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Lecture 7: Binary Trees II: AVL 

Last Time and Today’s Goal 

Sequence 
Data Structure 

Operations O(·) 
Container Static Dynamic 
build(X) get at(i) 

set at(i,x) 

insert first(x) 

delete first() 

insert last(x) 

delete last() 

insert at(i, x) 

delete at(i) 

Binary Tree n h h h h 

AVL Tree n log n log n log n log n 

Set 
Data Structure 

Operations O(·) 
Container Static Dynamic Order 
build(X) find(k) insert(x) 

delete(k) 

find min() 

find max() 

find prev(k) 

find next(k) 

Binary Tree n log n h h h h 

AVL Tree n log n log n log n log n log n 

Height Balance 
• How to maintain height h = O(log n) where n is number of nodes in tree? 

• A binary tree that maintains O(log n) height under dynamic operations is called balanced 

– There are many balancing schemes (Red-Black Trees, Splay Trees, 2-3 Trees, . . . ) 

– First proposed balancing scheme was the AVL Tree (Adelson-Velsky and Landis, 1962) 

Rotations 
• Need to reduce height of tree without changing its traversal order, so that we represent the 

same sequence of items 

• How to change the structure of a tree, while preserving traversal order? Rotations! 

1 _____<D>__ rotate_right(<D>) __<B>_____ 
2 __<B>__ <E> => <A> __<D>__ 
3 <A> <C> / \ / \ <C> <E> 
4 / \ / \ /___\ <= /___\ / \ / \ 
5 /___\ /___\ rotate_left(<B>) /___\ /___\ 

• A rotation relinks O(1) pointers to modify tree structure and maintains traversal order 
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Rotations Suffice 
• Claim: O(n) rotations can transform a binary tree to any other with same traversal order. 

• Proof: Repeatedly perform last possible right rotation in traversal order; resulting tree is a 
canonical chain. Each rotation increases depth of the last node by 1. Depth of last node in 
final chain is n − 1, so at most n − 1 rotations are performed. Reverse canonical rotations to 
reach target tree. 

• Can maintain height-balance by using O(n) rotations to fully balance the tree, but slow :( 

• We will keep the tree balanced in O(log n) time per operation! 

AVL Trees: Height Balance 
• AVL trees maintain height-balance (also called the AVL Property) 

– A node is height-balanced if heights of its left and right subtrees differ by at most 1 

– Let skew of a node be the height of its right subtree minus that of its left subtree 

– Then a node is height-balanced if its skew is −1, 0, or 1 

• Claim: A binary tree with height-balanced nodes has height h = O(log n) (i.e., n = 2Ω(h)) 

• Proof: Suffices to show fewest nodes F (h) in any height h tree is F (h) = 2Ω(h) 

F (h) ≥ 2h/2F (0) = 1, F (1) = 2, F (h) = 1+F (h−1)+F (h−2) ≥ 2F (h−2) =⇒ 

• Suppose adding or removing leaf from a height-balanced tree results in imbalance 

– Only subtrees of the leaf’s ancestors have changed in height or skew 

– Heights changed by only ±1, so skews still have magnitude ≤ 2 

– Idea: Fix height-balance of ancestors starting from leaf up to the root 

– Repeatedly rebalance lowest ancestor that is not height-balanced, wlog assume skew 2 
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• Local Rebalance: Given binary tree node <B>: 

– whose skew 2 and 

– every other node in <B>’s subtree is height-balanced, 

– then <B>’s subtree can be made height-balanced via one or two rotations 

– (after which <B>’s height is the same or one less than before) 

• Proof: 

– Since skew of <B> is 2, <B>’s right child <F> exists 

– Case 1: skew of <F> is 0 or Case 2: skew of <F> is 1 

∗ Perform a left rotation on <B> 

1 __<B>______ ______<F>____ 
2 <A> ___<F>___ __<B>___ <G> 
3 / \ <D> <G> => <A> <D> / \ 
4 /___\ / \ / \ / \ / \ / \ 
5 /___\ / \ /___\ /___\ /_____\ 
6 /_____\ /_____\ /_____\ 

∗ Let h = height(<A>). Then height(<G>) = h + 1 and height(<D>) is h + 1 in 
Case 1, h in Case 2 

∗ After rotation: 
· the skew of <B> is either 1 in Case 1 or 0 in Case 2, so <B> is height balanced 
· the skew of <F> is −1, so <F> is height balanced 
· the height of <B> before is h +3, then after is h +3 in Case 1, h +2 in Case 2 

– Case 3: skew of <F> is −1, so the left child <D> of <F> exists 

∗ Perform a right rotation on <F>, then a left rotation on <B> 

1 __<B>___________ _____<D>______ 
2 <A> _____<F>__ __<B>__ __<F>__ 
3 / \ __<D>__ <G> => <A> <C> <E> <G> 
4 /___\ <C> <E> / \ / \ /_\ /_\ / \ 
5 /_\ /_\ /___\ /___\ /___\ /___\ /___\ 
6 /___\ /___\ 

∗ Let h = height(<A>). Then height(<G>) = h while height(<C>) and height(<E>) 
are each either h or h − 1 

∗ After rotation: 
· the skew of <B> is either 0 or −1, so <B> is height balanced 
· the skew of <F> is either 0 or 1, so <F> is height balanced 
· the skew of <D> is 0, so D is height balanced 
· the height of <B> is h + 3 before, then after is h + 2 
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• Global Rebalance: Add or remove a leaf from height-balanced tree T to produce tree T 0 . 
Then T 0 can be transformed into a height-balanced tree T 00 using at most O(log n) rotations. 

• Proof: 

– Only ancestors of the affected leaf have different height in T 0 than in T 

– Affected leaf has at most h = O(log n) ancestors whose subtrees may have changed 

– Let <X> be lowest ancestor that is not height-balanced (with skew magnitude 2) 

– If a leaf was added into T : 

∗ Insertion increases height of <X>, so in Case 2 or 3 of Local Rebalancing 
∗ Rotation decreases subtree height: balanced after one rotation 

– If a leaf was removed from T : 

∗ Deletion decreased height of one child of <X>, not <X>, so only imbalance 
∗ Could decrease height of <X> by 1; parent of <X> may now be imbalanced 
∗ So may have to rebalance every ancestor of <X>, but at most h = O(log n) of them 

• So can maintain height-balance using only O(log n) rotations after insertion/deletion! 

• But requires us to evaluate whether possibly O(log n) nodes were height-balanced 

Computing Height 
• How to tell whether node <X> is height-balanced? Compute heights of subtrees! 

• How to compute the height of node <X>? Naive algorithm: 

– Recursively compute height of the left and right subtrees of <X> 

– Add 1 to the max of the two heights 

– Runs in Ω(n) time, since we recurse on every node :( 

• Idea: Augment each node with the height of its subtree! (Save for later!) 

• Height of <X> can be computed in O(1) time from the heights of its children: 

– Look up the stored heights of left and right subtrees in O(1) time 

– Add 1 to the max of the two heights 

• During dynamic operations, we must maintain our augmentation as the tree changes shape 

• Recompute subtree augmentations at every node whose subtree changes: 

– Update relinked nodes in a rotation operation in O(1) time (ancestors don’t change) 

– Update all ancestors of an inserted or deleted node in O(h) time by walking up the tree 



5 Lecture 7: Binary Trees II: AVL 

Steps to Augment a Binary Tree 
• In general, to augment a binary tree with a subtree property P, you must: 

– State the subtree property P(<X>) you want to store at each node <X> 

– Show how to compute P(<X>) from the augmentations of <X>’s children in O(1) time 

• Then stored property P(<X>) can be maintained without changing dynamic operation costs 

Application: Sequence 
• For sequence binary tree, we needed to know subtree sizes 

• For just inserting/deleting a leaf, this was easy, but now need to handle rotations 

• Subtree size is a subtree property, so can maintain via augmentation 

– Can compute size from sizes of children by summing them and adding 1 

Conclusion 
• Set AVL trees achieve O(lg n) time for all set operations, 

except O(n log n) time for build and O(n) time for iter 

• Sequence AVL trees achieve O(lg n) time for all sequence operations, 
except O(n) time for build and iter 

Application: Sorting 
• Any Set data structure defines a sorting algorithm: build (or repeatedly insert) then iter 

• For example, Direct Access Array Sort from Lecture 5 

• AVL Sort is a new O(n lg n)-time sorting algorithm 
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