Lecture 3: Sorting

Set Interface (L03-L08)

Container	build (X) len ()	given an iterable x, build set from items in X return the number of stored items
Static	find (k)	return the stored item with key k
Dynamic	insert (x) delete (k)	add x to set (replace item with key $x . k e y ~ i f ~ o n e ~ a l r e a d y ~ e x i s t s) ~$ remove and return the stored item with key k
Order	iter_ord () find_min () find_max () find_next (k) find_prev (k)	return the stored items one-by-one in key order return the stored item with smallest key return the stored item with largest key return the stored item with smallest key larger than k return the stored item with largest key smaller than k

- Storing items in an array in arbitrary order can implement a (not so efficient) set
- Stored items sorted increasing by key allows:
- faster find $\mathrm{min} / \mathrm{max}$ (at first and last index of array)
- faster finds via binary search: $O(\log n)$

Set Data Structure	Operations $O(\cdot)$				
	Container	Static	Dynamic		
	build(X)	find (k)	insert(x) delete (k)	$\begin{aligned} & \text { find_min() } \\ & \text { find_max() } \end{aligned}$	$\begin{aligned} & \text { find_prev (k) } \\ & \text { find_next (k) } \end{aligned}$
Array	n	n	n	n	n
Sorted Array	$n \log n$	$\log n$	n	1	$\log n$

- But how to construct a sorted array efficiently?

Sorting

- Given a sorted array, we can leverage binary search to make an efficient set data structure.
- Input: (static) array A of n numbers
- Output: (static) array B which is a sorted permutation of A
- Permutation: array with same elements in a different order
- Sorted: $B[i-1] \leq B[i]$ for all $i \in\{1, \ldots, n\}$
- Example: $[8,2,4,9,3] \rightarrow[2,3,4,8,9]$
- A sort is destructive if it overwrites A (instead of making a new array B that is a sorted version of A)
- A sort is in place if it uses $O(1)$ extra space (implies destructive: in place \subseteq destructive)

Permutation Sort

- There are n ! permutations of A, at least one of which is sorted
- For each permutation, check whether sorted in $\Theta(n)$
- Example: $[2,3,1] \rightarrow\{[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]\}$

```
def permutation_sort(A):
    '''Sort A'''
    for B in permutations(A): # O(n!)
        if is_sorted(B): # O(n)
            return B # O(1)
```

- permutation_sort analysis:
- Correct by case analysis: try all possibilities (Brute Force)
- Running time: $\Omega(n!\cdot n)$ which is exponential :(

Solving Recurrences

- Substitution: Guess a solution, replace with representative function, recurrence holds true
- Recurrence Tree: Draw a tree representing the recursive calls and sum computation at nodes
- Master Theorem: A formula to solve many recurrences (R03)

Selection Sort

- Find a largest number in prefix $\mathrm{A}[: \mathrm{i}+1]$ and swap it to $\mathrm{A}[\mathrm{i}]$
- Recursively sort prefix A [: i]
- Example: $[8,2,4,9,3],[8,2,4,3,9],[3,2,4,8,9],[3,2,4,8,9],[2,3,4,8,9]$

```
def selection_sort(A, i = None): # T(i)
    '''Sort A[:i + 1]'''
        if i is None: i = len(A) - 1 # O(1)
        if i > 0: # O(1)
            j = prefix_max(A, i) # S(i)
            A[i], A[j] = A[j], A[i] # O(1)
            selection_sort(A, i - 1) # T(i - 1)
def prefix_max(A, i): # S(i)
        '''Return index of maximum in A[:i + 1]'''
        if i > 0: # O(1)
            j = prefix_max(A, i - 1) # S(i - 1)
            if A[i] < A[j]: # O(1)
                return j # O(1)
    return i # O(1)
```

- prefix_max analysis:
- Base case: for $i=0$, array has one element, so index of max is i
- Induction: assume correct for i, maximum is either the maximum of A[:i] or A[i], returns correct index in either case.
- $S(1)=\Theta(1), S(n)=S(n-1)+\Theta(1)$
* Substitution: $S(n)=\Theta(n), \quad c n=\Theta(1)+c(n-1) \Longrightarrow 1=\Theta(1)$
* Recurrence tree: chain of n nodes with $\Theta(1)$ work per node, $\sum_{i=0}^{n-1} 1=\Theta(n)$
- selection_sort analysis:
- Base case: for $i=0$, array has one element so is sorted
- Induction: assume correct for i, last number of a sorted output is a largest number of the array, and the algorithm puts one there; then $\mathrm{A}[$: i] is sorted by induction
- $T(1)=\Theta(1), T(n)=T(n-1)+\Theta(n)$
* Substitution: $T(n)=\Theta\left(n^{2}\right), \quad c n^{2}=\Theta(n)+c(n-1)^{2} \Longrightarrow c(2 n-1)=\Theta(n)$
* Recurrence tree: chain of n nodes with $\Theta(i)$ work per node, $\sum_{i=0}^{n-1} i=\Theta\left(n^{2}\right)$

Insertion Sort

- Recursively sort prefix A[:i]
- Sort prefix A[:i + 1] assuming that prefix A[:i] is sorted by repeated swaps
- Example: $[8,2,4,9,3],[2,8,4,9,3],[2,4,8,9,3],[2,4,8,9,3],[2,3,4,8,9]$

```
def insertion_sort(A, i = None): # T(i)
        'r'Sort A[:i + 1]'r'
        if i is None: i = len(A) - 1 # O(1)
        if i > 0: # O(1)
            insertion_sort(A, i - 1) # T(i - 1)
            insert_last(A, i) # S(i)
def insert_last(A, i): # S(i)
        '''Sort A[:i + 1] assuming sorted A[:i]'''
        if i > O and A[i] < A[i - 1]: # O(1)
            A[i], A[i - 1] = A[i - 1], A[i] # O(1)
            insert_last(A, i - 1) # S(i - 1)
```

- insert_last analysis:
- Base case: for $i=0$, array has one element so is sorted
- Induction: assume correct for i, if A[i] >= A[i - 1], array is sorted; otherwise, swapping last two elements allows us to sort $\mathrm{A}[$: i] by induction
- $S(1)=\Theta(1), S(n)=S(n-1)+\Theta(1) \Longrightarrow S(n)=\Theta(n)$
- insertion_sort analysis:
- Base case: for $i=0$, array has one element so is sorted
- Induction: assume correct for i, algorithm sorts A [: i] by induction, and then insert_ last correctly sorts the rest as proved above
- $T(1)=\Theta(1), T(n)=T(n-1)+\Theta(n) \Longrightarrow T(n)=\Theta\left(n^{2}\right)$

Merge Sort

- Recursively sort first half and second half (may assume power of two)
- Merge sorted halves into one sorted list (two finger algorithm)
- Example: $[7,1,5,6,2,4,9,3],[1,7,5,6,2,4,3,9],[1,5,6,7,2,3,4,9],[1,2,3,4,5,6,7,9]$

```
def merge_sort(A, a = 0, b = None): # T (b - a = n)
    '''Sort A[a:b]'''
    if b is None: b = len(A) # O(1)
    if 1 < b - a: # O(1)
            c=(a+b + 1) // 2 # O(1)
            merge_sort(A, a, c) # T(n / 2)
            merge_sort(A, c, b) # T(n / 2)
            L, R = A[a:c], A[c:b] # O(n)
            merge(L, R, A, len(L), len(R), a, b) # S(n)
def merge(L, R, A, i, j, a, b): # S(b - a = n)
    '''Merge sorted L[:i] and R[:j] into A[a:b]'''
    if a < b: # O(1)
        if (j <= 0) or (i > 0 and L[i - 1] > R[j - 1]): # O(1)
            A[b - 1] = L[i - 1] # O(1)
                i = i - 1 # O(1)
            else: # O(1)
            A[b - 1] = R[j - 1] # O(1)
            j = j - 1 # O(1)
            merge(L, R, A, i, j, a, b - 1) # S(n - 1)
```

- merge analysis:
- Base case: for $n=0$, arrays are empty, so vacuously correct
- Induction: assume correct for n, item in $\mathrm{A}[\mathrm{r}$] must be a largest number from remaining prefixes of L and R, and since they are sorted, taking largest of last items suffices; remainder is merged by induction
- $S(0)=\Theta(1), S(n)=S(n-1)+\Theta(1) \Longrightarrow S(n)=\Theta(n)$
- merge_sort analysis:
- Base case: for $n=1$, array has one element so is sorted
- Induction: assume correct for $k<n$, algorithm sorts smaller halves by induction, and then merge merges into a sorted array as proved above.
- $T(1)=\Theta(1), T(n)=2 T(n / 2)+\Theta(n)$
* Substitution: Guess $T(n)=\Theta(n \log n)$ $c n \log n=\Theta(n)+2 c(n / 2) \log (n / 2) \Longrightarrow c n \log (2)=\Theta(n)$
* Recurrence Tree: complete binary tree with depth $\log _{2} n$ and n leaves, level i has 2^{i} nodes with $O\left(n / 2^{i}\right)$ work each, total: $\sum_{i=0}^{\log _{2} n}\left(2^{i}\right)\left(n / 2^{i}\right)=\sum_{i=0}^{\log _{2} n} n=\Theta(n \log n)$

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2020
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

