Lecture 5: Linear Sorting

Review

- Comparison search lower bound: any decision tree with n nodes has height $\geq\lceil\lg (n+1)\rceil-1$
- Can do faster using random access indexing: an operation with linear branching factor!
- Direct access array is fast, but may use a lot of space $(\Theta(u))$
- Solve space problem by mapping (hashing) key space u down to $m=\Theta(n)$
- Hash tables give expected $O(1)$ time operations, amortized if dynamic
- Expectation input-independent: choose hash function randomly from universal hash family
- Data structure overview!
- Last time we achieved faster find. Can we also achieve faster sort?

Data Structure	Operations $O(\cdot)$				
	Container build(X)	Static find (k)	Dynamic insert (x) delete(k)	Order	
				find_min() find_max ()	$\begin{aligned} & \text { find_prev (k) } \\ & \text { find_next (k) } \end{aligned}$
Array	n	n	n	n	n
Sorted Array	$n \log n$	$\log n$	n	1	$\log n$
Direct Access Array	u	1	1	u	u
Hash Table	$n_{(e)}$	$1_{(e)}$	$1_{(a)(e)}$	n	n

Comparison Sort Lower Bound

- Comparison model implies that algorithm decision tree is binary (constant branching factor)
- Requires \# leaves $L \geq$ \# possible outputs
- Tree height lower bounded by $\Omega(\log L)$, so worst-case running time is $\Omega(\log L)$
- To sort array of n elements, \# outputs is n ! permutations
- Thus height lower bounded by $\log (n!) \geq \log \left((n / 2)^{n / 2}\right)=\Omega(n \log n)$
- So merge sort is optimal in comparison model
- Can we exploit a direct access array to sort faster?

Direct Access Array Sort

- Example: [5, 2, 7, 0, 4]
- Suppose all keys are unique non-negative integers in range $\{0, \ldots, u-1\}$, so $n \leq u$
- Insert each item into a direct access array with size u in $\Theta(n)$
- Return items in order they appear in direct access array in $\Theta(u)$
- Running time is $\Theta(u)$, which is $\Theta(n)$ if $u=\Theta(n)$. Yay!

```
def direct_access_sort(A):
    "Sort A assuming items have distinct non-negative keys"
    u = 1 + max([x.key for x in A]) # O(n) find maximum key
    D = [None] * u # O(u) direct access array
    for x in A: # O(n) insert items
        D[x.key] = x
    i = 0
    for key in range(u): # O(u) read out items in order
        if D[key] is not None:
            A[i] = D[key]
            i += 1
```

- What if keys are in larger range, like $u=\Omega\left(n^{2}\right)<n^{2}$?
- Idea! Represent each key k by tuple (a, b) where $k=a n+b$ and $0 \leq b<n$
- Specifically $a=\lfloor k / n\rfloor<n$ and $b=(k \bmod n)$ (just a 2-digit base- n number!)
- This is a built-in Python operation (a, b) $=\operatorname{divmod}(k, n)$
- Example: $[17,3,24,22,12] \Rightarrow[(3,2),(0,3),(4,4),(4,2),(2,2)] \Rightarrow[32,03,44,42,22]_{(n=5)}$
- How can we sort tuples?

Tuple Sort

- Item keys are tuples of equal length, i.e. item $x . k e y=\left(x . k_{1}, x . k_{2}, x . k_{2}, \ldots\right)$.
- Want to sort on all entries lexicographically, so first key k_{1} is most significant
- How to sort? Idea! Use other auxiliary sorting algorithms to separately sort each key
- (Like sorting rows in a spreadsheet by multiple columns)
- What order to sort them in? Least significant to most significant!
- Exercise: $[32,03,44,42,22] \Longrightarrow[42,22,32,03,44] \Longrightarrow[03,22,32,42,44]_{(n=5)}$
- Idea! Use tuple sort with auxiliary direct access array sort to sort tuples (a, b).
- Problem! Many integers could have the same a or b value, even if input keys distinct
- Need sort allowing repeated keys which preserves input order
- Want sort to be stable: repeated keys appear in output in same order as input
- Direct access array sort cannot even sort arrays having repeated keys!
- Can we modify direct access array sort to admit multiple keys in a way that is stable?

Counting Sort

- Instead of storing a single item at each array index, store a chain, just like hashing!
- For stability, chain data structure should remember the order in which items were added
- Use a sequence data structure which maintains insertion order
- To insert item x, insert_ last to end of the chain at index x.key
- Then to sort, read through all chains in sequence order, returning items one by one

```
def counting_sort(A):
    "Sort A assuming items have non-negative keys"
    u = 1 + max([x.key for x in A]) # O(n) find maximum key
    D = [[] for i in range(u)] # O(u) direct access array of chains
    for x in A: # O(n) insert into chain at x.key
        D[x.key].append(x)
    i = 0
    for chain in D: # O(u) read out items in order
        for x in chain:
            A[i] = x
            i += 1
```


Radix Sort

- Idea! If $u<n^{2}$, use tuple sort with auxiliary counting sort to sort tuples (a, b)
- Sort least significant key b, then most significant key a
- Stability ensures previous sorts stay sorted
- Running time for this algorithm is $O(2 n)=O(n)$. Yay!
- If every key $<n^{c}$ for some positive $c=\log _{n}(u)$, every key has at most c digits base n
- A c-digit number can be written as a c-element tuple in $O(c)$ time
- We sort each of the c base- n digits in $O(n)$ time
- So tuple sort with auxiliary counting sort runs in $O(c n)$ time in total
- If c is constant, so each key is $\leq n^{c}$, this sort is linear $O(n)$!

```
def radix_sort(A):
    "Sort A assuming items have non-negative keys"
    n = len(A)
    u = 1 + max([x.key for x in A]) # O(n) find maximum key
    c = 1 + (u.bit_length() // n.bit_length())
    class Obj: pass
    D = [Obj() for a in A]
    for i in range(n): # O(nc) make digit tuples
        D[i].digits = []
        D[i].item = A[i]
        high = A[i].key
        for j in range(c): # O(c) make digit tuple
            high, low = divmod(high, n)
            D[i].digits.append(low)
    for i in range(c): # O(nc) sort each digit
        for j in range(n): # O(n) assign key i to tuples
            D[j].key = D[j].digits[i]
        counting_sort(D) # O(n) sort on digit i
    for i in range(n): # O(n) output to A
        A[i] = D[i].item
```

Algorithm	Time $O(\cdot)$	In-place?	Stable?	Comments
Insertion Sort	n^{2}	Y	Y	$O(n k)$ for k-proximate
Selection Sort	n^{2}	Y	N	$O(n)$ swaps
Merge Sort	$n \log n$	N	Y	stable, optimal comparison
Counting Sort	$n+u$	N	Y	$O(n)$ when $u=O(n)$
Radix Sort	$n+n \log _{n}(u)$	N	Y	$O(n)$ when $u=O\left(n^{c}\right)$

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2020
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

