Lecture 13: Dijkstra’s Algorithm

Review

- Single-Source Shortest Paths on weighted graphs
- Previously: $O(|V| + |E|)$-time algorithms for small positive weights or DAGs
- Last time: Bellman-Ford, $O(|V||E|)$-time algorithm for general graphs with negative weights
- Today: faster for general graphs with non-negative edge weights, i.e., for $e \in E$, $w(e) \geq 0$

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>Graph</th>
<th>Weights</th>
<th>Name</th>
<th>SSSP Algorithm</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
<td>Unweighted</td>
<td>BFS</td>
<td>$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>DAG</td>
<td>Any</td>
<td>DAG Relaxation</td>
<td>$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>Any</td>
<td>Bellman-Ford</td>
<td>$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>Non-negative</td>
<td>Dijkstra</td>
<td>$</td>
<td>V</td>
</tr>
</tbody>
</table>

Non-negative Edge Weights

- **Idea!** Generalize BFS approach to weighted graphs:
 - Grow a sphere centered at source s
 - Repeatedly explore closer vertices before further ones
 - But how to explore closer vertices if you don’t know distances beforehand? :

- **Observation 1**: If weights non-negative, monotonic distance increase along shortest paths
 - i.e., if vertex u appears on a shortest path from s to v, then $\delta(s, u) \leq \delta(s, v)$
 - Let $V_x \subseteq V$ be the subset of vertices reachable within distance $\leq x$ from s
 - If $v \in V_x$, then any shortest path from s to v only contains vertices from V_x
 - Perhaps grow V_x one vertex at a time! (but growing for every x is slow if weights large)

- **Observation 2**: Can solve SSSP fast if given order of vertices in increasing distance from s
 - Remove edges that go against this order (since cannot participate in shortest paths)
 - May still have cycles if zero-weight edges: repeatedly collapse into single vertices
 - Compute $\delta(s, v)$ for each $v \in V$ using DAG relaxation in $O(|V| + |E|)$ time
Dijkstra’s Algorithm

- Named for famous Dutch computer scientist Edsger Dijkstra (actually Dijkstra!)

- **Idea!** Relax edges from each vertex in increasing order of distance from source s

- **Idea!** Efficiently find next vertex in the order using a data structure

- **Changeable Priority Queue** Q on items with keys and unique IDs, supporting operations:

 - $Q.build(X)$: initialize Q with items in iterator X
 - $Q.delete_min()$: remove an item with minimum key
 - $Q.decrease_key(id, k)$: find stored item with ID id and change key to k

- Implement by **cross-linking** a Priority Queue Q' and a Dictionary D mapping IDs into Q'

- Assume vertex IDs are integers from 0 to $|V| - 1$ so can use a direct access array for D

- For brevity, say item x is the tuple $(x.id, x.key)$

- Set $d(s, v) = \infty$ for all $v \in V$, then set $d(s, s) = 0$

- Build changeable priority queue Q with an item $(v, d(s, v))$ for each vertex $v \in V$

- While Q not empty, delete an item $(u, d(s, u))$ from Q that has minimum $d(s, u)$

 - For vertex v in outgoing adjacencies $\text{Adj}^+(u)$:

 * If $d(s, v) > d(s, u) + w(u, v)$:

 - Relax edge (u, v), i.e., set $d(s, v) = d(s, u) + w(u, v)$
 - Decrease the key of v in Q to new estimate $d(s, v)$

- Run Dijkstra on example
Example

Delete \(v \) from \(Q \)
\[
\begin{array}{c|cccc}
\text{Delete} & d(s,v) \\
\text{v from } Q & s & a & b & c & d \\
\hline
s & 0 & \infty & \infty & \infty & \infty \\
c & 10 & \infty & 3 & \infty \\
d & 7 & 11 & 5 \\
a & 7 & 10 \\
b & 7 \\
\hline
\delta(s,v) & 0 & 7 & 9 & 3 & 5 \\
\end{array}
\]

Correctness

- **Claim:** At end of Dijkstra’s algorithm, \(d(s,v) = \delta(s,v) \) for all \(v \in V \)
- **Proof:**
 - If relaxation sets \(d(s,v) \) to \(\delta(s,v) \), then \(d(s,v) = \delta(s,v) \) at the end of the algorithm
 * Relaxation can only decrease estimates \(d(s,v) \)
 * Relaxation is safe, i.e., maintains that each \(d(s,v) \) is weight of a path to \(v \) (or \(\infty \))
 - Suffices to show \(d(s,v) = \delta(s,v) \) when vertex \(v \) is removed from \(Q \)
 * Proof by induction on first \(k \) vertices removed from \(Q \)
 * Base Case \((k = 1) \): \(s \) is first vertex removed from \(Q \), and \(d(s,s) = 0 = \delta(s,s) \)
 * Inductive Step: Assume true for \(k < k' \), consider \(k' \)th vertex \(v' \) removed from \(Q \)
 * Consider some shortest path \(\pi \) from \(s \) to \(v' \), with \(w(\pi) = \delta(s,v') \)
 * Let \((x,y)\) be the first edge in \(\pi \) where \(y \) is not among first \(k' - 1 \) (perhaps \(y = v' \))
 * When \(x \) was removed from \(Q \), \(d(s,x) = \delta(s,x) \) by induction, so:
 \[
 \begin{align*}
 d(s,y) & \leq \delta(s,x) + w(x,y) & \text{relaxed edge } (x,y) \text{ when removed } x \\
 & = \delta(s,y) & \text{subpaths of shortest paths are shortest paths} \\
 & \leq \delta(s,v') & \text{non-negative edge weights} \\
 & \leq d(s,v') & \text{relaxation is safe} \\
 & \leq d(s,y) & v' \text{ is vertex with minimum } d(s,v') \text{ in } Q \\
 \end{align*}
 \]
 * So \(d(s,v') = \delta(s,v') \), as desired
Running Time

- Count operations on changeable priority queue Q, assuming it contains n items:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
<th>Occurrences in Dijkstra</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q.build(X)$ ($n =</td>
<td>X</td>
<td>$)</td>
</tr>
<tr>
<td>$Q.delete_min()$</td>
<td>M_n</td>
<td>$</td>
</tr>
<tr>
<td>$Q.decrease_key(id, k)$</td>
<td>D_n</td>
<td>$</td>
</tr>
</tbody>
</table>

- Total running time is $O(B_{|V|} + |V| \cdot M_{|V|} + |E| \cdot D_{|V|})$

- Assume pruned graph to search only vertices reachable from the source, so $|V| = O(|E|)$

Priority Queue Q' on n items	Q Operations $O(\cdot)$	Dijkstra $O(\cdot)$ $n =	V	= O(E)$		
Array	n	$	V	^2$				
Binary Heap	n	$	E	\log	V	$		
Fibonacci Heap	$n \log n(a)$	$	E	+	V	\log	V	$

- If graph is dense, i.e., $|E| = \Theta(|V|^2)$, using an Array for Q' yields $O(|V|^2)$ time

- If graph is sparse, i.e., $|E| = \Theta(|V|)$, using a Binary Heap for Q' yields $O(|V| \log |V|)$ time

- A Fibonacci Heap is theoretically good in all cases, but is not used much in practice

- We won’t discuss Fibonacci Heaps in 6.006 (see 6.854 or CLRS chapter 19 for details)

- You should assume Dijkstra runs in $O(|E| + |V| \log |V|)$ time when using in theory problems

Summary: Weighted Single-Source Shortest Paths

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>SSSP Algorithm</th>
<th>Running Time $O(\cdot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Unweighted</td>
<td>BFS</td>
</tr>
<tr>
<td>DAG</td>
<td>Any</td>
<td>DAG Relaxation</td>
</tr>
<tr>
<td>General</td>
<td>Non-negative</td>
<td>Dijkstra</td>
</tr>
<tr>
<td>General</td>
<td>Any</td>
<td>Bellman-Ford</td>
</tr>
</tbody>
</table>

- What about All-Pairs Shortest Paths?

- Doing a SSPP algorithm $|V|$ times is actually pretty good, since output has size $O(|V|^2)$

- Can do better than $|V| \cdot O(|V| \cdot |E|)$ for general graphs with negative weights (next time!)