Lecture 5: Linear Sorting

Review

- Comparison search lower bound: any decision tree with \(n \) nodes has height \(\geq \lceil \lg(n+1) \rceil - 1 \)
- Can do faster using random access indexing: an operation with linear branching factor!
- **Direct access array** is fast, but may use a lot of space \((\Theta(u)) \)
- Solve space problem by mapping (hashing) key space \(u \) down to \(m = \Theta(n) \)
- **Hash tables** give expected \(O(1) \) time operations, amortized if dynamic
- Expectation input-independent: choose hash function randomly from universal hash family
- Data structure overview!
- Last time we achieved faster find. Can we also achieve faster sort?

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Operations (O(\cdot))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Container</td>
</tr>
<tr>
<td></td>
<td>build(X)</td>
</tr>
<tr>
<td>Array</td>
<td>(n)</td>
</tr>
<tr>
<td>Sorted Array</td>
<td>(n \log n)</td>
</tr>
<tr>
<td>Direct Access Array</td>
<td>(u)</td>
</tr>
<tr>
<td>Hash Table</td>
<td>(n(e))</td>
</tr>
</tbody>
</table>
Comparison Sort Lower Bound

- Comparison model implies that algorithm decision tree is binary (constant branching factor)
- Requires # leaves \(L \geq \) # possible outputs
- Tree height lower bounded by \(\Omega(\log L) \), so worst-case running time is \(\Omega(\log L) \)
- To sort array of \(n \) elements, # outputs is \(n! \) permutations
- Thus height lower bounded by \(\log(n!) = \log((n/2)^{n/2}) = \Omega(n \log n) \)
- So merge sort is optimal in comparison model
- Can we exploit a direct access array to sort faster?

Direct Access Array Sort

- **Example:** [5, 2, 7, 0, 4]
- Suppose all keys are **unique** non-negative integers in range \(\{0, \ldots, u - 1\} \), so \(n \leq u \)
- Insert each item into a direct access array with size \(u \) in \(\Theta(n) \)
- Return items in order they appear in direct access array in \(\Theta(u) \)
- Running time is \(\Theta(u) \), which is \(\Theta(n) \) if \(u = \Theta(n) \). Yay!

```python
def direct_access_sort(A):
    "Sort A assuming items have distinct non-negative keys"
    u = 1 + max([x.key for x in A])  # O(n) find maximum key
    D = [None] * u  # O(u) direct access array
    for x in A:
        D[x.key] = x  # O(n) insert items
    i = 0
    for key in range(u):
        if D[key] is not None:
            A[i] = D[key]
            i += 1
```

- What if keys are in larger range, like \(u = \Omega(n^2) < n^2 \)?
- **Idea!** Represent each key \(k \) by tuple \((a, b)\) where \(k = an + b \) and \(0 \leq b < n \)
- Specifically \(a = \lfloor k/n \rfloor < n \) and \(b = (k \mod n) \) (just a 2-digit base-\(n \) number!)
- This is a built-in Python operation \((a, b) = \text{divmod}(k, n)\)
- **Example:** [17, 3, 24, 22, 12] \(\Rightarrow [(3,2), (0,3), (4,4), (4,2), (2,2)] \Rightarrow [32, 03, 44, 42, 22]_{(n=5)} \)
- How can we sort tuples?
Lecture 5: Linear Sorting

Tuple Sort

- Item keys are tuples of equal length, i.e. item $x.key = (x.k_1, x.k_2, x.k_2, \ldots)$.
- Want to sort on all entries lexicographically, so first key k_1 is most significant
- How to sort? Idea! Use other auxiliary sorting algorithms to separately sort each key
 - (Like sorting rows in a spreadsheet by multiple columns)
- What order to sort them in? Least significant to most significant!
- Exercise: $[32, 03, 44, 42, 22] \implies [42, 22, 32, 03, 44] \implies [03, 22, 32, 42, 44]_{(n=5)}$

- Idea! Use tuple sort with auxiliary direct access array sort to sort tuples (a, b).
- Problem! Many integers could have the same a or b value, even if input keys distinct
- Need sort allowing repeated keys which preserves input order
- Want sort to be stable: repeated keys appear in output in same order as input
- Direct access array sort cannot even sort arrays having repeated keys!
- Can we modify direct access array sort to admit multiple keys in a way that is stable?

Counting Sort

- Instead of storing a single item at each array index, store a chain, just like hashing!
- For stability, chain data structure should remember the order in which items were added
- Use a sequence data structure which maintains insertion order
- To insert item x, insert_last to end of the chain at index $x.key$
- Then to sort, read through all chains in sequence order, returning items one by one

```python
def counting_sort(A):
    "Sort A assuming items have non-negative keys"
    u = 1 + max([x.key for x in A])  # O(n) find maximum key
    D = [[] for i in range(u)]  # O(u) direct access array of chains
    for x in A:  # O(n) insert into chain at x.key
        D[x.key].append(x)
    i = 0
    for chain in D:  # O(u) read out items in order
        for x in chain:
            A[i] = x
            i += 1
```
Radix Sort

- **Idea!** If \(u < n^2 \), use tuple sort with auxiliary counting sort to sort tuples \((a, b)\)
- Sort least significant key \(b \), then most significant key \(a \)
- Stability ensures previous sorts stay sorted
- Running time for this algorithm is \(O(2n) = O(n) \). Yay!
- If every key < \(n^c \) for some positive \(c = \log_n(u) \), every key has at most \(c \) digits base \(n \)
- A \(c \)-digit number can be written as a \(c \)-element tuple in \(O(c) \) time
- We sort each of the \(c \) base-\(n \) digits in \(O(n) \) time
- So tuple sort with auxiliary counting sort runs in \(O(cn) \) time in total
- If \(c \) is constant, so each key is \(\leq n^c \), this sort is linear \(O(n) \)!

```python
def radix_sort(A):
    "Sort A assuming items have non-negative keys"
    n = len(A)
    u = 1 + max([x.key for x in A])  # O(n) find maximum key
    c = 1 + (u.bit_length() // n.bit_length())

class Obj:
    pass

D = [Obj() for a in A]
for i in range(n):  # O(nc) make digit tuples
    D[i].digits = []
    D[i].item = A[i]
    high = A[i].key
    for j in range(c):  # O(c) make digit tuple
        high, low = divmod(high, n)
        D[i].digits.append(low)

for i in range(c):  # O(nc) sort each digit
    for j in range(n):  # O(n) assign key i to tuples
        D[j].key = D[j].digits[i]

counting_sort(D)  # O(n) sort on digit i
for i in range(n):  # O(n) output to A
    A[i] = D[i].item
```

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time (O(\cdot))</th>
<th>In-place?</th>
<th>Stable?</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort</td>
<td>(n^2)</td>
<td>(Y)</td>
<td>(Y)</td>
<td>(O(nk)) for (k)-proximate</td>
</tr>
<tr>
<td>Selection Sort</td>
<td>(n^2)</td>
<td>(Y)</td>
<td>(N)</td>
<td>(O(n)) swaps</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>(n \log n)</td>
<td>(N)</td>
<td>(Y)</td>
<td>stable, optimal comparison</td>
</tr>
<tr>
<td>Counting Sort</td>
<td>(n + u)</td>
<td>(N)</td>
<td>(Y)</td>
<td>(O(n)) when (u = O(n))</td>
</tr>
<tr>
<td>Radix Sort</td>
<td>(n + n \log_n(u))</td>
<td>(N)</td>
<td>(Y)</td>
<td>(O(n)) when (u = O(n^c))</td>
</tr>
</tbody>
</table>