
   

  
              

             

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 6 

Problem Set 6 
Please write your solutions in the LATEX and Python templates provided. Aim for concise 
solutions; convoluted and obtuse descriptions might receive low marks, even when they are 
correct. 

Problem 6-1. [15 points] Dijkstra Practice 

Consider weighted graph G = (V, E, w) below, which is acyclic and has nonnegative edge weights. 

(a) Run both DAG Relaxation and Dijkstra on G from vertex 
a. Each algorithm tries to relax every edge (u, v) ∈ E, 

a b c

d e f 

2 1
but does so in a different order. For each algorithm, write 
down a list of all edges in relaxation order: the order 1 2 

3 1the algorithm tries to relax them. If there is ambiguity 6 
on which vertex or outgoing adjacency to process next, 
process them in alphabetical order. 

0 2 

(b) List δ(a, v) for each v ∈ V (via either algorithm). 
Solution: Relaxation order is unique for both algorithms. 

DAG Relaxation: [(a, b), (a, d), (d, b), (d, e), (b, c), (b, e), (b, f), (e, f), (f, c)] 

Dijkstra: [(a, b), (a, d), (b, c), (b, e), (b, f), (f, c), (e, f), (d, b), (d, e)] 

v a b c d e f 
δ(a, v) 0 2 3 6 5 4 

Rubric: 

• 5 points for each relaxation order (2) 

• 5 points for shortest path distances 

• -1 point for each mistake (addition, omission, inversion) 

• Minimum 0 points for each of three parts 

Problem 6-2. [10 points] Short Circuits 

Given a weighted directed graph G = (V, E, w) and vertex s ∈ V , with the property that, for 
every vertex v ∈ V , some minimum-weight path from s to v traverses at most k edges, describe an 
algorithm to find the shortest-path weight from s to each v ∈ V in O(|V | + k|E|) time. 

Solution: Since this graph may contain cycles and negative weights, at first it seems we do not 
know how to do better than Bellman-Ford. Fortunately, the problem gives us an additional re-
striction: that a shortest path to each vertex traverses few edges. Since layer k0 of the duplicated 
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graph G0 of Bellman-Ford corresponds to shortest paths to that vertex using at most k0 edges, our 
approach will be to modify Bellman-Ford to only construct the duplicated graph layers incremen-
tally, relax edges into the new layers online to compute k0-edge shortest paths, and then stop when 
k0-edge shortest path distance do not change from layer to layer. 

Specifically, rather than creating the duplicated graph G0 all at once and then running DAG Re-
laxation, we begin with G0 only containing the first layer (v0 for v ∈ V ) and δ initialized with 
first-layer distances δ(s0, v0) = ∞ for v ∈ V , except for δ(s0, s0) = 0. 

Then for i starting at 0, assume for induction that G0 contains layers 0 to i and δ(s0, vj ) have been 
computed for all v ∈ V and j ∈ {0, . . . , i}, append layer i + 1 by adding vertices vi+1 for v ∈ V 
and associated edges from layer i. This new layer cannot effect distances in previous layers (since 
the new layer comes later in the topological order. So, continue DAG Relaxation by relaxing the 
new edges out of the vertices in layer i, which correctly computes δ(s0, vi+1) for all v ∈ V . 

Since a shortest path from s to each vertex uses at most k edges, the distance δ(s, v) equals the 
k0-edge distance δk0 (s, v) = δ(s0, vk0 ) for every k0 ≥ k. Thus, as soon as δ(s0, vk0 ) = δ(s0, vk0+1) 
for all v ∈ V , then k0 = k and we can terminate by outputting δ(s, v) = δ(s0, vk) for each v ∈ V . 

Since every vertex is reachable from s, |V | = O(|E|), and since we only construct k + 1 layers 
of G0 before finding two equal layers, and each layer takes at most O(|E|) time to process, this 
algorithm runs in O(k|E|) time (which is also O(|V | + k|E|)). The |V | was originally provided 
for this problem to allow the input to include disconnected graph, where an initial single-source 
reachability algorithm could restrict to the subset of the graph reachable from s; but this term is no 
longer relevant for connected input graphs. 

Rubric: 

• 6 points for description of a correct algorithm that runs in O(k|E|) time 

• 2 points for a correct argument of correctness 

• 2 points for a correct argument of running time 

• Partial credit may be awarded 

• Max 4 points for a correct O(|V ||E|)-time algorithm 

Problem 6-3. [20 points] Dynamite Detonation 

Superspy Bames Jond is fleeing the alpine mountain lair of Silvertoe, the evil tycoon. Bames has 
stolen a pair of skis and a trail map listing the mountain’s clearings and slopes (n in total), and she 
wants to ski from the clearing L by the lair to a clearing S where a snowmobile awaits. 

• Each clearing ci ∈ C has an integer elevation ei above sea level. 

• Each slope (ci, cj , ` ij ) connects a pair of clearings ci and cj with a monotonic trail (strictly 
decreasing or increasing in elevation) with positive integer length ` ij . Bames doesn’t have 
time to ski uphill, so she will only traverse slopes so as to decrease her elevation. 
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• On her way up the mountain, Bames laced the mountain with dynamite at known locations 
CD ⊂ C. Detonating the dynamite will immediately change the elevation of clearings ci ∈ 
CD by a known amount, from ei to a lower elevation ei 

0 < ei. The detonator exists at clearing 
D ∈ C (where there is no dynamite). If she reaches clearing D, she can choose to detonate 
the dynamite before continuing on. 

Given Bames’ map and dynamite data, describe an O(n)-time algorithm to find the minimum 
distance she must ski to reach the snowmobile (possibly detonating the dynamite along the way). 

Solution: We can model the mountain as a DAG of trails that Bames may ski downhill, both 
before and after possible detonation. Construct a graph G1 with a vertex for every clearing and a 
directed edge for every slope pointing to the lower clearing; remove any slopes that do not change 
height along the way (since Bames will not traverse the slope in either direction). Construct a 
second graph G2 in the same way as G1, except using the modified heights ei 

0 that represents the 
state of the mountain after the dynamite explodes. In both graphs, we weight edges by the length 
lij of the corresponding slope. Connect G1 and G2 into a single graph G by adding one directed 
edge from node D1 in graph G1 to node D2 in graph G2 with weight 0 (taking this edge represents 
blowing up the dynamite); and add a supernode T that has incoming edges of zero weight from 
nodes S1 in graph G1 and S2 in graph G2 (representing reaching S by either not detonating or 
detonating the dynamite respectively). 

We can now run DAG Relaxation from node L1 in graph G to the supernode T ; the shortest such 
path is the minimum distance to get from L to S, with or without detonation, while respecting that 
Bames only decreases her elevation. Graph G has O(n) vertices and edges, so DAG Relaxation 
runs in O(n) time, as desired. 

Rubric: 

• 6 points for construction of a graph that can be used to solve the problem 

• 3 points for description of a correct algorithm 

• 2 points for a correct argument of correctness 

• 3 points for a correct argument of running time 

• 6 points if correct algorithm is efficient, i.e., O(n)-time 

• Partial credit may be awarded 

Problem 6-4. [10 points] Conservative Cycles 

In Wentonian physics, a force field acts on the motion of a particle by requiring a certain positive 
or negative amount of work to move along any path. A force field is conservative if the total sum 
of work is zero along every closed loop. Given a discrete force field represented by n possible 
particle locations ` i and O(n) possible particle transitions1, where transition (` i, ` j , wij ) moves a 
particle along a directed path from location ` i to location ` j requiring (positive or negative) integer 
work wij , describe an O(n2)-time algorithm to determine whether the force field is conservative. 

1Note that a transition from ` i to ` j does not imply the existence of a transition from ` j to ` i. 
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Solution: Construct a graph G with a vertex for each particle location ̀  i and a directed edge (` i, ` j ) 
of weight wij for each transition (` i, ` j , wij ). We can refute that the force field is conservative by 
finding a cycle in G that has non-zero weight. Add a supernode s connected to every v ∈ V with 
a directed zero-weight edge (s, v) (which does not add any new cycles to the graph). Then, run 
Bellman-Ford from s to determine whether there are any negative-weight cycles; then negate all 
edges weights and run Bellman-Ford from s again to determine whether there are any negative-
weight cycles (positive-weight cycles in the original graph). If Bellman-Ford detects either type of 
cycle, we can return that the force is not conservative (since we have found a cycle with non-zero 
weight); otherwise no non-zero weight cycles exist, so we can return that the field is conservative. 
Since we only add one node and O(|n|) edges to a graph with n vertices and O(n) edges, Bellman-
Ford will take O(n2) time, as desired. 

Note that it is possible to solve this problem in O(n) time using algorithms we have not learned in 
this class, but this is beyond the scope of this class. Namely: 

• identify the strongly connected components (SCCs) of G in O(n) time via a modified DFS; 

• use DFS within each SSC to assign shortest-path length potentials to each vertex; 

• and then check each edge of each SCC against these potentials in O(n) time. 

Rubric: 

• 3 points for description of a correct algorithm 

• 2 points for a correct argument of correctness 

• 2 points for a correct argument of running time 

• 3 points if correct algorithm is efficient, i.e., O(n2) 

• Partial credit may be awarded 

Problem 6-5. [20 points] SparkPlug Derby 

LightQueen McNing is a race car that wants to drive to California to compete in a road race: the 
annual SparkPlug Derby. She has a map depicting: 

• the n intersections in the country, where each intersection xi is marked with its positive 
integer elevation ei and whether it contains a gas station; and 

• the r roads connecting pairs of them, where each road rj is marked with the positive integer 
tj denoting the driving time it will take LightQueen to drive along it in either direction. 

Some intersections connect to many roads, but the average number of roads at any intersection 
is less than 5. LightQueen needs to get from Carburetor Falls at intersection s to the SparkPlug 
Derby race track at intersection t, subject to the following conditions: 

• LightQueen’s gas tank has a positive integer capacity g < n: it can hold up to g units of gas 
at a time (starting full). Along the way, she can refill her tank (by any integer amount) at any 
intersection marked with a gas station. It takes exactly tG time for her to fill up 1 unit of gas. 



5 Problem Set 6 

• LightQueen uses gas only when driving uphill. Specifically, if she drives on a road from 
intersection xi to xj at elevations ei and ej respectively, LightQueen will use exactly ej − ei 
units of gas to travel along it if ej > ei, and will use zero units of gas otherwise. 

Given LightQueen’s map, describe an O(n2 log n)-time algorithm to return a fastest route to the 
race that keeps a strictly positive amount of gas in her tank at all times (if such a route exists). 

Solution: Create a graph G: 

• Vertices: for each intersection v, add a vertex vi for every i ∈ {1, . . . , g}, where vertex vi 
represents being at intersection v with i units of gasoline in her tank; and 

• Edges: for each bi-directional road {u, v} connecting intersections u and v with driving time 
t(u, v) (let e(u) and e(v) be the elevations of intersections u and v respectively, and without 
loss of generality assume e(u) ≤ e(v)), construct the following directed edges: 

1. (Down-hill Road Edges) 
– add a weight-t(u, v) edge (vi, ui) for every i ∈ {1, . . . g} (since traveling in this 

direction on the road requires no gas). 
2. (Up-hill Road Edges) 

– if e(u) == e(v), add another weight-t(u, v) edge opposite the previous, specifically: 
(ui, vi) for every i ∈ {1, . . . , g}; 

– otherwise e(v) − e(u) = ` > 0, so add a weight-t(u, v) edge (ui, vi−`) for every 
i ∈ {` + 1, . . . , g} (since traveling uphill costs gas, and she is not allowed to ever 
run out of gas). 

3. (Gas Station Edges) 
– for each gas station, e.g., at intersection v, add a weight-tG edge (vi, vi+1) for every 
i ∈ {1, . . . , g − 1} (corresponding to filling up the tank by one unit at the station). 

There are gr Down-hill Road Edges, at most gr Up-hill Road Edges, and at most (g − 1)n Gas 
Station Edges, so graph G has gn vertices and O(g(r + n)) edges. This graph has the property that 
any path from vertex sg to any vertex ti for i ∈ {1, . . . , g} will be a valid route for LightQueen 
to leave Carburetor Falls with a full tank and reach SparkPlug Derby without ever running out of 
gas along the way; and the path’s weight corresponds to the time it would take her to get there. So 
solve SSSP from sg to find a minimum weight path to each ti for i ∈ {1, . . . , g}, and return a path 
to one with minimum weight (or return no such path exists). This graph may contain cycles, but 
has only positive edge weights, so solve SSSP using Dijkstra. 

Since the average degree of each intersection is < 5 and every road connects two intersections, then 
2r < 5n and r = O(n). Since g < n by the problem statement, G has O(n2) vertices and O(n2) 
edges, so takes O(n2) time to construct. Then Dijkstra takes O(n2 log(n2) + n2) = O(n2 log n) 
time, while finding the minimum path to any ti takes O(n) time, leading to O(n2 log n) time in 
total, as desired. 

Rubric: 
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• 6 points for construction of a graph that can be used to solve the problem 

• 3 points for description of a correct algorithm 

• 2 points for a correct argument of correctness 

• 3 points for a correct argument of running time 

• 6 points if correct algorithm is efficient, i.e., O(n2 log n)-time 

• Partial credit may be awarded 
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Problem 6-6. [25 points] Johnson’s Algorithm 
In this problem, you will implement Johnson’s Algorithm to compute all-pairs shortest-path weights 
in a general weighted directed graph G, as described in Lecture 14. The input to your algorithm 
will be: a positive integer n representing the number of vertices of your graph identified by con-
secutive integers 0 to n − 1, and a tuple S of triples, where each triple (u, v, w) corresponds to a 
directed edge from vertex u to v of weight w. Your output should be a length-n tuple D of length-n 
tuples where D[u][v] = δ(u, v) for all u, v ∈ {0, . . . , n − 1}, except when the input graph contains 
a negative-weight cycle when you should return None. 

Please implement the johnson(n, S) function in the template code provided. Your code tem-
plate contains working implementations of Bellman–Ford and Dijkstra (using a binary heap as a 
priority queue) modified from the recitation notes. Note that you will have to construct your own 
adjacency list and weight function if you would like to use this code. You can download the code 
template and some test cases from the website. 

Solution: 

1 INF = 99999 # distance magnitudes will not be larger than this number 
2 

3 def johnson(n, S): 
4 D = [[INF for _ in range(n)] for _ in range(n)] 
5 Adj = [[] for _ in range(n)] # construct graph 
6 W = {} 
7 for (u, v, w) in S: 
8 Adj[u].append(v) 
9 W[(u, v)] = w 

10 Adj.append([i for i in range(n)]) # run bellman-ford from supernode 
11 for i in range(n): 
12 W[(n, i)] = 0 
13 def wf(u, v): return W[(u, v)] 
14 args = bellman_ford(Adj, wf, n) 
15 if args is None: 
16 return None 
17 h, _ = args 
18 def wf(u, v): return W[(u, v)] + h[u] - h[v] 
19 for u in range(n): # compute SSSP 
20 d, parent = dijkstra(Adj, wf, u) 
21 for v in range(n): 
22 if d[v] < INF: 
23 D[u][v] = d[v] - h[u] + h[v] 
24 return tuple(tuple(row) for row in D) 

on reweighted graph 
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