) = 2i + 1$$

right(i) = 2i + 2
parent(i) = $\left\lfloor \frac{i-1}{2} \right\rfloor$

Binary Heaps

- Idea: keep larger elements higher in tree, but only locally
- Max-Heap Property at node $i: Q[i] \ge Q[j]$ for $j \in {left(i), right(i)}$
- Max-heap is an array satisfying max-heap property at all nodes
- Claim: In a max-heap, every node i satisfies $Q[i] \ge Q[j]$ for all nodes j in subtree(i)
- Proof:
 - Induction on $d = \operatorname{depth}(j) \operatorname{depth}(i)$
 - Base case: d = 0 implies i = j implies $Q[i] \ge Q[j]$ (in fact, equal)
 - depth(parent(j)) depth(i) = d 1 < d, so $Q[i] \ge Q[parent(j)]$ by induction
 - $Q[\operatorname{parent}(j)] \ge Q[j]$ by Max-Heap Property at $\operatorname{parent}(j)$
- In particular, max item is at root of max-heap

Heap Insert

- Append new item x to end of array in O(1) amortized, making it next leaf i in reading order
- max_heapify_up(*i*): swap with parent until Max-Heap Property
 - Check whether $Q[\operatorname{parent}(i)] \ge Q[i]$ (part of Max-Heap Property at $\operatorname{parent}(i)$)
 - If not, swap items Q[i] and Q[parent(i)], and recursively max_heapify_up(parent(i))
- Correctness:
 - Max-Heap Property guarantees all nodes ≥ descendants, except Q[i] might be > some of its ancestors (unless i is the root, so we're done)
 - If swap necessary, same guarantee is true with Q[parent(i)] instead of Q[i]
- Running time: height of tree, so $\Theta(\log n)$!

Heap Delete Max

- Can only easily remove last element from dynamic array, but max key is in root of tree
- So swap item at root node i = 0 with last item at node n 1 in heap array
- max_heapify_down(i): swap root with larger child until Max-Heap Property
 - Check whether $Q[i] \ge Q[j]$ for $j \in \{\text{left}(i), \text{right}(i)\}$ (Max-Heap Property at i)
 - If not, swap Q[i] with Q[j] for child $j \in {left(i), right(i)}$ with maximum key, and recursively max_heapify_down(j)
- Correctness:
 - Max-Heap Property guarantees all nodes ≥ descendants, except Q[i] might be < some descendants (unless i is a leaf, so we're done)
 - If swap is necessary, same guarantee is true with Q[j] instead of Q[i]
- Running time: height of tree, so $\Theta(\log n)$!

Heap Sort

- Plugging max-heap into priority queue sort gives us a new sorting algorithm
- Running time is $O(n \log n)$ because each insert and delete_max takes $O(\log n)$
- But often include two improvements to this sorting algorithm:

In-place Priority Queue Sort

- Max-heap Q is a prefix of a larger array A, remember how many items |Q| belong to heap
- |Q| is initially zero, eventually |A| (after inserts), then zero again (after deletes)
- insert () absorbs next item in array at index |Q| into heap
- delete_max() moves max item to end, then abandons it by decrementing |Q|
- In-place priority queue sort with Array is exactly Selection Sort
- In-place priority queue sort with Sorted Array is exactly Insertion Sort
- In-place priority queue sort with binary Max Heap is Heap Sort

Linear Build Heap

• Inserting *n* items into heap calls max_heapify_up(i) for i from 0 to n - 1 (root down):

worst-case swaps
$$\approx \sum_{i=0}^{n-1} \operatorname{depth}(i) = \sum_{i=0}^{n-1} \lg i = \lg(n!) \ge (n/2) \lg(n/2) = \Omega(n \lg n)$$

• Idea! Treat full array as a complete binary tree from start, then max_heapify_down(i) for i from n - 1 to 0 (leaves up):

worst-case swaps
$$\approx \sum_{i=0}^{n-1} \operatorname{height}(i) = \sum_{i=0}^{n-1} (\lg n - \lg i) = \lg \frac{n^n}{n!} = \Theta\left(\lg \frac{n^n}{\sqrt{n}(n/e)^n}\right) = O(n)$$

- So can build heap in O(n) time
- (Doesn't speed up $O(n \lg n)$ performance of heap sort)

Sequence AVL Tree Priority Queue

- Where else have we seen linear build time for an otherwise logarithmic data structure? Sequence AVL Tree!
- Store items of priority queue in Sequence AVL Tree in arbitrary order (insertion order)
- Maintain max (and/or min) augmentation: node.max = pointer to node in subtree of node with maximum key
 - This is a subtree property, so constant factor overhead to maintain
- find_min() and find_max() in O(1) time
- delete_min() and delete_max() in $O(\log n)$ time
- build (A) in O(n) time
- Same bounds as binary heaps (and more)

Set vs. Multiset

- While our Set interface assumes no duplicate keys, we can use these Sets to implement Multisets that allow items with duplicate keys:
 - Each item in the Set is a Sequence (e.g., linked list) storing the Multiset items with the same key, which is the key of the Sequence
- In fact, without this reduction, binary heaps and AVL trees work directly for duplicate-key items (where e.g. delete_max deletes *some* item of maximum key), taking care to use \leq constraints (instead of < in Set AVL Trees)

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>