

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 15

Recitation 15

Dynamic Programming
Dynamic Programming generalizes Divide and Conquer type recurrences when subproblem de-
pendencies form a directed acyclic graph instead of a tree. Dynamic Programming often applies to
optimization problems, where you are maximizing or minimizing a single scalar value, or counting
problems, where you have to count all possibilities. To solve a problem using dynamic program-
ming, we follow the following steps as part of a recursive problem solving framework.

How to Solve a Problem Recursively (SRT BOT)
1. Subproblem definition subproblem x ∈ X

• Describe the meaning of a subproblem in words, in terms of parameters

• Often subsets of input: prefixes, suffixes, contiguous subsequences

• Often record partial state: add subproblems by incrementing some auxiliary variables

2. Relate subproblem solutions recursively x(i) = f(x(j), . . .) for one or more j < i

3. Topological order to argue relation is acyclic and subproblems form a DAG

4. Base cases

• State solutions for all (reachable) independent subproblems where relation doesn’t ap-
ply/work

5. Original problem

• Show how to compute solution to original problem from solutions to subproblems

• Possibly use parent pointers to recover actual solution, not just objective function

6. Time analysis P
• work(x), or if work(x) = O(W) for all x ∈ X , then |X| · O(W)x∈X

• work(x) measures nonrecursive work in relation; treat recursions as taking O(1) time

2 Recitation 15

Implementation
Once subproblems are chosen and a DAG of dependencies is found, there are two primary methods
for solving the problem, which are functionally equivalent but are implemented differently.

• A top down approach evaluates the recursion starting from roots (vertices incident to no
incoming edges). At the end of each recursive call the calculated solution to a subproblem
is recorded into a memo, while at the start of each recursive call, the memo is checked to see
if that subproblem has already been solved.

• A bottom up approach calculates each subproblem according to a topological sort order of
the DAG of subproblem dependencies, also recording each subproblem solution in a memo
so it can be used to solve later subproblems. Usually subproblems are constructed so that a
topological sort order is obvious, especially when subproblems only depend on subproblems
having smaller parameters, so performing a DFS to find this ordering is usually unnecessary.

Top down is a recursive view, while Bottom up unrolls the recursion. Both implementations are
valid and often used. Memoization is used in both implementations to remember computation from
previous subproblems. While it is typical to memoize all evaluated subproblems, it is often possi-
ble to remember (memoize) fewer subproblems, especially when subproblems occur in ‘rounds’.

Often we don’t just want the value that is optimized, but we would also like to return a path of
subproblems that resulted in the optimized value. To reconstruct the answer, we need to maintain
auxiliary information in addition to the value we are optimizing. Along with the value we are
optimizing, we can maintain parent pointers to the subproblem or subproblems upon which a
solution to the current subproblem depends. This is analogous to maintaining parent pointers in
shortest path problems.

Exercise: Simplified Blackjack
We define a simplified version of the game blackjack between one player and a dealer. A deck of
cards is an ordered sequence of n cards D = (c1, . . . , cn), where each card ci is an integer between
1 and 10 inclusive (unlike in real blackjack, aces will always have value 1). Blackjack is played in
rounds. In one round, the dealer will draw the top two cards from the deck (initially c1 and c2),
then the player will draw the next two cards (initially c3 and c4), and then the player may either
choose to draw or not draw one additional card (a hit).

The player wins the round if the value of the player’s hand (i.e., the sum of cards drawn by the
player in the round) is ≤ 21 and exceeds the value of the dealer’s hand; otherwise, the player
loses the round. The game ends when a round ends with fewer than 5 cards remaining in the deck.
Given a deck of n cards with a known order, describe an O(n)-time algorithm to determine the
maximum number of rounds the player can win by playing simplified blackjack with the deck.

3 Recitation 15

Solution:

1. Subproblems

• Choose suffixes

• x(i) : maximum rounds player can win by playing blackjack using cards (ci, . . . , cn)

2. Relate

• Guess whether the player hits or not

• Dealer’s hand always has value ci + ci+1

• Player’s hand will have value either:

– ci+2 + ci+3 (no hit, 4 cards used in round), or
– ci+2 + ci+3 + ci+4 (hit, 5 cards used in round)

• Let w(d, p) be the round result given hand values d and p (dealer and player)

– player win: w(d, p) = 1 if d < p ≤ 21

– player loss: w(d, p) = 0 otherwise (if p ≤ d or 21 < p)

• x(i) = max{w(ci +ci+1, ci+2 +ci+3)+x(i+4), w(ci +ci+1, ci+2 +ci+3 +ci+4)+x(i+5)}
• (for n − (i − 1) ≥ 5, i.e., i ≤ n − 4)

3. Topo

• Subproblems x(i) only depend on strictly larger i, so acyclic

4. Base

• x(n − 3) = x(n − 2) = x(n − 1) = x(n) = x(n + 1) = 0

• (not enough cards for another round)

5. Original

• Solve x(i) for i ∈ {1, . . . , n + 1}, via recursive top down or iterative bottom up

• x(1): the maximum rounds player can win by playing blackjack with the full deck

6. Time

• # subproblems: n + 1

• work per subproblem: O(1)

• O(n) running time

4 Recitation 15

Exercise: Text Justification
Text Justification is the problem of fitting a sequence of n space separated words into a column of
lines with constant width s, to minimize the amount of white-space between words. Each word can
be represented by its width wi < s. A good way to minimize white space in a line is to minimize
badness of a line. Assuming a line contains words from wi to wj , the badness of the line is defined
as b(i, j) = (s − (wi + . . . + wj))

3 if s > (wi + . . . + wj), and b(i, j) = ∞ otherwise. A good
text justification would then partition words into lines to minimize the sum total of badness over all
lines containing words. The cubic power heavily penalizes large white space in a line. Microsoft
Word uses a greedy algorithm to justify text that puts as many words into a line as it can before
moving to the next line. This algorithm can lead to some really bad lines. LATEX on the other hand
formats text to minimize this measure of white space using a dynamic program. Describe an O(n2)
algorithm to fit n words into a column of width s that minimizes the sum of badness over all lines.

Solution:

1. Subproblems

• Choose suffixes as subproblems

• x(i): minimum badness sum of formatting the words from wi to wn−1

2. Relate

• The first line must break at some word, so try all possibilities

• x(i) = min{b(i, j) + x(j + 1) | i ≤ j < n}

3. Topo

• Subproblems x(i) only depend on strictly larger i, so acyclic

4. Base

• x(n) = 0 badness of justifying zero words is zero

5. Original

• Solve subproblems via recursive top down or iterative bottom up

• Solution to original problem is x(0)

• Store parent pointers to reconstruct line breaks

6. Time

• # subproblems: O(n)
2)• work per subproblem: O(n

5 Recitation 15

• O(n3) running time

• Can we do even better?

Optimization

• Computing badness b(i, j) could take linear time!

• If we could pre-compute and remember each b(i, j) in O(1) time, then:

• work per subproblem: O(n)

• O(n2) running time

Pre-compute all b(i, j) in O(n2), also using dynamic programming!

1. Subproblems

• x(i, j): sum of word lengths wi to wj

2. Relate P
• x(i, j) = k wk takes O(j − i) time to compute, slow!

• x(i, j) = x(i, j − 1) + wj takes O(1) time to compute, faster!

3. Topo

• Subproblems x(i, j) only depend on strictly smaller j − i, so acyclic

4. Base

• x(i, i) = wi for all 0 ≤ i < n, just one word

5. Original

• Solve subproblems via recursive top down or iterative bottom up

• Compute each b(i, j) = (s − x(i, j))3 in O(1) time

6. Time

2)• # subproblems: O(n

• work per subproblem: O(1)

• O(n2) running time

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

