

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 5: Linear Sorting

Lecture 5: Linear Sorting

Review

• Comparison search lower bound: any decision tree with n nodes has height ≥ dlg(n+1)e−1

• Can do faster using random access indexing: an operation with linear branching factor!

• Direct access array is fast, but may use a lot of space (Θ(u))

• Solve space problem by mapping (hashing) key space u down to m = Θ(n)

• Hash tables give expected O(1) time operations, amortized if dynamic

• Expectation input-independent: choose hash function randomly from universal hash family

• Data structure overview!

• Last time we achieved faster find. Can we also achieve faster sort?

Data Structure

Operations O(·)
Container Static Dynamic Order
build(X) find(k) insert(x)

delete(k)

find min()

find max()

find prev(k)

find next(k)

Array n n n n n

Sorted Array n log n log n n 1 log n

Direct Access Array u 1 1 u u

Hash Table n(e) 1(e) 1(a)(e) n n

2 Lecture 5: Linear Sorting

Comparison Sort Lower Bound

• Comparison model implies that algorithm decision tree is binary (constant branching factor)

• Requires # leaves L ≥ # possible outputs

• Tree height lower bounded by Ω(log L), so worst-case running time is Ω(log L)

• To sort array of n elements, # outputs is n! permutations

• Thus height lower bounded by log(n!) ≥ log((n/2)n/2) = Ω(n log n)

• So merge sort is optimal in comparison model

• Can we exploit a direct access array to sort faster?

Direct Access Array Sort
• Example: [5, 2, 7, 0, 4]

• Suppose all keys are unique non-negative integers in range {0, . . . , u − 1}, so n ≤ u

• Insert each item into a direct access array with size u in Θ(n)

• Return items in order they appear in direct access array in Θ(u)

• Running time is Θ(u), which is Θ(n) if u = Θ(n). Yay!

1 def direct_access_sort(A):
2 "Sort A assuming items have distinct non-negative keys"
3 u = 1 + max([x.key for x in A]) # O(n) find maximum key
4 D = [None] * u # O(u) direct access array
5 for x in A: # O(n) insert items
6 D[x.key] = x
7 i = 0
8 for key in range(u): # O(u) read out items in order
9 if D[key] is not None:

10 A[i] = D[key]
11 i += 1

• What if keys are in larger range, like u = Ω(n2) < n2?

• Idea! Represent each key k by tuple (a, b) where k = an + b and 0 ≤ b < n

• Specifically a = bk/nc < n and b = (k mod n) (just a 2-digit base-n number!)

• This is a built-in Python operation (a, b) = divmod(k, n)

• Example: [17, 3, 24, 22, 12] ⇒ [(3,2), (0,3), (4,4), (4,2), (2,2)] ⇒ [32, 03, 44, 42, 22](n=5)

• How can we sort tuples?

3 Lecture 5: Linear Sorting

Tuple Sort
• Item keys are tuples of equal length, i.e. item x.key = (x.k1, x.k2, x.k2, . . .).

• Want to sort on all entries lexicographically, so first key k1 is most significant

• How to sort? Idea! Use other auxiliary sorting algorithms to separately sort each key

• (Like sorting rows in a spreadsheet by multiple columns)

• What order to sort them in? Least significant to most significant!

• Exercise: [32, 03, 44, 42, 22] =⇒ [42, 22, 32, 03, 44] =⇒ [03, 22, 32, 42, 44](n=5)

• Idea! Use tuple sort with auxiliary direct access array sort to sort tuples (a, b).

• Problem! Many integers could have the same a or b value, even if input keys distinct

• Need sort allowing repeated keys which preserves input order

• Want sort to be stable: repeated keys appear in output in same order as input

• Direct access array sort cannot even sort arrays having repeated keys!

• Can we modify direct access array sort to admit multiple keys in a way that is stable?

Counting Sort
• Instead of storing a single item at each array index, store a chain, just like hashing!

• For stability, chain data structure should remember the order in which items were added

• Use a sequence data structure which maintains insertion order

• To insert item x, insert last to end of the chain at index x.key

• Then to sort, read through all chains in sequence order, returning items one by one

1 def counting_sort(A):
2 "Sort A assuming items have non-negative keys"
3 u = 1 + max([x.key for x in A]) # O(n) find maximum key
4 D = [[] for i in range(u)] # O(u) direct access array of chains
5 for x in A: # O(n) insert into chain at x.key
6 D[x.key].append(x)
7 i = 0
8 for chain in D: # O(u) read out items in order
9 for x in chain:

10 A[i] = x
11 i += 1

4 Lecture 5: Linear Sorting

Radix Sort
• Idea! If u < n2 , use tuple sort with auxiliary counting sort to sort tuples (a, b)

• Sort least significant key b, then most significant key a

• Stability ensures previous sorts stay sorted

• Running time for this algorithm is O(2n) = O(n). Yay!

• If every key < nc for some positive c = logn(u), every key has at most c digits base n

• A c-digit number can be written as a c-element tuple in O(c) time

• We sort each of the c base-n digits in O(n) time

• So tuple sort with auxiliary counting sort runs in O(cn) time in total

• If c is constant, so each key is ≤ nc, this sort is linear O(n)!

1 def radix_sort(A):
2 "Sort A assuming items have non-negative keys"
3 n = len(A)
4 u = 1 + max([x.key for x in A]) # O(n) find maximum key
5 c = 1 + (u.bit_length() // n.bit_length())
6 class Obj: pass
7 D = [Obj() for a in A]
8 for i in range(n): # O(nc) make digit tuples
9 D[i].digits = []

10 D[i].item = A[i]
11 high = A[i].key
12 for j in range(c): # O(c) make digit tuple
13 high, low = divmod(high, n)
14 D[i].digits.append(low)
15 for i in range(c): # O(nc) sort each digit
16 for j in range(n): # O(n) assign key i to tuples
17 D[j].key = D[j].digits[i]
18 counting_sort(D) # O(n) sort on digit i
19 for i in range(n): # O(n) output to A
20 A[i] = D[i].item

Algorithm Time O(·) In-place? Stable? Comments
Insertion Sort 2n Y Y O(nk) for k-proximate
Selection Sort 2n Y N O(n) swaps
Merge Sort n log n N Y stable, optimal comparison
Counting Sort n + u N Y O(n) when u = O(n)

Radix Sort n + n log (u)n N Y O(n) when u = O(nc)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

