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Lecture 3: Sorting 

Set Interface (L03-L08) 
Container build(X) 

len() 
given an iterable X, build set from items in X 
return the number of stored items 

Static find(k) return the stored item with key k 
Dynamic insert(x) 

delete(k) 
add x to set (replace item with key x.key if one already exists) 
remove and return the stored item with key k 

Order iter ord() 
find min() 
find max() 
find next(k) 
find prev(k) 

return the stored items one-by-one in key order 
return the stored item with smallest key 
return the stored item with largest key 
return the stored item with smallest key larger than k 
return the stored item with largest key smaller than k 

• Storing items in an array in arbitrary order can implement a (not so efficient) set 

• Stored items sorted increasing by key allows: 

– faster find min/max (at first and last index of array) 

– faster finds via binary search: O(log n) 

Set 
Operations O(·) 

Container Static Dynamic Order 
Data Structure build(X) find(k) insert(x) 

delete(k) 

find min() 

find max() 

find prev(k) 

find next(k) 

Array n n n n n 
Sorted Array n log n log n n 1 log n 

• But how to construct a sorted array efficiently? 
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Sorting 

• Given a sorted array, we can leverage binary search to make an efficient set data structure. 

• Input: (static) array A of n numbers 

• Output: (static) array B which is a sorted permutation of A 

– Permutation: array with same elements in a different order 

– Sorted: B[i − 1] ≤ B[i] for all i ∈ {1, . . . , n} 

• Example: [8, 2, 4, 9, 3] → [2, 3, 4, 8, 9] 

• A sort is destructive if it overwrites A (instead of making a new array B that is a sorted 
version of A) 

• A sort is in place if it uses O(1) extra space (implies destructive: in place ⊆ destructive) 

Permutation Sort 
• There are n! permutations of A, at least one of which is sorted 

• For each permutation, check whether sorted in Θ(n) 

• Example: [2, 3, 1] → {[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]} 

1 def permutation_sort(A): 
2 ’’’Sort A’’’ 
3 for B in permutations(A): # O(n!) 
4 if is_sorted(B): # O(n) 
5 return B # O(1) 

• permutation sort analysis: 

– Correct by case analysis: try all possibilities (Brute Force) 

– Running time: Ω(n! · n) which is exponential :( 

Solving Recurrences 

• Substitution: Guess a solution, replace with representative function, recurrence holds true 

• Recurrence Tree: Draw a tree representing the recursive calls and sum computation at nodes 

• Master Theorem: A formula to solve many recurrences (R03) 
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Selection Sort 
• Find a largest number in prefix A[:i + 1] and swap it to A[i] 

• Recursively sort prefix A[:i] 

• Example: [8, 2, 4, 9, 3], [8, 2, 4, 3, 9], [3, 2, 4, 8, 9], [3, 2, 4, 8, 9], [2, 3, 4, 8, 9] 

1 def selection_sort(A, i = None): # T(i) 
2 ’’’Sort A[:i + 1]’’’ 
3 if i is None: i = len(A) - 1 # O(1) 
4 if i > 0: # O(1) 
5 j = prefix_max(A, i) # S(i) 
6 A[i], A[j] = A[j], A[i] # O(1) 
7 selection_sort(A, i - 1) # T(i - 1) 
8 

9 def prefix_max(A, i): # S(i) 
10 ’’’Return index of maximum in A[:i + 1]’’’ 
11 if i > 0: # O(1) 
12 j = prefix_max(A, i - 1) # S(i - 1) 
13 if A[i] < A[j]: # O(1) 
14 return j # O(1) 
15 return i # O(1) 

• prefix max analysis: 

– Base case: for i = 0, array has one element, so index of max is i 

– Induction: assume correct for i, maximum is either the maximum of A[:i] or A[i], 
returns correct index in either case. 

– S(1) = Θ(1), S(n) = S(n − 1) + Θ(1) 

∗ Substitution: S(n) = Θ(n), cn = Θ(1) + c(n − 1) =⇒ 1 = Θ(1)P n−1∗ Recurrence tree: chain of n nodes with Θ(1) work per node, i=0 1 = Θ(n) 

• selection sort analysis: 

– Base case: for i = 0, array has one element so is sorted 

– Induction: assume correct for i, last number of a sorted output is a largest number of 
the array, and the algorithm puts one there; then A[:i] is sorted by induction 

– T (1) = Θ(1), T (n) = T (n − 1) + Θ(n) 

∗ Substitution: T (n) = Θ(n2), cn2 = Θ(n) + c(n − 1)2 =⇒ c(2n − 1) = Θ(n)P n−1∗ Recurrence tree: chain of n nodes with Θ(i) work per node, i=0 i = Θ(n2) 
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Insertion Sort 
• Recursively sort prefix A[:i] 

• Sort prefix A[:i + 1] assuming that prefix A[:i] is sorted by repeated swaps 

• Example: [8, 2, 4, 9, 3], [2, 8, 4, 9, 3], [2, 4, 8, 9, 3], [2, 4, 8, 9, 3], [2, 3, 4, 8, 9] 

1 def insertion_sort(A, i = None): # T(i) 
2 ’’’Sort A[:i + 1]’’’ 
3 if i is None: i = len(A) - 1 # O(1) 
4 if i > 0: # O(1) 
5 insertion_sort(A, i - 1) # T(i - 1) 
6 insert_last(A, i) # S(i) 
7 

8 def insert_last(A, i): # S(i) 
9 ’’’Sort A[:i + 1] assuming sorted A[:i]’’’ 

10 if i > 0 and A[i] < A[i - 1]: # O(1) 
11 A[i], A[i - 1] = A[i - 1], A[i] # O(1) 
12 insert_last(A, i - 1) # S(i - 1) 

• insert last analysis: 

– Base case: for i = 0, array has one element so is sorted 

– Induction: assume correct for i, if A[i] >= A[i - 1], array is sorted; otherwise, 
swapping last two elements allows us to sort A[:i] by induction 

– S(1) = Θ(1), S(n) = S(n − 1) + Θ(1) =⇒ S(n) = Θ(n) 

• insertion sort analysis: 

– Base case: for i = 0, array has one element so is sorted 

– Induction: assume correct for i, algorithm sorts A[:i] by induction, and then 
insert last correctly sorts the rest as proved above 

– T (1) = Θ(1), T (n) = T (n − 1) + Θ(n) =⇒ T (n) = Θ(n2) 
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Merge Sort 
• Recursively sort first half and second half (may assume power of two) 

• Merge sorted halves into one sorted list (two finger algorithm) 

• Example: [7, 1, 5, 6, 2, 4, 9, 3], [1, 7, 5, 6, 2, 4, 3, 9], [1, 5, 6, 7, 2, 3, 4, 9], [1, 2, 3, 4, 5, 6, 7, 9] 

1 def merge_sort(A, a = 0, b = None): # T(b - a = n) 
2 ’’’Sort A[a:b]’’’ 
3 if b is None: b = len(A) # O(1) 
4 if 1 < b - a: # O(1) 
5 c = (a + b + 1) // 2 # O(1) 
6 merge_sort(A, a, c) # T(n / 2) 
7 merge_sort(A, c, b) # T(n / 2) 
8 L, R = A[a:c], A[c:b] # O(n) 
9 merge(L, R, A, len(L), len(R), a, b) # S(n) 

10 

11 def merge(L, R, A, i, j, a, b): # S(b - a = n) 
12 ’’’Merge sorted L[:i] and R[:j] into A[a:b]’’’ 
13 if a < b: # O(1) 
14 if (j <= 0) or (i > 0 and L[i - 1] > R[j - 1]): # O(1) 
15 A[b - 1] = L[i - 1] # O(1) 
16 i = i - 1 # O(1) 
17 else: # O(1) 
18 A[b - 1] = R[j - 1] # O(1) 
19 j = j - 1 # O(1) 
20 merge(L, R, A, i, j, a, b - 1) # S(n - 1) 

• merge analysis: 

– Base case: for n = 0, arrays are empty, so vacuously correct 
– Induction: assume correct for n, item in A[r] must be a largest number from remaining 

prefixes of L and R, and since they are sorted, taking largest of last items suffices; 
remainder is merged by induction 

– S(0) = Θ(1), S(n) = S(n − 1) + Θ(1) =⇒ S(n) = Θ(n) 

• merge sort analysis: 

– Base case: for n = 1, array has one element so is sorted 
– Induction: assume correct for k < n, algorithm sorts smaller halves by induction, and 

then merge merges into a sorted array as proved above. 

– T (1) = Θ(1), T (n) = 2T (n/2) + Θ(n) 

∗ Substitution: Guess T (n) = Θ(n log n) 
cn log n = Θ(n) + 2c(n/2) log(n/2) =⇒ cn log(2) = Θ(n) 

∗ Recurrence Tree: complete binary tree with depth log2 n and n leaves, level i has 2i Plog2 n Plog2 nnodes with O(n/2i) work each, total: i=0 (2
i)(n/2i) = i=0 n = Θ(n log n) 
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