Recitation 19: Complexity

0-1 Knapsack Revisited

- 0-1 Knapsack
- Input: Knapsack with volume S, want to fill with items: item i has size s_{i} and value v_{i}.
- Output: A subset of items (may take 0 or 1 of each) with $\sum s_{i} \leq S$ maximizing $\sum v_{i}$
- Solvable in $O(n S)$ time via dynamic programming
- How does running time compare to input?
- What is size of input? If numbers written in binary, input has size $O(n \log S)$ bits
- Then $O(n S)$ runs in exponential time compared to the input
- If numbers polynomially bounded, $S=n^{O(1)}$, then dynamic program is polynomial
- This is called a pseudopolynomial time algorithm
- Is 0-1 Knapsack solvable in polynomial time when numbers not polynomially bounded?
- No if $\mathbf{P} \neq \mathbf{N P}$. What does this mean? (More Computational Complexity in 6.045 and 6.046)

Decision Problems

- Decision problem: assignment of inputs to No (0) or Yes (1)
- Inputs are either No instances or Yes instances (i.e. satisfying instances)

Problem	Decision
$s-t$ Shortest Path	Does a given G contain a path from s to t with weight at most $d ?$
Negative Cycle	Does a given G contain a negative weight cycle?
Longest Path	Does a given G contain a simple path with weight at least $d ?$
Subset Sum	Does a given set of integers A contain a subset with sum $S ?$
Tetris	Can you survive a given sequence of pieces?
Chess	Can a player force a win from a given board?
Halting problem	Does a given computer program terminate for a given input?

- Algorithm/Program: constant length code (working on a word-RAM with $\Omega(\log n)$-bit words) to solve a problem, i.e., it produces correct output for every input and the length of the code is independent of the instance size
- Problem is decidable if there exists a program to solve the problem in finite time

Decidability

- Program is finite string of bits, problem is function $p: \mathbb{N} \rightarrow\{0,1\}$, i.e. infinite string of bits
- (\# of programs $|\mathbb{N}|$, countably infinite) \ll (\# of problems $|\mathbb{R}|$, uncountably infinite)
- (Proof by Cantor's diagonal argument, probably covered in 6.042)
- Proves that most decision problems not solvable by any program (undecidable)
- e.g. the Halting problem is undecidable (many awesome proofs in 6.045)
- Fortunately most problems we think of are algorithmic in structure and are decidable

Decidable Problem Classes

\mathbf{R} problems decidable in finite time
EXP problems decidable in exponential time $2^{n^{O(1)}}$
\mathbf{P} problems decidable in polynomial time $n^{O(1)}$
' R ' comes from recursive languages most problems we think of are here efficient algorithms, the focus of this class

- These sets are distinct, i.e. $\mathbf{P} \subsetneq \mathbf{E X P} \subsetneq \mathbf{R}$ (via time hierarchy theorems, see 6.045)

Nondeterministic Polynomial Time (NP)

- \mathbf{P} is the set of decision problems for which there is an algorithm A such that for every instance I of size n, A on I runs in poly (n) time and solves I correctly
- NP is the set of decision problems for which there is an algorithm V, a "verifier", that takes as input an instance I of the problem, and a "certificate" bit string of length polynomial in the size of I, so that:
- V always runs in time polynomial in the size of I,
- if I is a YES-instance, then there is some certificate c so that V on input (I, c) returns YES, and
- if I is a NO-instance, then no matter what c is given to V together with I, V will always output NO on (I, c).
- You can think of the certificate as a proof that I is a YES-instance. If I is actually a NOinstance then no proof should work.

Problem	Certificate	Verifier
s - t Shortest Path	A path P from s to t	Adds the weights on P and checks if $\leq d$
Negative Cycle	A cycle C	Adds the weights on C and checks if <0
Longest Path	A path P	Checks if P is a simple path with weight at least d
Subset Sum	A set of items A^{\prime}	Checks if $A^{\prime} \in A$ has sum S
Tetris	Sequence of moves	Checks that the moves allow survival

- $\mathbf{P} \subset \mathbf{N P}$ (if you can solve the problem, the solution is a certificate)
- Open: Does $\mathbf{P}=\mathbf{N P}$? $\mathbf{N P}=\mathbf{E X P}$?
- Most people think $\mathbf{P} \subsetneq \mathbf{N P}(\subsetneq \mathbf{E X P})$, i.e.,t generating solutions harder than checking
- If you prove either way, people will give you lots of money. (\$1M Millennium Prize)
- Why do we care? If can show a problem is hardest problem in NP, then problem cannot be solved in polynomial time if $\mathbf{P} \neq \mathbf{N P}$
- How do we relate difficulty of problems? Reductions!

Reductions

- Suppose you want to solve problem A
- One way to solve is to convert A into a problem B you know how to solve
- Solve using an algorithm for B and use it to compute solution to A
- This is called a reduction from problem A to problem $B(A \rightarrow B)$
- Because B can be used to solve A, B is at least as hard $(A \leq B)$
- General algorithmic strategy: reduce to a problem you know how to solve

A	Conversion	B
Unweighted Shortest Path	Give equal weights	Weighted Shortest Path
Product Weighted Shortest Path	Logarithms	Sum Weighted Shortest Path
Sum Weighted Shortest Path	Exponents	Product Weighted Shortest Path

- Problem A is NP-Hard if every problem in NP is polynomially reducible to A
- i.e. A is at least as hard as (can be used to solve) every problem in $\mathbf{N P}(X \leq A$ for $X \in \mathbf{N P})$
- NP-Complete $=\mathbf{N P} \cap$ NP-Hard
- All NP-Complete problems are equivalent, i.e. reducible to each other
- First NP-Complete? Every decision problem reducible to satisfying a logical circuit.
- Longest Path, Tetris are NP-Complete, Chess is EXP-Complete

Problem Difficulty (informal)

0-1 Knapsack is NP-Hard

- Reduce known NP-Hard Problem to 0-1 Knapsack: Partition
- Input: List of n numbers a_{i}
- Output: Does there exist a partition into two sets with equal sum?
- Reduction: $s_{i}=v_{i}=a_{i}, S=\frac{1}{2} \sum a_{i}$
- 0-1 Knapsack at least as hard as Partition, so since Partition is NP-Hard, so is 0-1 Knapsack
- 0-1 Knapsack in NP, so also NP-Complete

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2020
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

