
   

  

              
             

 

     

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Set 3 

Problem Set 3 

Please write your solutions in the LATEX and Python templates provided. Aim for concise 
solutions; convoluted and obtuse descriptions might receive low marks, even when they are 
correct. 

Problem 3-1. [5 points] Hash Practice 

(a) [2 points] Insert integer keys A = [47, 61, 36, 52, 56, 33, 92] in order into 
a hash table of size 7 using the hash function h(k) = (10k + 4) mod 7. Each slot of 
the hash table stores a linked list of the keys hashing to that slot, with later insertions 
being appended to the end of the list. Draw a picture of the hash table after all keys 
have been inserted. 

Solution: 
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Rubric: bn/4c points for n correct insertions 

(b) [3 points] Suppose the hash function were instead h(k) = ((10k + 4) mod c) mod 7 
for some positive integer c. Find the smallest value of c such that no collisions occur 
when inserting the keys from A. 

Solution: 
By the pigeonhole principle, at least one collision occurs for c < 7, so check collisions 
manually for sequentially larger c. If c = 7 then 47, 61, and 33 all hash to 5. If c = 8 
then 36, 52, 56, 92 all hash to 4. If c = 9 then 47 and 56 hash to 6. If c = 10 then 
everything hashes to 4. If c = 11 then 47 and 36 hash to 1. If c = 12 then 56 and 92 
hash to 0. If c = 13 then there are no collisions. 
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k 47 61 36 52 56 33 92 
10k + 4 474 614 364 524 564 334 924 
10k + 4 mod 7 mod 7 5 5 0 6 4 5 0 
10k + 4 mod 8 mod 7 2 6 4 4 4 6 4 
10k + 4 mod 9 mod 7 6 2 4 2 6 1 6 
10k + 4 mod 10 mod 7 4 4 4 4 4 4 4 
10k + 4 mod 11 mod 7 1 2 1 0 3 4 0 
10k + 4 mod 12 mod 7 6 2 4 1 0 3 0 
10k + 4 mod 13 mod 7 6 3 0 4 5 2 1 

The table above was generated using this python code: 

1 A = [47, 61, 36, 52, 56, 33, 92] 
2 for c in range(7, 100): 
3 hashes = [((10 * k + 4) % c) % 7 for k in A] 
4 print(’\t’.join([str(h) for h in hashes])) 
5 if len(set(hashes)) == 7: 
6 break 

Rubric: 

• 3 point for c = 13 

• Partial credit may be awarded if there is work shown of a correct approach that 
does not yield the correct solution. 

Problem 3-2. [15 points] Dorm Hashing 

MIT wants to assign 2n new students to n rooms, numbered 0 to n − 1, in Pseudorandom Hall. 
Each MIT student will have an ID: a postive integer less than u, with u � 2n. No two students 
can have the same ID, but new students are allowed to choose their own IDs after the start of term. 

MIT wants to find students quickly given their IDs, so will assign students to rooms by hashing 
their IDs to a room number. So as not to appear biased, MIT will publish a family H of hash 
functions online before the start of term (before new students choose their IDs), and then after 
students choose IDs, MIT will choose a rooming hash function uniformly at random from H. 

New MIT freshmen Rony Stark and Tiri Williams want to be roommates. For each hash family 
below, show that either: 

• Rony and Tiri can choose IDs k1 and k2 so as to guarantee that they’ll be roommates, or 

• prove that no such choice is possible and compute the highest probability they could possibly 
achieve of being roommates. 
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(a) [5 points] H = {hab(k) = (ak + b) mod n | a, b ∈ {0, . . . , n − 1} and a 6= 0}
Solution: Rony and Tiri can choose any two IDs k1, k2 such that k1 ≡ k2 mod n, 
which are not difficult to find. For example, Rony could choose k1 = 3 and Tiri could 
choose k2 = 2n +3. Then, ak1 + b ≡ ak2 + b mod n for all a, b, so Rony and Tiri are 
guaranteed to hash to the same room. � �� � � 

(b) [5 points] H = ha(k) = kn + a mod n | a ∈ {0, . . . , u − 1}
u 

Solution: Since u � n, the quantity bkn 
u c will be the same for most adjacent values 

of k. For example, Rony could choose k1 = 1 and Tiri could choose k2 = 2, and 
this quantity would be 0 for both of them. Adding the constant a and taking the 
result mod n would not affect whether the values are the same since bkn 

u c is always an 
integer between 0 and n − 1, so if Rony’s and Tiri’s IDs have the same hash for any 
function in this family, they will have the same hash for all functions in this family. 

(c) [5 points] H = {hab(k) = ((ak + b) mod p) mod n | a, b ∈ {0, . . . , p − 1} and a 6= 0}
for fixed prime p > u (this is the universal hash family from Lecture 4) 
Solution: For any two keys, the probability that they collide given a random function 
from a universal hash family is at most 

m 
1 where m is the number of possible hash 

outputs. Hence, in this case 
n 
1 is the highest probability that Rony and Tiri can achieve, 

and cannot guarantee that they will be roommates. 

Rubric: 

• For (a) and (b) 

– 3 points for a correct choice of keys 
– 2 points showing that chosen keys collide 

• For (c) 

– 3 points for citing or deriving bound on probability for universal hash family 
– 2 points for putting bound in terms of n and equating with probability of roommates 
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Problem 3-3. [20 points] The Cold is Not Bothersome Anyway 
Ice cores are long cylindrical plugs drilled out of deep glaciers, which are accumulations of snow 
piled on top of each other and compressed into ice. Scientists can divide an ice core into distinct 
slices, each representing one year of deposits. For each of the following scenerios, describe an 
efficient1 algorithm to sort n slices collected from multiple ice cores. Justify your answers. 

(a) [5 points] Every ice core is given a unique core identifier for bookkeeping, which is 
a string of exactly 16dlog4( 

√ 
n)e ASCII characters.2 Sort the slices by core identifier. 

Solution:√ Each string is stored in memory as a contiguous sequence of at most 
16dlog4( n)e × 8 = O(log n) bits. In the word-RAM, these bits can then be inter-
preted as an integer stored in a constant number of machine words (since w ≥ lg n), 

n)e×8 33 33) =upper bounded by 216dlog4( 
√ 

< n , so we can sort them in Θ(n + n logn n 
Θ(n) time via radix sort. 

(b) [5 points] The deepest ice cores in the database are up to 800,000 years old. Sort the 
slices by their age: the integer number of years since the slice was formed. 
Solution: The ages form a constant-bounded range [0, 8·105], so we can use counting 
sort to order them in ascending order in worst-case Θ(8 · 105 + n) = Θ(n) time. (radix 
sort may also be used) 

(c) [5 points] Variation in the amount of snowfall each year will cause a glacier to accu-
mulate at different rates over time. Sort the slices by thickness, a rational number of 
centimeters of the form m/n3 between 0 and 4, where m is an integer. 
Solution: Multiplying by n3 , these are integers m in a polynomially-bounded range 
[0, 4n3], so sort them using Radix Sort in worst-case Θ(n + n logn n

3) = Θ(n) time. 

(d) [5 points] Elna of Northendelle has discovered that water has memory, but is unable 
to quantify the memory of a given slice. Luckily, given two slices, she can distinguish 
which has more memory in O(1) time using her “two-finger algorithm” (touching the 
slices with her two index fingers). Sort the slices by memory. 
Solution: The only way to discern order information from the slices is via compar-
isons, so we choose merge sort which runs in Θ(n log n) time, which is optimal in the 
comparison model. 

Rubric: 
• 1 points for a correct choice of algorithm 

• 1 points if chosen algorithm is efficient 

• 3 points for a correct justification 

• Partial credit may be awarded 
1By “efficient”, we mean that asymptotically faster correct algorithms will receive more points than slower ones. 
2You may assume a string of k ASCII characters is a pointer to a contiguous sequence of k bytes in memory, where 

each byte stores an integer from 0 to 127 inclusive representing an ASCII character. 
https://en.wikipedia.org/wiki/ASCII 

https://en.wikipedia.org/wiki/ASCII
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Problem 3-4. [20 points] Pushing Paper 

Farryl Dilbin is a forklift operator at Munder Difflin paper company’s central warehouse. She 
needs to ship exactly r reams of paper to a customer. In the warehouse are n boxes of paper, 
each one foot in width, lined up side-by-side covering an n-foot wall. Each box contains a known 
positive integer number of reams, where no two boxes contain the same number of reams. Let 
B = (b0, . . . bn−1) be the number of reams per box, where box i located i feet from the left end of 
the wall contains bi reams of paper, where bi 6= bj for all i =6 j. To minimize her effort, Pharryl 
wants to know whether there is a close pair (bi, bj ) of boxes, meaning that |i − j| < n/10, that will 
fulfill order r, meaning that bi + bj = r. 

(a) [10 points] Given B and r, describe an expected O(n)-time algorithm to determine 
whether B contains a close pair that fulfills order r. 
Solution: It suffices to check for each bi whether r − bi = bj for some bj ∈ B, and 
then checking whether |i − j| < n/10. Since each box has a unique number of reams, 
if there is a match with bi it is a unique bj . Naively, we could perform this check by 
comparing r − bi against all bj ∈ B − {bi}, which would take O(n) time for each 
bi, leading to O(n2) running time. We can speed up this algorithm by first storing the 
elements of B in a hash table H along with their index, e.g., (bi, i), so that looking 
up each r − bi can be done quickly. For each bi ∈ B, insert bi into H mapped to i in 
expected amortized O(1) time. Now all unique values that occur in B appear in H , so 
for each bi, check whether r − bi appears in H in expected O(1) time. Then, if it does, 
H will return a j for which we can test for closeness with i in O(1) time. Building 
the hash table and then checking for matches each take expected O(n) time, so this 
algorithm runs in expected O(n) time. This brute force algorithm is correct because 
we check every bi for its only possible fulfilling partner, and check directly whether it 
is close. 
Rubric: 

• 3 points for a description of a correct algorithm 
• 2 points for analysis of correctness 
• 2 points for analysis of running time 
• 3 points if correct algorithm is efficient 
• Partial credit may be awarded 

(b) [10 points] Now suppose that r < n2 . Describe a worst-case O(n)-time algorithm to 
determine whether B contains a close pair that fulfills order r. 

Solution: Replace each bi in B with the tuple (bi, i), to keep track of the index of the box in the 
original order. We do not know whether every bi is polynomially bounded in n; but we do know 
that r is. If some bi ≥ r, it can certainly not be part of a pair from B that fulfills order r. So 
perform a linear scan of B and remove all (bi, i) for which bi ≥ r, to construct set B0 . Now the 
ream count integers bi in B0 are each upper bounded by O(n2), so we can sort the tuples in B0 by 
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their ream counts bi in worst-case O(n + n logn n
2) = O(n) time using radix-sort, and store the 

output in an array A. 

Now we can sweep the sorted list using a two-finger algorithm similar to the merge step in merge 
sort to find a pair that sums to r, if such a pair exists. Specifically, initialize indices i = 0 and 
j = |A| − 1, and repeat the following procedure until i = j. If A[i] = (bk, k), let A[i].b = bk and 
A[i].x = k. There are three cases: 

• A[i].b + A[j].b = r: a pair that fulfills the order has been found. 
Check whether |A[i].x − A[j].x| < n/10 and return True if so; or 

• A[i].b + A[j].b < r: A[i].b cannot be part of a pair that fulfills the order with any A[k].b for 
k ∈ {i + 1, . . . , j}, so increase i; or 

• A[i].b + A[j].b > r: A[j].b cannot be part of a pair that fulfills the order with any A[k] for 
k ∈ {i, . . . , j − 1}, so decrease j. 

This loop maintains the invariant that at the start of each loop, we have confirmed that no pair 
(A[k].b, A[`].b) is close and fulfills the order, for all k ≤ i ≤ j ≤ `, so if we reach the end without 
returning a valid pair, the algorithm will correctly conclude that there is none. Since each iteration 
of the loop takes O(1) time and decreases j − i decrease by one, and j − i = |B0|− 1 starts positive 
and ends when j − i < 0, this procedure takes at most O(n) time in the worst case. 

Rubric: 

• 3 points for a description of a correct algorithm 

• 2 points for analysis of correctness 

• 2 points for analysis of running time 

• 3 points if correct algorithm is efficient 

• Partial credit may be awarded 

Problem 3-5. [40 points] Anagram Archaeology 
String A is an anagram of another string B if A is a permutation of the letters in B; for example, 
(indicatory, dictionary) and (brush, shrub) are pairs of words that are anagrams of 
each other. In this problem, all strings will be ASCII strings containing only the lowercase English 
letters a to z. 

Given two strings A and B, the anagram substring count of B in A is the number of contiguous 
substrings of A that are anagrams of B. For example, if A = ’esleastealaslatet’ and B = 
’tesla’, then, of the 13 contiguous substrings in A of length |B| = 5, exactly 3 of them are 
anagrams of B, namely (’least’, ’steal’, ’slate’), so the anagram substring count of 
B in A is 3. 

(a) [12 points] Given string A and a positive integer k, describe a data structure that can 
be built in O(|A|) time, which will then support a single operation: given a different 
string B with |B| = k, return the anagram substring count of B in A in O(k) time. 
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Solution: For this data structure, we need a way to find how many substrings of 
A are anagrams of an input B in a running time that does not depend on |A|. The 
idea will be to construct and store a constant-sized cannonicalization of each string in 
a hash table, where anagrams of the string will have the same cannonicalization; in 
particular, we will construct a frequency table with 26 entries, one for each lowercase 
English letter, where each entry stores the number of occurances of that letter in the 
string. Two strings will have the same frequency table if and only if they are anagrams 
of each other. 
Let S = (S0, . . . , S|A|−k) be the |A|−k+1 contiguous length-k substrings of A, where 
substring Si starts at character A[i]. Constructing a frequency table naı̈vely for each 
Si ∈ S would take O(|A|k) time. However, after computing the frequency table of S0 

naı̈vely in O(k) time, we can construct the frequncy table forSi+1 from the frequency 
table for Si in O(1) time by subtracting the letter at A[i] from the frequency table of 
Si, and adding in the letter at A[i + k]. In this way, we can compute the constant-sized 
frequency table for each Si ∈ S in O(k) + (|A| − k)O(1) = O(|A|) time. Then insert 
each of these frequency tables into a hash table H , mapped to the number of Si ∈ S 
having that frequency table in expected O(|A|) time (each frequency is at most n, so 
each frequency table can be thought of as a 26dlg ne-sized integer, which fits within a 
constant number of machine words, that can be used as a hash key). 
Then given our data structure H , we can support the requested operation by first com-
puting the frequency table f of the input string B naı̈vely in O(k) time, and then 
looking it up in H in O(1) expected time, for a total of expected O(k) time. Since 
H(f) stores the number of Si ∈ S with frequency table f , if f is in H , the stored 
value will be the anagram substring count of B in A. Otherwise, if f is not in H , f is 
not an anagram of any substring of A, so return zero. 
Rubric: 

• 4 points for a description of a correct data structure 
• 2 points for analysis of correctness 
• 2 points for analysis of running time 
• 4 points if correct algorithm is efficient 
• Partial credit may be awarded 

(b) [3 points] Given string T and an array of n length-k strings S = (S0, . . . , Sn−1) 
satisfying 0 < k < |T |, describe an O(|T | + nk)-time algorithm to return an array 
A = (a0, . . . , an−1) for which ai is the anagram substring count of Si in T for all 
i ∈ {0, . . . , n − 1}. 
Solution: Construct the data structure in part (a) substituting string T for A, and 
using k in O(|T |) expected time. Then for each Si ∈ S, we can perform the operation 
supported by the data structure in expected O(k) time, storing their outputs in an array 
A, for a total of expected O(|T | + nk) time. This algorithm is correct based on the 
corrctness of the data structure from (a). 
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Rubric: 
• 2 points for a description of a correct algorithm 
• 1 point for analysis of running time and correctness 
• Partial credit may be awarded 

(c) [25 points] Write a Python function count anagram substrings(T, S) that 
implements your algorithm from part (b). Note the built-in Python function ord(c) 
returns the ASCII integer corresponding to ASCII character c in O(1) time. You can 
download a code template containing some test cases from the website. 
Solution: 

1 ORD_A = ord(’a’) 
2 def lower_ord(c): # map a lowercase letter to range(26) 
3 return ord(c) - ORD_A 
4 

5 def count_anagram_substrings(T, S): 
6 m, n, k = len(T), len(S), len(S[0]) 
7 D = {} # map from freq tables to occurances 
8 F = [0] * 26 # initial freq table 
9 for i in range(m): # compute T freq tables 

10 F[lower_ord(T[i])] += 1 # add character 
11 if i > k - 1: 
12 F[lower_ord(T[i - k])] -= 1 # remove character 
13 if i >= k - 1: 
14 key = tuple(F) 
15 if key in D: # increment occurance 
16 D[key] += 1 
17 else: # add freq table to map 
18 D[key] = 1 
19 A = [0] * n # compute anagram substring counts 
20 for i in range(n): 
21 F = [0] * 26 
22 for c in S[i]: # compute S_i freq table 
23 F[lower_ord(c)] += 1 
24 key = tuple(F) 
25 if key in D: # check in dictionary 
26 A[i] = D[key] 
27 return tuple(A) 
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