Lecture 14: Johnson’s Algorithm

Previously

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>SSSP Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>Weights</td>
</tr>
<tr>
<td>General</td>
<td>Unweighted</td>
</tr>
<tr>
<td>DAG</td>
<td>Any</td>
</tr>
<tr>
<td>General</td>
<td>Non-negative</td>
</tr>
<tr>
<td>General</td>
<td>Any</td>
</tr>
</tbody>
</table>

All-Pairs Shortest Paths (APSP)

- **Input:** directed graph $G = (V, E)$ with weights $w : E \to \mathbb{Z}$
- **Output:** $\delta(u, v)$ for all $u, v \in V$, or abort if G contains negative-weight cycle
- Useful when understanding whole network, e.g., transportation, circuit layout, supply chains...
- Just doing a SSSP algorithm $|V|$ times is actually pretty good, since output has size $O(|V|^2)$
 - $|V| \cdot O(|V| + |E|)$ with BFS if weights positive and bounded by $O(|V| + |E|)$
 - $|V| \cdot O(|V| + |E|)$ with DAG Relaxation if acyclic
 - $|V| \cdot O(|V| \log |V| + |E|)$ with Dijkstra if weights non-negative or graph undirected
 - $|V| \cdot O(|V| \cdot |E|)$ with Bellman-Ford (general)
- **Today:** Solve APSP in any weighted graph in $|V| \cdot O(|V| \log |V| + |E|)$ time
Lecture 14: Johnson’s Algorithm

Approach

- **Idea:** Make all edge weights non-negative while preserving shortest paths!
- i.e., reweight G to G' with no negative weights, where a shortest path in G is shortest in G'
- If non-negative, then just run Dijkstra $|V|$ times to solve APSP
- **Claim:** Can compute distances in G from distances in G' in $O(|V|(|V| + |E|))$ time
 - Compute shortest-path tree from distances, for each $s \in V'$ in $O(|V| + |E|)$ time (L11)
 - Also shortest-paths tree in G, so traverse tree with DFS while also computing distances
 - Takes $O(|V| \cdot (|V| + |E|))$ time (which is less time than $|V|$ times Dijkstra)
- But how to make G' with non-negative edge weights? Is this even possible??
- **Claim:** Not possible if G contains a negative-weight cycle
- **Proof:** Shortest paths are simple if no negative weights, but not if negative-weight cycle
- Given graph G with negative weights but no negative-weight cycles, can we make edge weights non-negative while preserving shortest paths?

Making Weights Non-negative

- **Idea!** Add negative of smallest weight in G to every edge! All weights non-negative! :)
- **FAIL:** Does not preserve shortest paths! Biases toward paths traversing fewer edges :
- **Idea!** Given vertex v, add h to all outgoing edges and subtract h from all incoming edges
- **Claim:** Shortest paths are preserved under the above reweighting
- **Proof:**
 - Weight of every path starting at v changes by h
 - Weight of every path ending at v changes by $-h$
 - Weight of a path passing through v does not change (locally)
- This is a very general and useful trick to transform a graph while preserving shortest paths!
Lecture 14: Johnson’s Algorithm

- Even works with multiple vertices!
- Define a potential function \(h : V \rightarrow \mathbb{Z} \) mapping each vertex \(v \in V \) to a potential \(h(v) \)
- Make graph \(G' \): same as \(G \) but edge \((u, v) \in E\) has weight \(w'(u, v) = w(u, v) + h(u) - h(v) \)
- **Claim:** Shortest paths in \(G \) are also shortest paths in \(G' \)
 - **Proof:**
 - Weight of path \(\pi = (v_0, \ldots, v_k) \) in \(G \) is \(w(\pi) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \)
 - Weight of \(\pi \) in \(G' \) is: \(\sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i) = w(\pi) + h(v_0) - h(v_k) \)
 - (Sum of \(h \)'s telescope, since there is a positive and negative \(h(v_i) \) for each interior \(i \))
 - Every path from \(v_0 \) to \(v_k \) changes by the same amount
 - So any shortest path will still be shortest

Making Weights Non-negative

- Can we find a potential function such that \(G' \) has no negative edge weights?
 - i.e., is there an \(h \) such that \(w(u, v) + h(u) - h(v) \geq 0 \) for every \((u, v) \in E\)?
 - Re-arrange this condition to \(h(v) \leq h(u) + w(u, v) \), looks like **triangle inequality**!
- **Idea!** Condition would be satisfied if \(h(v) = \delta(s, v) \) and \(\delta(s, v) \) is finite for some \(s \)
- But graph may be disconnected, so may not exist any such vertex \(s \)
 - **Idea!** Add a new vertex \(s \) with a directed 0-weight edge to every \(v \in V \)
- \(\delta(s, v) \leq 0 \) for all \(v \in V \), since path exists a path of weight 0
- **Claim:** If \(\delta(s, v) = -\infty \) for any \(v \in V \), then the original graph has a negative-weight cycle
 - **Proof:**
 - Adding \(s \) does not introduce new cycles (\(s \) has no incoming edges)
 - So if reweighted graph has a negative-weight cycle, so does the original graph
 - Alternatively, if \(\delta(s, v) \) is finite for all \(v \in V \):
 - \(w'(u, v) = w(u, v) + h(u) - h(v) \geq 0 \) for every \((u, v) \in E\) by triangle inequality!
 - New weights in \(G' \) are non-negative while preserving shortest paths!
Johnson’s Algorithm

- Construct G_x from G by adding vertex x connected to each vertex $v \in V$ with 0-weight edge
- Compute $\delta_x(x, v)$ for every $v \in V$ (using Bellman-Ford)
- If $\delta_x(x, v) = -\infty$ for any $v \in V$:
 - Abort (since there is a negative-weight cycle in G)
- Else:
 - Reweight each edge $w'(u, v) = w(u, v) + \delta_x(x, u) - \delta_x(x, v)$ to form graph G'
 - For each $u \in V$:
 * Compute shortest-path distances $\delta'(u, v)$ to all v in G' (using Dijkstra)
 * Compute $\delta(u, v) = \delta'(u, v) - \delta_x(x, u) + \delta_x(x, v)$ for all $v \in V$

Correctness

- Already proved that transformation from G to G' preserves shortest paths
- Rest reduces to correctness of Bellman-Ford and Dijkstra
- Reducing from Signed APSP to Non-negative APSP
- Reductions save time! No induction today! :)

Running Time

- $O(|V| + |E|)$ time to construct G_x
- $O(|V||E|)$ time for Bellman-Ford
- $O(|V| + |E|)$ time to construct G'
- $O(|V| \cdot (|V| \log |V| + |E|))$ time for $|V|$ runs of Dijkstra
- $O(|V|^2)$ time to compute distances in G from distances in G'
- $O(|V|^2 \log |V| + |V||E|)$ time in total