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Recitation 8 

Priority Queues 

Priority queues provide a general framework for at least three sorting algorithms, which differ only 
in the data structure used in the implementation. 

algorithm data structure insertion extraction total 
Selection Sort 
Insertion Sort 
Heap Sort 

Array 
Sorted Array 
Binary Heap 

O(1) 
O(n) 

O(log n) 

O(n) 
O(1) 

O(log n) 

O(n2) 
2)O(n

O(n log n) 

Let’s look at Python code that implements these priority queues. We start with an abstract base 
class that has the interface of a priority queue, maintains an internal array A of items, and trivially 
implements insert(x) and delete max() (the latter being incorrect on its own, but useful for 
subclasses). 

1 class PriorityQueue: 
2 def __init__(self): 
3 self.A = [] 
4 

5 def insert(self, x): 
6 self.A.append(x) 
7 

8 def delete_max(self): 
9 if len(self.A) < 1: 

10 raise IndexError(’pop from empty priority queue’) 
11 return self.A.pop() # NOT correct on its own! 
12 

13 @classmethod 
14 def sort(Queue, A): 
15 pq = Queue() # make empty priority queue 
16 for x in A: # n x T_insert 
17 pq.insert(x) 
18 out = [pq.delete_max() for _ in A] # n x T_delete_max 
19 out.reverse() 
20 return out 

Shared across all implementations is a method for sorting, given implementations of insert and 
delete max. Sorting simply makes two loops over the array: one to insert all the elements, and 
another to populate the output array with successive maxima in reverse order. 
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Array Heaps 

We showed implementations of selection sort and merge sort previously in recitation. Here are 
implementations from the perspective of priority queues. If you were to unroll the organization of 
this code, you would have essentially the same code as we presented before. 

1 class PQ_Array(PriorityQueue): 
2 # PriorityQueue.insert already correct: appends to end of self.A 
3 def delete_max(self): # O(n) 
4 n, A, m = len(self.A), self.A, 0 
5 for i in range(1, n): 
6 if A[m].key < A[i].key: 
7 m = i 
8 A[m], A[n] = A[n], A[m] # swap max with end of array 
9 return super().delete_max() # pop from end of array 

1 class PQ_SortedArray(PriorityQueue): 
2 # PriorityQueue.delete_max already correct: pop from end of self.A 
3 def insert(self, *args): # O(n) 
4 super().insert(*args) # append to end of array 
5 i, A = len(self.A) - 1, self.A # restore array ordering 
6 while 0 < i and A[i + 1].key < A[i].key: 
7 A[i + 1], A[i] = A[i], A[i + 1] 
8 i -= 1 

We use *args to allow insert to take one argument (as makes sense now) or zero arguments; 
we will need the latter functionality when making the priority queues in-place. 
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Binary Heaps 

The next implementation is based on a binary heap, which takes advantage of the logarithmic 
height of a complete binary tree to improve performance. The bulk of the work done by these 
functions are encapsulated by max heapify up and max heapify down below. 

1 class PQ_Heap(PriorityQueue): 
2 def insert(self, *args): # O(log n) 
3 super().insert(*args) # append to end of array 
4 n, A = self.n, self.A 
5 max_heapify_up(A, n, n - 1) 
6 

7 def delete_max(self): # O(log n) 
8 n, A = self.n, self.A 
9 A[0], A[n] = A[n], A[0] 

10 max_heapify_down(A, n, 0) 
11 return super().delete_max() # pop from end of array 

Before we define max heapify operations, we need functions to compute parent and child 
indices given an index representing a node in a tree whose root is the first element of the array. In 
this implementation, if the computed index lies outside the bounds of the array, we return the input 
index. Always returning a valid array index instead of throwing an error helps to simplify future 
code. 

1 def parent(i): 
2 p = (i - 1) // 2 
3 return p if 0 < i else i 
4 

5 def left(i, n): 
6 l = 2 i + 1* 
7 return l if l < n else i 
8 

9 def right(i, n): 
10 r = 2 i + 2* 
11 return r if r < n else i 
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Here is the meat of the work done by a max heap. Assuming all nodes in A[:n] satisfy the 
Max-Heap Property except for node A[i] makes it easy for these functions to maintain the Node 
Max-Heap Property locally. 

1 def max_heapify_up(A, n, c): # T(c) = O(log c) 
2 p = parent(c) # O(1) index of parent (or c) 
3 if A[p].key < A[c].key: # O(1) compare 
4 A[c], A[p] = A[p], A[c] # O(1) swap parent 
5 max_heapify_up(A, n, p) # T(p) = T(c/2) recursive call on parent 

1 def max_heapify_down(A, n, p): # T(p) = O(log n - log p) 
2 l, r = left(p, n), right(p, n) # O(1) indices of children (or p) 
3 c = l if A[r].key < A[l].key else r # O(1) index of largest child 
4 if A[p].key < A[c].key: # O(1) compare 
5 A[c], A[p] = A[p], A[c] # O(1) swap child 
6 max_heapify_down(A, n, c) # T(c) recursive call on child 

O(n) Build Heap P nRecall that repeated insertion using a max heap priority queue takes time i=0 log i = log n! = 
O(n log n). We can build a max heap in linear time if the whole array is accessible to you. The idea 
is to construct the heap in reverse level order, from the leaves to the root, all the while maintaining 
that all nodes processed so far maintain the Max-Heap Property by running max heapify down 
at each node. As an optimization, we note that the nodes in the last half of the array are all leaves, 
so we do not need to run max heapify down on them. 

1 def build_max_heap(A): 
2 n = len(A) 
3 for i in range(n // 2, -1, -1): # O(n) loop backward over array 
4 max_heapify_down(A, n, i) # O(log n - log i)) fix max heap 

To see that this procedure takes O(n) instead of O(n log n) time, we compute an upper bound√ 
explicitly using summation. In the derivation, we use Stirling’s approximation: n! = Θ( n(n/e)n). 

n � � � � ��X n nn n 
T (n) < (log n − log i) = log = O log √ 

n! n(n/e)n 
i=0 √ √ 

= O(log(e n/ n)) = O(n log e − log n) = O(n) 

Note that using this linear-time procedure to build a max heap does not affect the asymptotic 
efficiency of heap sort, because each of n delete max still takes O(log n) time each. But it is 
practically more efficient procedure to initially insert n items into an empty heap. 
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In-Place Heaps 

To make heap sort in place1 (as well as restoring the in-place property of selection sort and inser-
tion sort), we can modify the base class PriorityQueue to take an entire array A of elements, 
and maintain the queue itself in the prefix of the first n elements of A (where n <= len(A)). The 
insert function is no longer given a value to insert; instead, it inserts the item already stored 
in A[n], and incorporates it into the now-larger queue. Similarly, delete max does not return 
a value; it merely deposits its output into A[n] before decreasing its size. This approach only 
works in the case where all n insert operations come before all n delete max operations, as in 
priority queue sort. 

1 class PriorityQueue: 
2 def __init__(self, A): 
3 self.n, self.A = 0, A 
4 

5 def insert(self): # absorb element A[n] into the queue 
6 if not self.n < len(self.A): 
7 raise IndexError(’insert into full priority queue’) 
8 self.n += 1 
9 

10 def delete_max(self): # remove element A[n - 1] from the queue 
11 if self.n < 1: 
12 raise IndexError(’pop from empty priority queue’) 
13 self.n -= 1 # NOT correct on its own! 
14 

15 @classmethod 
16 def sort(Queue, A): 
17 pq = Queue(A) # make empty priority queue 
18 for i in range(len(A)): # n x T_insert 
19 pq.insert() 
20 for i in range(len(A)): # n x T_delete_max 
21 pq.delete_max() 
22 return pq.A 

This new base class works for sorting via any of the subclasses: PQ Array, PQ SortedArray, 
PQ Heap. The first two sorting algorithms are even closer to the original selection sort and inser-
tion sort, and the final algorithm is what is normally referred to as heap sort. 

We’ve made a CoffeeScript heap visualizer which you can find here: 
https://codepen.io/mit6006/pen/KxOpep 

1Recall that an in-place sort only uses O(1) additional space during execution, so only a constant number of array 
elements can exist outside the array at any given time. 

https://codepen.io/mit6006/pen/KxOpep
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Exercises 

1. Draw the complete binary tree associated with the sub-array array A[:8]. Turn it into a max 
heap via linear time bottom-up heap-ification. Run insert twice, and then delete max 
twice. 

1 A = [7, 3, 5, 6, 2, 0, 3, 1, 9, 4] 

2. How would you find the minimum element contained in a max heap? 

Solution: A max heap has no guarantees on the location of its minimum element, except that 
it may not have any children. Therefore, one must search over all n/2 leaves of the binary 
tree which takes Ω(n) time. 

3. How long would it take to convert a max heap to a min heap? 

Solution: Run a modified build max heap on the original heap, enforcing a Min-Heap 
Property instead of a Max-Heap Property. This takes linear time. The fact that the original 
heap was a max heap does not improve the running time. 
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4. Proximate Sorting: An array of distinct integers is k-proximate if every integer of the array 
is at most k places away from its place in the array after being sorted, i.e., if the ith integer 
of the unsorted input array is the jth largest integer contained in the array, then |i − j| ≤ k. 
In this problem, we will show how to sort a k-proximate array faster than Θ(n log n). 

(a) Prove that insertion sort (as presented in this class, without any changes) will sort a 
k-proximate array in O(nk) time. 
Solution: To prove O(nk), we show that each of the n insertion sort rounds swap an 
item left by at most O(k). In the original ordering, entries that are ≥ 2k slots apart must 
already be ordered correctly: indeed, if A[s] > A[t] but t − s ≥ 2k, there is no way to 
reverse the order of these two items while moving each at most k slots. This means that 
for each entry A[i] in the original order, fewer than 2k of the items A[0], . . . , A[i − 1] 
are greater than A[i]. Thus, on round i of insertion sort when A[i] is swapped into 
place, fewer than 2k swaps are required, so round i requires O(k) time. 
It’s possible to prove a stronger bound: that ai = A[i] is swapped at most k times in 
round i (instead of 2k). This is a bit subtle: the final sorted index of ai is at most k slots 
away from i by the k-proximate assumption, but ai might not move to its final position 
immediately, but may move past its final sorted position and then be bumped to the 
right in future rounds. Suppose for contradiction a loop swaps the pth largest item A[i] 
to the left by more than k to position p0 < i − k, past at least k items larger than A[i]. 
Since A is k-proximate, i − p ≤ k, i.e. i − k ≤ p, so p0 < p. Thus at least one item 
less than A[i] must exist to the right of A[i]. Let A[j] be the smallest such item, the qth 
largest item in sorted order. A[j] is smaller than k + 1 items to the left of A[j], and no 
item to the right of A[j] is smaller than A[j], so q ≤ j − (k + 1), i.e. j − q ≥ k + 1. 
But A is k-proximate, so j − q ≤ k, a contradiction. 

(b) Θ(nk) is asymptotically faster than Θ(n2) when k = o(n), but is not asymptotically 
faster than Θ(n log n) when k = ω(log n). Describe an algorithm to sort a k-proximate 
array in O(n log k) time, which can be faster (but no slower) than Θ(n log n). 
Solution: We perform a variant of heap sort, where the heap only stores k + 1 items 
at a time. Build a min-heap H out of A[0], . . . , A[k − 1]. Then, repeatedly, insert the 
next item from A into H , and then store H.delete min() as the next entry in sorted 
order. So we first call H.insert(A[k]) followed by B[0] = H.delete min(); 
the next iteration calls H.insert(A[k+1]) and B[1] = H.delete min(); and so 
on. (When there are no more entries to insert into H , do only the delete min step.) 
B is the sorted answer. This algorithm works because the ith smallest entry in array A 
must be one of A[0], A[1], . . . , A[i +k] by the k-proximate assumption, and by the time 
we’re about to write B[i], all of these entries have already been inserted into H (and 
some also deleted). Assuming entries B[0], . . . , B[i − 1] are correct (by induction), this 
means the ith smallest value is still in H while all smaller values have already been 
removed, so this ith smallest value is in fact H.delete min(), and B[i] gets filled 
correctly. Each heap operation takes time O(log k) because there are at most k + 1 
items in the heap, so the n insertions and n deletions take O(n log k) total. 
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