Lecture 20: Course Review

6.006: Introduction to Algorithms

- **Goals:**
 1. Solve hard computational problems (with **non-constant-sized inputs**)
 2. Argue an algorithm is **correct** (Induction, Recursion)
 3. Argue an algorithm is “**good**” (Asymptotics, Model of Computation)
 - (effectively communicate all three above, to human or computer)

- **Do there always exist “good” algorithms?**
 - Most problems are not solvable efficiently, but many we think of are!
 - **Polynomial** means polynomial in size of input
 - **Pseudopolynomial** means polynomial in size of input AND size of numbers in input
 - **NP:** **Nondeterministic Polynomial** time, polynomially checkable certificates
 - NP-hard: set of problems that can be used to solve any problem in NP in poly-time
 - NP-complete: intersection of NP-hard and NP

How to solve an algorithms problem?

- **Reduce to a problem** you know how to solve
 - Search/Sort (Q1)
 - Search: Extrinsic (Sequence) and Intrinsic (Set) Data Structures
 - Sort: Comparison Model, Stability, In-place
 - Graphs (Q2)
 - Reachability, Connected Components, Cycle Detection, Topological Sort
 - Single-Source / All-Pairs Shortest Paths

- **Design a new recursive algorithm**
 - Brute Force
 - Divide & Conquer
 - Dynamic Programming (Q3)
 - Greedy/Incremental
Next Steps

- (U) 6.046: Design & Analysis of Algorithms
- (G) 6.851: Advanced Data Structures
- (G) 6.854: Advanced Algorithms

6.046

- Extension of 6.006
 - **Data Structures**: Union-Find, Amortization via potential analysis
 - **Graphs**: Minimum Spanning Trees, Network Flows/Cuts
 - **Algorithm Design (Paradigms)**: Divide & Conquer, Dynamic Programming, Greedy
 - **Complexity**: Reductions
- Relax Problem (change definition of correct/efficient)
 - **Randomized Algorithms**
 - 6.006 mostly deterministic (hashing)
 - Las Vegas: always correct, probably fast (like hashing)
 - Monte Carlo: always fast, probably correct
 - Can generally get faster randomized algorithms on structured data
 - **Numerical Algorithms/Continuous Optimization**
 - 6.006 only deals with integers
 - Approximate real numbers! Pay time for precision
- **Approximation Algorithms**
 - Input optimization problem (min/max over weighted outputs)
 - Many optimization problems NP-hard
 - How close can we get to an optimal solution in polynomial time?
- **Change Model of Computation**
 - Cache Models (memory hierarchy cost model)
 - Quantum Computer (exploiting quantum properties)
 - Parallel Processors (use multiple CPUs instead of just one)
 - Multicore, large shared memory
 - Distributed cores, message passing
Future Courses

<table>
<thead>
<tr>
<th>Model</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation / Complexity (6.045, 6.840, 6.841)</td>
<td>Biology (6.047)</td>
</tr>
<tr>
<td>Randomness (6.842)</td>
<td>Game Theory (6.853)</td>
</tr>
<tr>
<td>Quantum (6.845)</td>
<td>Cryptography (6.875)</td>
</tr>
<tr>
<td>Distributed / message passing (6.852)</td>
<td>Vision (6.819)</td>
</tr>
<tr>
<td>Graph and Matrix (6.890)</td>
<td>Geometry (6.850)</td>
</tr>
<tr>
<td>Constant Factors / Performance (6.172)</td>
<td>Folding (6.849)</td>
</tr>
</tbody>
</table>