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Algorithms 
The study of algorithms searches for efficient procedures to solve problems. The goal of this class 
is to not only teach you how to solve problems, but to teach you to communicate to others that a 
solution to a problem is both correct and efficient. 

• A problem is a binary relation connecting problem inputs to correct outputs. 

• A (deterministic) algorithm is a procedure that maps inputs to single outputs. 

• An algorithm solves a problem if for every problem input it returns a correct output. 

While a problem input may have more than one correct output, an algorithm should only return one 
output for a given input (it is a function). As an example, consider the problem of finding another 
student in your recitation who shares the same birthday. 

Problem: Given the students in your recitation, return either the names of two students 
who share the same birthday and year, or state that no such pair exists. 

This problem relates one input (your recitation) to one or more outputs comprising birthday-
matching pairs of students or one negative result. A problem input is sometimes called an instance 
of the problem. One algorithm that solves this problem is the following. 

Algorithm: Maintain an initially empty record of student names and birthdays. Go 
around the room and ask each student their name and birthday. After interviewing each 
student, check to see whether their birthday already exists in the record. If yes, return the 
names of the two students found. Otherwise, add their name and birthday to the record. 
If after interviewing all students no satisfying pair is found, return that no matching pair 
exists. 

Of course, our algorithm solves a much more general problem than the one proposed above. The 
same algorithm can search for a birthday-matching pair in any set of students, not just the students 
in your recitation. In this class, we try to solve problems which generalize to inputs that may be 
arbitrarily large. The birthday matching algorithm can be applied to a recitation of any size. But 
how can we determine whether the algorithm is correct and efficient? 
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Correctness 
Any computer program you write will have finite size, while an input it acts on may be arbitrarily 
large. Thus every algorithm we discuss in this class will need to repeat commands in the algorithm 
via loops or recursion, and we will be able to prove correctness of the algorithm via induction. 
Let’s prove that the birthday algorithm is correct. 

Proof. Induct on the first k students interviewed. Base case: for k = 0, there is no 
matching pair, and the algorithm returns that there is no matching pair. Alternatively, 
assume for induction that the algorithm returns correctly for the first k students. If the 
first k students contain a matching pair, than so does the first k + 1 students and the 
algorithm already returned a matching pair. Otherwise the first k students do not contain 
a matching pair, so if the k+1 students contain a match, the match includes student k+1, 
and the algorithm checks whether the student k + 1 has the same birthday as someone 
already processed. 

Efficiency 
What makes a computer program efficient? One program is said to be more efficient than another 
if it can solve the same problem input using fewer resources. We expect that a larger input might 
take more time to solve than another input having smaller size. In addition, the resources used by 
a program, e.g. storage space or running time, will depend on both the algorithm used and the ma-
chine on which the algorithm is implemented. We expect that an algorithm implemented on a fast 
machine will run faster than the same algorithm on a slower machine, even for the same input. We 
would like to be able to compare algorithms, without having to worry about how fast our machine 
is. So in this class, we compare algorithms based on their asymptotic performance relative to 
problem input size, in order to ignore constant factor differences in hardware performance. 
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Asymptotic Notation 
We can use asymptotic notation to ignore constants that do not change with the size of the problem 
input. O(f(n)) represents the set of functions with domain over the natural numbers satisfying the 
following property. 

O Notation: Non-negative function g(n) is in O(f(n)) if and only if there exists a 
positive real number c and positive integer n0 such that g(n) ≤ c · f(n) for all n ≥ n0. 

This definition upper bounds the asymptotic growth of a function for sufficiently large n, i.e., 
the bound on growth is true even if we were to scale or shift our function by a constant amount. 
By convention, it is more common for people to say that a function g(n) is O(f(n)) or equal 
to O(f(n)), but what they really mean is set containment, i.e., g(n) ∈ O(f(n)). So since our 
problem’s input size is cn for some constant c, we can forget about c and say the input size is O(n) 
(order n). A similar notation can be used for lower bounds. 

Ω Notation: Non-negative function g(n) is in Ω(f(n)) if and only if there exists a 
positive real number c and positive integer n0 such that c · f(n) ≤ g(n) for all n ≥ n0. 

When one function both asymptotically upper bounds and asymptotically lower bounds another 
function, we use Θ notation. When g(n) = Θ(f(n)), we say that f(n) represents a tight bound 
on g(n). 

Θ Notation: Non-negative g(n) is in Θ(f(n)) if and only if g(n) ∈ O(f(n)) ∩ Ω(f(n)). 

We often use shorthand to characterize the asymptotic growth (i.e., asymptotic complexity) of 
common functions, such as those shown in the table below1. Here we assume c ∈ Θ(1). 

Shorthand Constant Logarithmic Linear Quadratic Polynomial Exponential1 

Θ(f(n)) Θ(1) Θ(log n) Θ(n) 2)Θ(n c)Θ(n 2Θ(n
c) 

Linear time is often necessary to solve problems where the entire input must be read in order to 
solve the problem. However, if the input is already accessible in memory, many problems can 
be solved in sub-linear time. For example, the problem of finding a value in a sorted array (that 
has already been loaded into memory) can be solved in logarithmic time via binary search. We 
focus on polynomial time algorithms in this class, typically for small values of c. There’s a big 
difference between logarithmic, linear, and exponential. If n = 1000, log n ≈ 101, n ≈ 103 , while 
≈ 103002n . For comparison, the number of atoms in the universe is estimated around 1080 . It is 

common to use the variable ‘n’ to represent a parameter that is linear in the problem input size, 
though this is not always the case. For example, when talking about graph algorithms later in the 
term, a problem input will be a graph parameterized by vertex set V and edge set E, so a natural 
input size will be Θ(|V | + |E|). Alternatively, when talking about matrix algorithms, it is common 
to let n be the width of a square matrix, where a problem input will have size Θ(n2), specifying 
each element of the n × n matrix. 

1Note that exponential 2Θ(n c) is a convenient abuse of notation meaning {2p | p ∈ Θ(nc)}. 
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Model of Computation 
In order to precisely calculate the resources used by an algorithm, we need to model how long a 
computer takes to perform basic operations. Specifying such a set of operations provides a model 
of computation upon which we can base our analysis. In this class, we will use the w-bit Word-
RAM model of computation, which models a computer as a random access array of machine 
words called memory, together with a processor that can perform operations on the memory. 
A machine word is a sequence of w bits representing an integer from the set {0, . . . , 2w − 1}. 
A Word-RAM processor can perform basic binary operations on two machine words in constant 
time, including addition, subtraction, multiplication, integer division, modulo, bitwise operations, 
and binary comparisons. In addition, given a word a, the processor can read or write the word 
in memory located at address a in constant time. If a machine word contains only w bits, the 
processor will only be able to read and write from at most 2w addresses in memory2. So when 
solving a problem on an input stored in n machine words, we will always assume our Word-RAM 
has a word size of at least w > log2 n bits, or else the machine would not be able to access all of the 
input in memory. To put this limitation in perspective, a Word-RAM model of a byte-addressable 
64-bit machine allows inputs up to ∼ 1010 GB in size. 

Data Structure 
The running time of our birthday matching algorithm depends on how we store the record of names 
and birthdays. A data structure is a way to store a non-constant amount of data, supporting a set 
of operations to interact with that data. The set of operations supported by a data structure is 
called an interface. Many data structures might support the same interface, but could provide 
different performance for each operation. Many problems can be solved trivially by storing data 
in an appropriate choice of data structure. For our example, we will use the most primitive data 
structure native to the Word-RAM: the static array. A static array is simply a contiguous sequence 
of words reserved in memory, supporting a static sequence interface: 

• StaticArray(n): allocate a new static array of size n initialized to 0 in Θ(n) time 

• StaticArray.get at(i): return the word stored at array index i in Θ(1) time 

• StaticArray.set at(i, x): write the word x to array index i in Θ(1) time 

The get at(i) and set at(i, x) operations run in constant time because each item in the 
array has the same size: one machine word. To store larger objects at an array index, we can 
interpret the machine word at the index as a memory address to a larger piece of memory. A Python 
tuple is like a static array without set at(i, x). A Python list implements a dynamic array 
(see L02). 

2For example, on a typical 32-bit machine, each byte (8-bits) is addressable (for historical reasons), so the size of 
the machine’s random-access memory (RAM) is limited to (8-bits)×(232) ≈ 4 GB. 
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1 class StaticArray: 
2 def __init__(self, n): 
3 self.data = [None] * n 
4 def get_at(self, i): 
5 if not (0 <= i < len(self.data)): raise IndexError 
6 return self.data[i] 
7 def set_at(self, i, x): 
8 if not (0 <= i < len(self.data)): raise IndexError 
9 self.data[i] = x 

10 

11 def birthday_match(students): 
’’’12 

13 Find a pair of students with the same birthday 
14 Input: tuple of student (name, bday) tuples 
15 Output: tuple of student names or None 

’’’16 

17 n = len(students) # O(1) 
18 record = StaticArray(n) # O(n) 
19 for k in range(n): # n 
20 (name1, bday1) = students[k] # O(1) 
21 for i in range(k): # k Check if in record 
22 (name2, bday2) = record.get_at(i) # O(1) 
23 if bday1 == bday2: # O(1) 
24 return (name1, name2) # O(1) 
25 record.set_at(k, (name1, bday1)) # O(1) 
26 return None # O(1) 

Running Time Analysis 
Now let’s analyze the running time of our birthday matching algorithm on a recitation containing 
n students. We will assume that each name and birthday fits into a constant number of machine 
words so that a single student’s information can be collected and manipulated in constant time3 . 
We step through the algorithm line by line. All the lines take constant time except for lines 8, 9, 
and 11. Line 8 takes Θ(n) time to initialize the static array record; line 9 loops at most n times; and 
line 11 loops through the k items existing in the record. Thus the running time for this algorithm 
is at most: 

n−1X 
2)O(n) + (O(1) + k · O(1)) = O(n 

k=0 

This is quadratic in n, which is polynomial! Is this efficient? No! We can do better by using a 
different data structure for our record. We will spend the first half of this class studying elementary 
data structures, where each data structure will be tailored to support a different set of operations 
efficiently. 

3This is a reasonable restriction, which allows names and birthdays to contain O(w) characters from a constant 
sized alphabet. Since w > log2 n, this restriction still allows each student’s information to be distinct. 
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Asymptotics Exercises 
1. Have students generate 10 functions and order them based on asymptotic growth. � � 

n2. Find a simple, tight asymptotic bound for 
6006 . 

Solution: Definition yields n(n − 1) . . . (n − 6005) in the numerator (a degree 6006 poly-� � 
n 6006).nomial) and 6006! in the denominator (constant with respect to n). So 
6006 = Θ(n �� �� √ ��2 n3. Find a simple, tight asymptotic bound for log6006 log n . 

Solution: Recall exponent and logarithm rules: log ab = log a + log b, log (ab) = b log a, 
and loga b = log b/ log a. �� � √ ��2 

� 
2 �√ � 

log n n = log n log nlog6006 log 6006 

= Θ(log n 1/2 + log log n) = Θ(log n) 

4. Show that 2n+1 ∈ Θ(2n), but that 22n+1 6∈ O(22
n 
). 

Solution: In the first case, 2n+1 = 2 · 2n , which is a constant factor larger than 2n . In the � �2 
22

nsecond case, 22n+1 
= , which is definitely more than a constant factor larger than 22n . 

5. Show that (log n)a = O(nb) for all positive constants a and b. 

Solution: It’s enough to show nb/(log n)a limits to ∞ as n →∞, and this is equivalent to 
arguing that the log of this expression approaches ∞: � 

b � 
n 

lim log = lim (b log n − a log log n) = lim (bx − a log x) = ∞, 
n→∞ (log n)a n→∞ x→∞ 

as desired. 
aNote: for the same reasons, n = O(cn) for any c > 1. 

6. Show that (log n)log n = Ω(n). 
mSolution: Note that m = Ω(2m), so setting n = 2m completes the proof. 

7. Show that (6n)! 6∈ Θ(n!), but that log ((6n)!) ∈ Θ(log(n!)). 

Solution: We invoke Sterling’s approximation, � � ��√ � n �n 1 
n! = 2πn 1 + Θ . 

e n 

Substituting in 6n gives an expression that is at least 66n larger than the original. But taking 
the logarithm of Sterling’s gives log(n!) = Θ(n log n), and substituting in 6n yields only 
constant additional factors. 
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