Lecture 4: Hashing

Review

	Operations $O(\cdot)$						
	Container	Static	Dynamic	Order			
Data Structure	build(X)	find(k)	insert(x)	find_min()	find_prev(k)		
			delete(k)	find_max()	find_next(k)		
Array	n	n	n	n	n		
Sorted Array	$n\log n$	$\log n$	n	1	$\log n$	Ī	

- Idea! Want faster search and dynamic operations. Can we find (k) faster than $\Theta(\log n)$?
- Answer is no (lower bound)! (But actually, yes...!?)

Comparison Model

- In this model, assume algorithm can only differentiate items via comparisons
- Comparable items: black boxes only supporting comparisons between pairs
- Comparisons are $<, \leq, >, \geq, =, \neq$, outputs are binary: True or False
- Goal: Store a set of *n* comparable items, support find(k) operation
- Running time is **lower bounded** by **#** comparisons performed, so count comparisons!

Decision Tree

- Any algorithm can be viewed as a **decision tree** of operations performed
- An internal node represents a binary comparison, branching either True or False
- For a comparison algorithm, the decision tree is binary (draw example)
- A leaf represents algorithm termination, resulting in an algorithm **output**
- A root-to-leaf path represents an execution of the algorithm on some input
- Need at least one leaf for each **algorithm output**, so search requires $\geq n + 1$ leaves

Comparison Search Lower Bound

- What is worst-case running time of a comparison search algorithm?
- running time \geq # comparisons \geq max length of any root-to-leaf path \geq height of tree
- What is minimum height of any binary tree on $\geq n$ nodes?
- Minimum height when binary tree is complete (all rows full except last)
- Height $\geq \lfloor \lg(n+1) \rfloor 1 = \Omega(\log n)$, so running time of any comparison sort is $\Omega(\log n)$
- Sorted arrays achieve this bound! Yay!
- More generally, height of tree with $\Theta(n)$ leaves and max branching factor b is $\Omega(\log_b n)$
- To get faster, need an operation that allows super-constant $\omega(1)$ branching factor. How??

Direct Access Array

- Exploit Word-RAM O(1) time random access indexing! Linear branching factor!
- Idea! Give item unique integer key k in $\{0, \ldots, u-1\}$, store item in an array at index k
- Associate a meaning with each index of array
- If keys fit in a machine word, i.e. $u \leq 2^w$, worst-case O(1) find/dynamic operations! Yay!
- 6.006: assume input numbers/strings fit in a word, unless length explicitly parameterized
- Anything in computer memory is a binary integer, or use (static) 64-bit address in memory
- But space O(u), so really bad if $n \ll u$... :(
- Example: if keys are ten-letter names, for one bit per name, requires $26^{10} \approx 17.6$ TB space
- How can we use less space?

Hashing

- Idea! If $n \ll u$, map keys to a smaller range $m = \Theta(n)$ and use smaller direct access array
- Hash function: $h(k) : \{0, ..., u 1\} \to \{0, ..., m 1\}$ (also hash map)
- Direct access array called **hash table**, h(k) called the **hash** of key k
- If $m \ll u$, no hash function is injective by pigeonhole principle

Lecture 4: Hashing

- Always exists keys a, b such that $h(a) = h(b) \rightarrow$ **Collision**! :(
- Can't store both items at same index, so where to store? Either:
 - store somewhere else in the array (open addressing)
 - * complicated analysis, but common and practical
 - store in another data structure supporting dynamic set interface (chaining)

Chaining

- Idea! Store collisions in another data structure (a chain)
- If keys roughly evenly distributed over indices, chain size is $n/m = n/\Omega(n) = O(1)!$
- If chain has O(1) size, all operations take O(1) time! Yay!
- If not, many items may map to same location, e.g. h(k) = constant, chain size is $\Theta(n)$:(
- Need good hash function! So what's a good hash function?

Hash Functions

Division (bad): $h(k) = (k \mod m)$

- Heuristic, good when keys are uniformly distributed!
- m should avoid symmetries of the stored keys
- Large primes far from powers of 2 and 10 can be reasonable
- Python uses a version of this with some additional mixing
- If $u \gg n$, every hash function will have some input set that will a create O(n) size chain
- Idea! Don't use a fixed hash function! Choose one randomly (but carefully)!

Universal (good, theoretically): $h_{ab}(k) = (((ak + b) \mod p) \mod m)$

- Hash Family $\mathcal{H}(p,m) = \{h_{ab} \mid a, b \in \{0, \dots, p-1\} \text{ and } a \neq 0\}$
- Parameterized by a fixed prime p > u, with a and b chosen from range $\{0, \ldots, p-1\}$
- \mathcal{H} is a **Universal** family: $\Pr_{h \in \mathcal{H}} \{h(k_i) = h(k_j)\} \le 1/m \quad \forall k_i \neq k_j \in \{0, \dots, u-1\}$
- Why is universality useful? Implies short chain lengths! (in expectation)
- X_{ij} indicator random variable over $h \in \mathcal{H}$: $X_{ij} = 1$ if $h(k_i) = h(k_j)$, $X_{ij} = 0$ otherwise
- Size of chain at index $h(k_i)$ is random variable $X_i = \sum_j X_{ij}$
- Expected size of chain at index $h(k_i)$

$$\mathbb{E}_{h\in\mathcal{H}}\{X_i\} = \mathbb{E}_{h\in\mathcal{H}}\left\{\sum_j X_{ij}\right\} = \sum_j \mathbb{E}_{h\in\mathcal{H}}\{X_{ij}\} = 1 + \sum_{j\neq i} \mathbb{E}_{h\in\mathcal{H}}\{X_{ij}\}$$
$$= 1 + \sum_{j\neq i} (1) \Pr_{h\in\mathcal{H}}\{h(k_i) = h(k_j)\} + (0) \Pr_{h\in\mathcal{H}}\{h(k_i) \neq h(k_j)\}$$
$$\leq 1 + \sum_{j\neq i} 1/m = 1 + (n-1)/m$$

• Since $m = \Omega(n)$, load factor $\alpha = n/m = O(1)$, so O(1) in expectation!

Dynamic

- If n/m far from 1, rebuild with new randomly chosen hash function for new size m
- Same analysis as dynamic arrays, cost can be amortized over many dynamic operations
- So a hash table can implement dynamic set operations in expected amortized O(1) time! :)

	Operations $O(\cdot)$					
	Container	Static	Dynamic	Order		
Data Structure	build(X)	find(k)	insert(x)	find_min()	find_prev(k)	
			delete(k)	find_max()	find_next(k)	
Array	n	n	n	n	n	
Sorted Array	$n\log n$	$\log n$	n	1	$\log n$	
Direct Access Array	u	1	1	u	u	
Hash Table	$n_{(e)}$	$1_{(e)}$	$1_{(a)(e)}$	n	\overline{n}	

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>