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Sequence Interface (L02, L07) 
Sequences maintain a collection of items in an extrinsic order, where each item stored has a rank 
in the sequence, including a first item and a last item. By extrinsic, we mean that the first item is 
‘first’, not because of what the item is, but because some external party put it there. Sequences are 
generalizations of stacks and queues, which support a subset of sequence operations. 

Container build(X) 
len() 

given an iterable X, build sequence from items in X 
return the number of stored items 

Static iter seq() 
get at(i) 
set at(i, x) 

return the stored items one-by-one in sequence order 
return the ith item 
replace the ith item with x 

Dynamic insert at(i, x) 
delete at(i) 
insert first(x) 
delete first() 
insert last(x) 
delete last() 

add x as the ith item 
remove and return the ith item 
add x as the first item 
remove and return the first item 
add x as the last item 
remove and return the last item 

(Note that insert / delete operations change the rank of all items after the modified item.) 

Set Interface (L03-L08) 
By contrast, Sets maintain a collection of items based on an intrinsic property involving what the 
items are, usually based on a unique key, x.key, associated with each item x. Sets are generaliza-
tions of dictionaries and other intrinsic query databases. 

Container build(X) 
len() 

given an iterable X, build set from items in X 
return the number of stored items 

Static find(k) return the stored item with key k 
Dynamic insert(x) 

delete(k) 
add x to set (replace item with key x.key if one already exists) 
remove and return the stored item with key k 

Order iter ord() 
find min() 
find max() 
find next(k) 
find prev(k) 

return the stored items one-by-one in key order 
return the stored item with smallest key 
return the stored item with largest key 
return the stored item with smallest key larger than k 
return the stored item with largest key smaller than k 

(Note that find operations return None if no qualifying item exists.) 
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Sequence Implementations 

Here, we will discuss three data structures to implement the sequence interface. In Problem Set 
1, you will extend both Linked Lists and Dynamic arrays to make both first and last dynamic 
operations O(1) time for each. Notice that none of these data structures support dynamic operations 
at arbitrary index in sub-linear time. We will learn how to improve this operation in Lecture 7. 

Data 
Operation, Worst Case O(·) 

Container Static Dynamic 
Structure build(X) get at(i) 

set at(i,x) 

insert first(x) 

delete first() 

insert last(x) 

delete last() 

insert at(i, x) 

delete at(i) 

Array n 1 n n n 
Linked List n n 1 n n 
Dynamic Array n 1 n 1(a) n 

Array Sequence 

Computer memory is a finite resource. On modern computers many processes may share the same 
main memory store, so an operating system will assign a fixed chunk of memory addresses to 
each active process. The amount of memory assigned depends on the needs of the process and the 
availability of free memory. For example, when a computer program makes a request to store a 
variable, the program must tell the operating system how much memory (i.e. how many bits) will 
be required to store it. To fulfill the request, the operating system will find the available memory 
in the process’s assigned memory address space and reserve it (i.e. allocate it) for that purpose 
until it is no longer needed. Memory management and allocation is a detail that is abstracted away 
by many high level languages including Python, but know that whenever you ask Python to store 
something, Python makes a request to the operating system behind-the-scenes, for a fixed amount 
of memory in which to store it. 

Now suppose a computer program wants to store two arrays, each storing ten 64-bit words. The 
program makes separate requests for two chunks of memory (640 bits each), and the operating 
system fulfills the request by, for example, reserving the first ten words of the process’s assigned 
address space to the first array A, and the second ten words of the address space to the second array 
B. Now suppose that as the computer program progresses, an eleventh word w needs to be added 
to array A. It would seem that there is no space near A to store the new word: the beginning of the 
process’s assigned address space is to the left of A and array B is stored on the right. Then how 
can we add w to A? One solution could be to shift B right to make room for w, but tons of data 
may already be reserved next to B, which you would also have to move. Better would be to simply 
request eleven new words of memory, copy A to the beginning of the new memory allocation, store 
w at the end, and free the first ten words of the process’s address space for future memory requests. 

A fixed-length array is the data structure that is the underlying foundation of our model of com-
putation (you can think of your computer’s memory as a big fixed-length array that your operating 
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system allocates from). Implementing a sequence using an array, where index i in the array cor-
responds to item i in the sequence allows get at and set at to be O(1) time because of our 
random access machine. However, when deleting or inserting into the sequence, we need to move 
items and resize the array, meaning these operations could take linear-time in the worst case. Below 
is a full Python implementation of an array sequence. 

1 class Array_Seq: 
2 def __init__(self): # O(1) 
3 self.A = [] 
4 self.size = 0 
5 

6 def __len__(self): return self.size # O(1) 
7 def __iter__(self): yield from self.A # O(n) iter_seq 
8 

9 def build(self, X): # O(n) 
10 self.A = [a for a in X] # pretend this builds a static array 
11 self.size = len(self.A) 
12 

13 def get_at(self, i): return self.A[i] # O(1) 
14 def set_at(self, i, x): self.A[i] = x # O(1) 
15 

16 def _copy_forward(self, i, n, A, j): # O(n) 
17 for k in range(n): 
18 A[j + k] = self.A[i + k] 
19 

20 def _copy_backward(self, i, n, A, j): # O(n) 
21 for k in range(n - 1, -1, -1): 
22 A[j + k] = self.A[i + k] 
23 

24 def insert_at(self, i, x): # O(n) 
25 n = len(self) 
26 A = [None] * (n + 1) 
27 self._copy_forward(0, i, A, 0) 
28 A[i] = x 
29 self._copy_forward(i, n - i, A, i + 1) 
30 self.build(A) 
31 

32 def delete_at(self, i): # O(n) 
33 n = len(self) 
34 A = [None] * (n - 1) 
35 self._copy_forward(0, i, A, 0) 
36 x = self.A[i] 
37 self._copy_forward(i + 1, n - i - 1, A, i) 
38 self.build(A) 
39 return x 
40 # O(n) 
41 def insert_first(self, x): self.insert_at(0, x) 
42 def delete_first(self): return self.delete_at(0) 
43 def insert_last(self, x): self.insert_at(len(self), x) 
44 def delete_last(self): return self.delete_at(len(self) - 1) 
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Linked List Sequence 

A linked list is a different type of data structure entirely. Instead of allocating a contiguous chunk 
of memory in which to store items, a linked list stores each item in a node, node, a constant-sized 
container with two properties: node.item storing the item, and node.next storing the memory 
address of the node containing the next item in the sequence. 

1 class Linked_List_Node: 
2 def __init__(self, x): # O(1) 
3 self.item = x 
4 self.next = None 
5 

6 def later_node(self, i): # O(i) 
7 if i == 0: return self 
8 assert self.next 
9 return self.next.later_node(i - 1) 

Such data structures are sometimes called pointer-based or linked and are much more flexible than 
array-based data structures because their constituent items can be stored anywhere in memory. A 
linked list stores the address of the node storing the first element of the list called the head of the 
list, along with the linked list’s size, the number of items stored in the linked list. It is easy to add 
an item after another item in the list, simply by changing some addresses (i.e. relinking pointers). 
In particular, adding a new item at the front (head) of the list takes O(1) time. However, the only 
way to find the ith item in the sequence is to step through the items one-by-one, leading to worst-
case linear time for get at and set at operations. Below is a Python implementation of a full 
linked list sequence. 

1 class Linked_List_Seq: 
2 def __init__(self): 
3 self.head = None 
4 self.size = 0 
5 

6 def __len__(self): return self.size 
7 

8 def __iter__(self): 
9 node = self.head 

10 while node: 
11 yield node.item 
12 node = node.next 
13 

14 def build(self, X): 
15 for a in reversed(X): 
16 self.insert_first(a) 
17 

18 def get_at(self, i): 
19 node = self.head.later_node(i) 
20 return node.item 
21 

# O(1) 

# O(1) 

# O(n) iter_seq 

# O(n) 

# O(i) 
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22 def set_at(self, i, x): # O(i) 
23 node = self.head.later_node(i) 
24 node.item = x 
25 

26 def insert_first(self, x): # O(1) 
27 new_node = Linked_List_Node(x) 
28 new_node.next = self.head 
29 self.head = new_node 
30 self.size += 1 
31 

32 def delete_first(self): # O(1) 
33 x = self.head.item 
34 self.head = self.head.next 
35 self.size -= 1 
36 return x 
37 

38 def insert_at(self, i, x): # O(i) 
39 if i == 0: 
40 self.insert_first(x) 
41 return 
42 new_node = Linked_List_Node(x) 
43 node = self.head.later_node(i - 1) 
44 new_node.next = node.next 
45 node.next = new_node 
46 self.size += 1 
47 

48 def delete_at(self, i): # O(i) 
49 if i == 0: 
50 return self.delete_first() 
51 node = self.head.later_node(i - 1) 
52 x = node.next.item 
53 node.next = node.next.next 
54 self.size -= 1 
55 return x 
56 # O(n) 
57 def insert_last(self, x): self.insert_at(len(self), x) 
58 def delete_last(self): return self.delete_at(len(self) - 1) 

Dynamic Array Sequence 

The array’s dynamic sequence operations require linear time with respect to the length of array 
A. Is there another way to add elements to an array without paying a linear overhead transfer cost 
each time you add an element? One straight-forward way to support faster insertion would be to 
over-allocate additional space when you request space for the array. Then, inserting an item would 
be as simple as copying over the new value into the next empty slot. This compromise trades a little 
extra space in exchange for constant time insertion. Sounds like a good deal, but any additional 
allocation will be bounded; eventually repeated insertions will fill the additional space, and the 
array will again need to be reallocated and copied over. Further, any additional space you reserve 
will mean less space is available for other parts of your program. 
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Then how does Python support appending to the end of a length n Python List in worst-case O(1) 
time? The answer is simple: it doesn’t. Sometimes appending to the end of a Python List requires 
O(n) time to transfer the array to a larger allocation in memory, so sometimes appending to a 
Python List takes linear time. However, allocating additional space in the right way can guarantee 
that any sequence of n insertions only takes at most O(n) time (i.e. such linear time transfer oper-
ations do not occur often), so insertion will take O(1) time per insertion on average. We call this 
asymptotic running time amortized constant time, because the cost of the operation is amortized 
(distributed) across many applications of the operation. 

To achieve an amortized constant running time for insertion into an array, our strategy will be to 
allocate extra space in proportion to the size of the array being stored. Allocating O(n) additional 
space ensures that a linear number of insertions must occur before an insertion will overflow the 
allocation. A typical implementation of a dynamic array will allocate double the amount of space 
needed to store the current array, sometimes referred to as table doubling. However, allocating 
any constant fraction of additional space will achieve the amortized bound. Python Lists allocate 
additional space according to the following formula (from the Python source code written in C): 

1 new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6); 

Here, the additional allocation is modest, roughly one eighth of the size of the array being appended 
(bit shifting the size to the right by 3 is equivalent to floored division by 8). But the additional al-
location is still linear in the size of the array, so on average, n/8 insertions will be performed for 
every linear time allocation of the array, i.e. amortized constant time. 

What if we also want to remove items from the end of the array? Popping the last item can occur in 
constant time, simply by decrementing a stored length of the array (which Python does). However, 
if a large number of items are removed from a large list, the unused additional allocation could 
occupy a significant amount of wasted memory that will not available for other purposes. When 
the length of the array becomes sufficiently small, we can transfer the contents of the array to a 
new, smaller memory allocation so that the larger memory allocation can be freed. How big should 
this new allocation be? If we allocate the size of the array without any additional allocation, an 
immediate insertion could trigger another allocation. To achieve constant amortized running time 
for any sequence of n appends or pops, we need to make sure there remains a linear fraction of 
unused allocated space when we rebuild to a smaller array, which guarantees that at least Ω(n) 
sequential dynamic operations must occur before the next time we need to reallocate memory. 

Below is a Python implementation of a dynamic array sequence, including operationsinsert last 
(i.e., Python list append) and delete last (i.e., Python list pop), using table doubling propor-
tions. When attempting to append past the end of the allocation, the contents of the array are 
transferred to an allocation that is twice as large. When removing down to one fourth of the alloca-
tion, the contents of the array are transferred to an allocation that is half as large. Of course Python 
Lists already support dynamic operations using these techniques; this code is provided to help you 
understand how amortized constant append and pop could be implemented. 
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class Dynamic_Array_Seq(Array_Seq): 
def __init__(self, r = 2): # O(1) 

super().__init__() 
self.size = 0 
self.r = r 
self._compute_bounds() 
self._resize(0) 

def __len__(self): return self.size # O(1) 

def __iter__(self): # O(n) 
for i in range(len(self)): yield self.A[i] 

def build(self, X): # O(n) 
for a in X: self.insert_last(a) 

def _compute_bounds(self): # O(1) 
self.upper = len(self.A) 
self.lower = len(self.A) // (self.r * self.r) 

def _resize(self, n): # O(1) or O(n) 
if (self.lower < n < self.upper): return 
m = max(n, 1) * self.r 
A = [None] * m 
self._copy_forward(0, self.size, A, 0) 
self.A = A 
self._compute_bounds() 

def insert_last(self, x): # O(1)a 
self._resize(self.size + 1) 
self.A[self.size] = x 
self.size += 1 

def delete_last(self): # O(1)a 
self.A[self.size - 1] = None 
self.size -= 1 
self._resize(self.size) 

def insert_at(self, i, x): # O(n) 
self.insert_last(None) 
self._copy_backward(i, self.size - (i + 1), self.A, i + 1) 
self.A[i] = x 

def delete_at(self, i): # O(n) 
x = self.A[i] 
self._copy_forward(i + 1, self.size - (i + 1), self.A, i) 
self.delete_last() 
return x 

# O(n) 
def insert_first(self, x): self.insert_at(0, x) 
def delete_first(self): return self.delete_at(0) 
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Exercises: 
• Suppose the next pointer of the last node of a linked list points to an earlier node in the list, 

creating a cycle. Given a pointer to the head of the list (without knowing its size), describe a 
linear-time algorithm to find the number of nodes in the cycle. Can you do this while using 
only constant additional space outside of the original linked list? 

Solution: Begin with two pointers pointing at the head of the linked list: one slow pointer 
and one fast pointer. The pointers take turns traversing the nodes of the linked list, starting 
with the fast pointer. On the slow pointer’s turn, the slow pointer simply moves to the next 
node in the list; while on the fast pointer’s turn, the fast pointer initially moves to the next 
node, but then moves on to the next node’s next node before ending its turn. Every time the 
fast pointer visits a node, it checks to see whether it’s the same node that the slow pointer 
is pointing to. If they are the same, then the fast pointer must have made a full loop around 
the cycle, to meet the slow pointer at some node v on the cycle. Now to find the length of 
the cycle, simply have the fast pointer continue traversing the list until returning back to v, 
counting the number of nodes visited along the way. 

To see that this algorithm runs in linear time, clearly the last step of traversing the cycle takes 
at most linear time, as v is the only node visited twice while traversing the cycle. Further, 
we claim the slow pointer makes at most one move per node. Suppose for contradiction the 
slow pointer moves twice away from some node u before being at the same node as the fast 
pointer, meaning that u is on the cycle. In the same time the slow pointer takes to traverse the 
cycle from u back to u, the fast pointer will have traveled around the cycle twice, meaning 
that both pointers must have existed at the same node prior to the slow pointer leaving u, a 
contradiction. 

• Given a data structure implementing the Sequence interface, show how to use it to implement 
the Set interface. (Your implementation does not need to be efficient.) 

Solution: 

1 def Set_from_Seq(seq): 
2 class set_from_seq: 
3 def __init__(self): self.S = seq() 
4 def __len__(self): return len(self.S) 
5 def __iter__(self): yield from self.S 
6 

7 def build(self, A): 
8 self.S.build(A) 
9 

10 def insert(self, x): 
11 for i in range(len(self.S)): 
12 if self.S.get_at(i).key == x.key: 
13 self.S.set_at(i, x) 
14 return 
15 self.S.insert_last(x) 
16 
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def delete(self, k): 
for i in range(len(self.S)): 

if self.S.get_at(i).key == k: 
return self.S.delete_at(i) 

def find(self, k): 
for x in self: 

if x.key == k: return x 
return None 

def find_min(self): 
out = None 
for x in self: 

if (out is None) or (x.key < out.key): 
out = x 

return out 

def find_max(self): 
out = None 
for x in self: 

if (out is None) or (x.key > out.key): 
out = x 

return out 

def find_next(self, k): 
out = None 
for x in self: 

if x.key > k: 
if (out is None) or (x.key < out.key): 

out = x 
return out 

def find_prev(self, k): 
out = None 
for x in self: 

if x.key < k: 
if (out is None) or (x.key > out.key): 

out = x 
return out 

def iter_ord(self): 
x = self.find_min() 
while x: 

yield x 
x = self.find_next(x.key) 

return set_from_seq 
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