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Problem Session 6 

Problem 6-1. Topological Training 

Please answer the following questions about the unweighted directed graph G below, whose vertex set is 
{0, 1, 2, 3, 4, 5}. 

(a) State a topological ordering of G. Then state and justify the number of 
distinct topological orderings of G. 

(b) State a single directed edge that could be added to G to construct a 
simple1graph with no topological ordering. Then state and justify the 
number of distinct single edges that could be added to G to construct a 
simple graph with no topological ordering. 
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Solution: (a) Vertices 4 and 2 must be the first and second vertex in any topological order, since there is 
a directed path from 4 through 2 to every other vertex in the graph. For the remaining four vertices, the 
ordering of 0, 3, and 5 are independent from 1. Vertices 0, 3, and 5 have two possible orderings: (0, 3, 5) 
and (0, 5, 3), while 1 can be placed in one of four positions relative to either ordering. Thus there are 8 
distinct topological orders of G. Specifically: 

(4, 2, 1, 0, 3, 5) (4, 2, 0, 1, 3, 5) (4, 2, 0, 3, 1, 5) (4, 2, 0, 3, 5, 1) 
(4, 2, 1, 0, 5, 3) (4, 2, 0, 1, 5, 3) (4, 2, 0, 5, 1, 3) (4, 2, 0, 5, 3, 1) 

Solution: (b) A topological ordering will not exist, if and only if the resulting graph contains a cycle. All 
vertices are reachable from 4, so we can add any edge from vertices 0, 1, 2, 3, or 5 to 4 to create a cycle. 
All vertices except 4 are reachable from 2, so we can add any edge from vertices 0, 1, 3, or 5 to create a 
cycle. Vertices 3 and 5 are reachable from 0, so we can add either edge to 0. No vertices are reachable from 
1, 3, or 5, so no edge can be added to them to construct a cycle. Thus there are eleven such directed edges, 
specifically: 

{(0, 4), (1, 4), (2, 4), (3, 4), (5, 4)(0, 2), (1, 2), (3, 2), (5, 2), (3, 0), (5, 0)}. 

Problem 6-2. Never Return 

Bimsa is a young lioness whose evil uncle has just banished her from the land of Honor Stone, proclaiming: 
“Run away, Bimsa. Run away, and never return.” Bimsa has knowledge of all landmarks and trails in 
and around Honor Stone. For each landmark, she knows its x and y coordinates and whether it is inside or 
outside of Honor Stone. For each trail, she knows its positive integer length and the two landmarks it directly 
connects. Each landmark connects to at most five trails, each trail may be traversed in either direction, and 
every landmark can be reached along trails from the gorge, the landmark where Bimsa is now. Bimsa wants 
to leave Honor Stone quickly, while only traversing trails in a way that never returns: traversing a trail 

1A simple graph has no self-loops (i.e., each edge connects two different vertices) and has no multi-edges (i.e., there can be at 
most one directed edge from vertex a to vertex b, though a directed edge from b to a may exist). 
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from landmark a to landmark b never returns if the distance2 from a to the gorge is strictly smaller than the 
distance from b to the gorge. If there are n landmarks in Honor Stone, describe an O(n)-time algorithm to 
determine a shortest route that never returns, from the gorge to any landmark outside of Honor Stone. 

Solution: The ‘never return’ constraint ensures that we can only visit landmarks in strictly increasing 
distance from the gorge, so if we construct a graph on landmarks with an edge for each trail only in a 
direction which increases distance from the gorge, this graph will be acyclic. Let d(a) denote the squared 
Euclidean distance from the gorge to landmark a (squared distances are integers that are computable in O(1) 
time). Construct a graph G with a vertex for each landmark either in Honor Stone or neighboring a landmark 
in Honor Stone. Then for each trail directly connecting landmarks a and b, add either directed edge (a, b) if 
d(a) < d(b), directed edge (b, a) if d(a) > d(b), or no edge if d(a) = d(b). Since there are at most O(n) 
landmarks in Honor Stone or neighboring a landmark in Honor Stone, and each landmark is connected to 
at most a constant number of trails, there are at most O(n) trials, so this graph can be constructed in O(n) 
time. Then every directed path in G from the gorge satisfies the ‘never return’ condition, so we just need 
to find any shortest route in G from the gorge to any vertex corresponding to a landmark that is outside 
Honor Stone. Solve single source shortest paths from the gorge (storing parent pointers to allow paths to be 
reconstructed), and return the shortest path to any vertex corresponding to a landmark that is outside Honor 
Stone. Since G is a DAG, we can solve single single source shortest paths using DAG relaxation in O(n) 
time as desired. 

Problem 6-3. DigBuild 

Software company Jomang is developing DigBuild, a new 3D voxel-based exploration game. The game 
world features n collectable block types, each identified with a unique integer from 1 to n. Some of these 
block types can be converted into other block types: a conversion (d1, b1, d2, b2) allows d1 blocks of type 
b1 to be converted into d2 blocks of type b2; each conversion is animated in the game by repeatedly di-
viding blocks in half, then recombining them, so d1 and d2 are always constrained to be integer powers of 
two. Jomang wants to randomly generate allowable game conversions to increase replayability, but wants to 
disallow sets of game conversions through which players can generate infinite numbers of blocks via con-� �

1 2version. Describe an O(n3)-time algorithm to determine whether a given a set of n conversions should 5 
be disallowed. Assume that a starting world contains D blocks of each type, where D is the product of all 
di appearing in any conversion. Given positive integer x, assume that its bit-length, log2 x, can be computed 
in O(1) time. 

Solution: Construct a graph G with a vertex for every block type and a directed edge for every conver-
sion (d1, b1, d2, b2), specifically the edge from b1 to b2 with weight lg(d1) − lg(d2). Then the negative 
weight of any directed path from bs to bt in G corresponds to the base-2 logarithm of the fractional increase 
of the amount of blocks of type bt that would result by performing each conversion along the path from Q P 
some amount of block of type bs (since lg d

d 
i,

i, 

2

1 
= (lg(di,2) − lg(di,1))). Thus, given a sufficiently i i 

large number of starting blocks, there exists a negative-weight simple cycle in G if and only if a user could 
convert block types along these conversions to generate an unbounded amount of blocks of any block type 
reachable from the cycle. Since D upper bounds the base-2 logarithm of the sum of all edge weights in G, 
any simple cycle has absolute weight less than lg D, so D blocks of each type will allow a block type on 
a negative-weight simple cycle to be converted around the cycle, without ever running out of blocks during 
the conversion. We can detect whether G contains a negative-weight simple cycle using Bellman-Ford in 
O(|V ||E|) time. Since G has n vertices and Θ(n2) edges, Bellman-Ford runs in O(n3) time, as desired. p

2We mean Euclidean distance between landmark (x1, y1) and landmark (x2, y2), i.e., (x2 − x1)2 + (y2 − y1)2. 
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Problem 6-4. Tipsy Tannister 

Lyrion Tannister is a greedy, drunken nobleman residing in Prince’s Pier, the capital of Easteros, who wants 
to travel to the northern town of Summerrise. Lyrion has a map depicting all towns and roads in Easteros, 
where each road allows direct travel between a pair of towns, and each town is connected to at most seven 
roads. Each road is marked with the non-negative number of gold pieces he will be able to collect in taxes by 
traveling along that road in either direction (this number may be zero). Every town has a tavern, and Lyrion 
has marked each town with the positive number of gold pieces he would spend if he were to drink there. If 
Lyrion ever runs out of money on his trip, he will just leave a debt marker3 indicating the number of gold 
pieces he owes. After leaving the tavern in Prince’s Pier with no gold and zero debt, Lyrion’s policy will be 
to drink at the tavern of every third town he visits along his route until reaching Summerrise. Given Lyrion’s 
map depicting the n towns in Easteros, describe an O(n2)-time algorithm to compute the maximum amount 
of gold he can have (minus debts incurred) upon arriving in Summerrise, traveling from Prince’s Pier along 
a route that follows his drinking policy. 

Solution: Given Lyrion’s drinking policy, it would be helpful to know at any given time how many towns 
ago Lyrion last visited a tavern. To keep track of this information, we will make a graph that has three 
vertices for each town: one vertex associated with arriving at the town having drunk at a town i towns be-
fore, either 1, 2, or 3 towns before. Construct a graph G with a vertex vt,i for each town t and for each 
i ∈ {1, 2, 3}. Then for each road connecting town a to town b, add directed edges (va,i, vb,(i mod 3)+1) and 
(vb,i, va,(i mod 3)+1) for each i ∈ {1, 2, 3}: 

• when i ∈ {1, 2}, Lyrion does not drink in the town he is coming from, so weight the edge with the 
negative of the amount of gold he would collect in taxes on that road, while 

• when i = 3, Lyrion drinks in the town he is coming from, so weight the edge with the amount he will 
spend at that town’s tavarn, minus the amount of gold he would collect in taxes on that road. 

Let p and s denote the vertices associated with Prince’s Pier and Summerrise respectively, and remove all 
outgoing edges from the three vertices associated with s (since Lyrion stops as soon as he arrives in Sum-
merrise). If wp is the cost of drinking at the tavarn in Prince’s Pier, then the weight of any directed path in G 
from vertex vp,3 will be wp less than the amount of taxes minus expenses that Lyrion will have by traversing 
along the roads corresponding to edges in the path while following his drinking policy. G has O(n) vertices 
and O(n) edges (since each vertex is connected to at most a constant number of edges), so this graph can be 
built in O(n) time. Then, since edges in G may have positive or negative weights, we can use Bellman-Ford 
to compute the weight of the shortest path from p to s in G in O(n2) time, which will be the negative of 
the maximum amount of gold (or debt) he can have upon arriving in Summerrise. If Bellman-Ford returns 
a weight of −∞ for d(p, s), there is no finite upper bound on the amount Lyrion can arrive with, while if 
Bellman-Ford returns ∞ for d(p, s), Summerrise cannot be reached along roads, so Lyrion should just stay 
home. 

3The marker will be readily accepted because Tannisters always pay their debts. 
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Problem 6-5. Cloud Computing 

Azrosoft Micure is a cloud computing company where users can upload computing jobs to be executed 
remotely. The company has a large number of identical cloud computers available to run code, many more 
than the number of pieces of code in any single job. Any piece of code may be run on any available computer 
at any time. Each computing job consists of a code list and a dependency list. 

A code list C is an array of code pairs (f, t) ∈ C, where string f is the file name of a piece of code, and t 
is the positive integer number of microseconds needed for that code to complete when assigned to a cloud 
computer. Assume file names are short and can be read in O(1) time. 

A dependency list D is an array of dependency pairs (f1, f2) ∈ D, where f1 and f2 are distinct file names 
that appear in C. A dependency pair (f1, f2) indicates that the piece of code named f1 must be completed 
before the piece of code named f2 can begin. Assume that every file name exists in some dependency pair. 

(a) A job (C, D) can be completed if every piece of code in C can be completed while respecting 
the dependencies in D. Given job (C, D), describe an O(|D|)-time algorithm to decide whether 
the job can be completed. 
Solution: Construct a graph G with a vertex for each piece of code in C and a directed edge 
from f1 to f2 for each dependency pair (f1, f2) ∈ D. Also add an auxiliary node s and add a 
directed edge (s, f) to every other vertex. A job can be completed as long as G does not contain 
any cycle. We can do this by running a depth-first search (DFS) from s, checking whether the 
reverse order of DFS finishing times is a topological order (i.e., check to make sure no edge in 
the graph goes against this order). Since |C| ≤ 2|D|, G has size O(|D|) and DFS can be be run 
in O(|D|) time. Checking each edge against this order can also be done in O(1) time per edge, 
so this algorithm takes O(|D|) time as desired. 

(b) Azrosoft Micure wants to know how fast they can complete a given job. Given a job (C, D), 
describe an O(|D|)-time algorithm to determine the minimum number of microseconds that 
would be needed to complete the job (or return that the job cannot be completed). 
Solution: We can use the same graph as in part (a), adding weights corresponding to running 
times of pieces of code. Let t(f) denote the time for code f to complete. Then for each edge (a, 
f) in G, weight it by −t(f). Then the length of the shortest path from s to any other vertex in G 
will be equal to longest time for any piece of code to be completed. If G has a cycle, we can 
break as in (a); otherwise, G is a DAG, and we can run DAG Relaxation to compute the 
shortest path in O(|D|) time. 

(c) Write a Python function min time(C, D) that implements your algorithm from (b). 
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Solution: 

1 def dfs(Adj, s, parent = None, order = None): # code from R10 
2 if parent is None: 
3 parent = [None for v in Adj] 
4 parent[s] = s 

order = [] 
6 for v in Adj[s]: 
7 if parent[v] is None: 
8 parent[v] = s 
9 dfs(Adj, v, parent, order) 

order.append(s) 
11 return parent, order 
12 

13 def topo_shortest_paths(Adj, w, s): # code from R11 
14 _, order = dfs(Adj, s) 

order.reverse() 
16 d = [float(’inf’) for _ in Adj] 
17 parent = [None for _ in Adj] 
18 d[s], parent[s] = 0, s 
19 for u in order: 

for v in Adj[u]: 
21 if d[v] > d[u] + w(u, v): 
22 d[v] = d[u] + w(u, v) 
23 parent[v] = u 
24 return d, parent 

26 def min_time(C, D): 
27 n = len(C) 
28 file_idx, file_time = {}, {} 
29 for i in range(n): # label files from 1 to n 

f, t = C[i] 
31 file_idx[f], file_time[i + 1] = i + 1, t 
32 Adj, w = [[] for _ in range(n + 1)], {} # construct dependency graph 
33 for f1, f2 in D: 
34 i1, i2 = file_idx[f1], file_idx[f2] 

Adj[i1].append(i2) 
36 w[(i1, i2)] = -file_time[i2] 
37 Adj[0] = list(range(1, n + 1)) # add supernode 
38 for i in range(1, n + 1): 
39 w[(0, i)] = -file_time[i] 

_, order = dfs(Adj, 0) # check for cycles 
41 order.reverse() 
42 rank = [None] * (n + 1) 
43 for i in range(n + 1): 
44 rank[order[i]] = i 

for v1 in range(n + 1): 
46 for v2 in Adj[v1]: 
47 if rank[v1] > rank[v2]: 
48 return None 
49 dist, _ = topo_shortest_paths(Adj, lambda u,v: w[(u,v)], 0) 

return -min(dist) # compute min time 
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