Lecture 17: Dyn. Prog. III

Dynamic Programming Steps (SRT BOT)

1. **Subproblem** definition subproblem \(x \in X \)
 - Describe the meaning of a subproblem in words, in terms of parameters
 - Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence
 - Often multiply possible subsets across multiple inputs
 - Often record partial state: add subproblems by incrementing some auxiliary variables

2. **Relate** subproblem solutions recursively \(x(i) = f(x(j), \ldots) \) for one or more \(j < i \)
 - Identify a question about a subproblem solution that, if you knew the answer to, reduces the subproblem to smaller subproblem(s)
 - Locally brute-force all possible answers to the question

3. **Topological order** to argue relation is acyclic and subproblems form a DAG

4. **Base** cases
 - State solutions for all (reachable) independent subproblems where relation breaks down

5. **Original problem**
 - Show how to compute solution to original problem from solutions to subproblem(s)
 - Possibly use parent pointers to recover actual solution, not just objective function

6. **Time** analysis
 - \(\sum_{x \in X} \text{work}(x) \), or if \(\text{work}(x) = O(W) \) for all \(x \in X \), then \(|X| \cdot O(W) \)
 - work\((x)\) measures nonrecursive work in relation; treat recursions as taking \(O(1) \) time

Recall: DAG Shortest Paths [L15]

- **Subproblems**: \(\delta(s, v) \) for all \(v \in V \)
- **Relation**: \(\delta(s, v) = \min\{\delta(s, u) + w(u, v) \mid u \in \text{Adj}^-(v)\} \cup \{\infty\} \)
- **Topo. order**: Topological order of \(G \)
Single-Source Shortest Paths Revisited

1. Subproblems
 - Expand subproblems to add information to make acyclic! (an example we’ve already seen of subproblem expansion)
 - $\delta_k(s, v) =$ weight of shortest path from s to v using at most k edges
 - For $v \in V$ and $0 \leq k \leq |V|

2. Relate
 - Guess last edge (u, v) on shortest path from s to v
 - $\delta_k(s, v) = \min\{\delta_{k-1}(s, u) + w(u, v) \mid (u, v) \in E\} \cup \{\delta_{k-1}(s, v)\}$

3. Topological order
 - Increasing k: subproblems depend on subproblems only with strictly smaller k

4. Base
 - $\delta_0(s, s) = 0$ and $\delta_0(s, v) = \infty$ for $v \neq s$ (no edges)
 - (draw subproblem graph)

5. Original problem
 - If has finite shortest path, then $\delta(s, v) = \delta_{|V|-1}(s, v)$
 - Otherwise some $\delta_{|V|}(s, v) < \delta_{|V|-1}(s, v)$, so path contains a negative-weight cycle
 - Can keep track of parent pointers to subproblem that minimized recurrence

6. Time
 - # subproblems: $|V| \times (|V| + 1)$
 - Work for subproblem $\delta_k(s, v)$: $O(\text{deg}_{\text{in}}(v))$

$$\sum_{k=0}^{\lfloor V/2 \rfloor} \sum_{v \in V} O(\text{deg}_{\text{in}}(v)) = \sum_{k=0}^{\lfloor V/2 \rfloor} O(|E|) = O(|V| \cdot |E|)$$

This is just Bellman-Ford! (computed in a slightly different order)
All-Pairs Shortest Paths: Floyd–Warshall

- Could define subproblems $\delta_k(u, v) =$ minimum weight of path from u to v using at most k edges, as in Bellman–Ford
- Resulting running time is $|V|$ times Bellman–Ford, i.e., $O(|V|^2 \cdot |E|) = O(|V|^4)$
- Know a better algorithm from L14: Johnson achieves $O(|V|^2 \log |V| + |V| \cdot |E|) = O(|V|^3)$
- Can achieve $\Theta(|V|^3)$ running time (matching Johnson for dense graphs) with a simple dynamic program, called Floyd–Warshall
- Number vertices so that $V = \{1, 2, \ldots, |V|\}$

1. **Subproblems**
 - $d(u, v, k) =$ minimum weight of a path from u to v that only uses vertices from $\{1, 2, \ldots, k\} \cup \{u, v\}$
 - For $u, v \in V$ and $1 \leq k \leq |V|$

2. **Relate**
 - $x(u, v, k) = \min\{x(u, k, k - 1) + x(k, v, k - 1), x(u, v, k - 1)\}$
 - Only constant branching! No longer guessing previous vertex/edge

3. **Topological order**
 - Increasing k: relation depends only on smaller k

4. **Base**
 - $x(u, u, 0) = 0$
 - $x(u, v, 0) = w(u, v)$ if $(u, v) \in E$
 - $x(u, v, 0) = \infty$ if none of the above

5. **Original problem**
 - $x(u, v, |V|)$ for all $u, v \in V$

6. **Time**
 - $O(|V|^3)$ subproblems
 - Each $O(1)$ work
 - $O(|V|^3)$ in total
 - Constant number of dependencies per subproblem brings the factor of $O(|E|)$ in the running time down to $O(|V|)$.
Arithmetic Parenthesization

- Input: arithmetic expression $a_0 \ast_1 a_1 \ast_2 a_2 \ast \cdots \ast_{n-1} a_{n-1}$
 where each a_i is an integer and each $\ast_i \in \{+, \times\}$

- Output: Where to place parentheses to maximize the evaluated expression

- Example: $7 + 4 \times 3 + 5 \rightarrow ((7) + (4)) \times ((3) + (5)) = 88$

- Allow negative integers!

- Example: $7 + (-4) \times 3 + (-5) \rightarrow ((7) + ((-4) \times ((3) + (-5)))) = 15$

1. Subproblems
 - Sufficient to maximize each subarray? No! $(-3) \times (-3) = 9 > (-2) \times (-2) = 4$
 - $x(i, j, \text{opt}) = \text{opt value obtainable by parenthesizing } a_i \ast_{i+1} \cdots \ast_{j-1} a_{j-1}$
 - For $0 \leq i < j \leq n$ and opt $\in \{\text{min, max}\}$

2. Relate
 - Guess location of outermost parentheses / last operation evaluated
 - $x(i, j, \text{opt}) = \text{opt } \{x(i, k, \text{opt'}) \ast_k x(k, j, \text{opt'')}) \mid i < k < j; \text{opt', opt'' } \in \{\text{min, max}\}$

3. Topological order
 - Increasing $j - i$: subproblem $x(i, j, \text{opt})$ depends only on strictly smaller $j - i$

4. Base
 - $x(i, i + 1, \text{opt}) = a_i$, only one number, no operations left!

5. Original problem
 - $X(0, n, \text{max})$
 - Store parent pointers (two!) to find parenthesization (forms binary tree!)

6. Time
 - # subproblems: less than $n \cdot n \cdot 2 = O(n^2)$
 - work per subproblem $O(n) \cdot 2 \cdot 2 = O(n)$
 - $O(n^3)$ running time
Piano Fingering

- Given sequence \(t_0, t_1, \ldots, t_{n-1} \) of \(n \) single notes to play with right hand (will generalize to multiple notes and hands later)

- Performer has right-hand fingers \(1, 2, \ldots, F \) (\(F = 5 \) for most humans)

- Given metric \(d(t, f, t', f') \) of difficulty of transitioning from note \(t \) with finger \(f \) to note \(t' \) with finger \(f' \)
 - Typically a sum of penalties for various difficulties, e.g.:
 - \(1 < f < f' \) and \(t > t' \) is uncomfortable
 - Legato (smooth) play requires \(t \neq t' \) (else infinite penalty)
 - Weak-finger rule: prefer to avoid \(f' \in \{4, 5\} \)
 - \(\{f, f'\} = \{3, 4\} \) is annoying

- Goal: Assign fingers to notes to minimize total difficulty

- First attempt:

 1. **Subproblems**
 - \(x(i) = \) minimum total difficulty for playing notes \(t_i, t_{i+1}, \ldots, t_{n-1} \)

 2. **Relate**
 - Guess first finger: assignment \(f \) for \(t_i \)
 - \(x(i) = \min\{x(i+1) + d(t_i, f, t_{i+1}, ?) \mid 1 \leq f \leq F\} \)
 - Not enough information to fill in \(? \)
 - Need to know which finger at the start of \(x(i+1) \)
 - But different starting fingers could hurt/help both \(x(i+1) \) and \(d(t_i, f, t_{i+1}, ?) \)
 - Need a table mapping start fingers to optimal solutions for \(x(i+1) \)
 - I.e., need to expand subproblems with start condition
Solution:

1. **Subproblems**

 - $x(i, f) =$ minimum total difficulty for playing notes $t_i, t_{i+1}, \ldots, t_{n-1}$ starting with finger f on note t_i

 - For $0 \leq i < n$ and $1 \leq f \leq F$

2. **Relate**

 - Guess next finger: assignment f' for t_{i+1}

 - $x(i, f) = \min\{x(i+1, f') + d(t_i, f, t_{i+1}, f') \mid 1 \leq f' \leq F\}$

3. **Topological order**

 - Decreasing i (any f order)

4. **Base**

 - $x(n-1, f) = 0$ (no transitions)

5. **Original problem**

 - $\min\{x(0, f) \mid 1 \leq f \leq F\}$

6. **Time**

 - $\Theta(n \cdot F)$ subproblems

 - $\Theta(F)$ work per subproblem

 - $\Theta(n \cdot F^2)$

 - No dependence on the number of different notes!
Guitar Fingering

- Up to \(S = \) number of strings different ways to play the same note
- Redefine “finger” to be tuple (finger playing note, string playing note)
- Throughout algorithm, \(F \) gets replaced by \(F \cdot S \)
- Running time is thus \(\Theta(n \cdot F^2 \cdot S^2) \)

Multiple Notes at Once

- Now suppose \(t_i \) is a set of notes to play at time \(i \)
- Given a bigger transition difficulty function \(d(t, f, t', f') \)
- Goal: fingering \(f_i : t_i \rightarrow \{1, 2, \ldots, F\} \) specifying how to finger each note (including which string for guitar) to minimize \(\sum_{i=1}^{n-1} d(t_{i-1}, f_{i-1}, t_i, f_i) \)
- At most \(T^F \) choices for each fingering \(f_i \), where \(T = \max_i |t_i| \)
 - \(T \leq F = 10 \) for normal piano (but there are exceptions)
 - \(T \leq S \) for guitar
- \(\Theta(n \cdot T^F) \) subproblems
- \(\Theta(T^F) \) work per subproblem
- \(\Theta(n \cdot T^{2F}) \) time
- \(\Theta(n) \) time for \(T, F \leq 10 \)

Video Game Applications

- Guitar Hero / Rock Band
 - \(F = 4 \) (and 5 different notes)
- Dance Dance Revolution
 - \(F = 2 \) feet
 - \(T = 2 \) (at most two notes at once)
 - Exercise: handle sustained notes, using “where each foot is” (on an arrow or in the middle) as added state for suffix subproblems