

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 18: Subset Sum Variants

Recitation 18: Subset Sum Variants

Subset Sum Review

• Input: Set of n positive integers A[i] P
• Output: Is there subset A0 ⊂ A such that a∈A0 a = S?

• Can solve with dynamic programming in O(nS) time

Subset Sum

1. Subproblems

• Here we’ll try 1-indexed prefixes for comparison

• x(i, j): True if can make sum j using items 1 to i, False otherwise

2. Relate

• Is last item i in a valid subset? (Guess!)

• If yes, then try to sum to j − A[i] ≥ 0 using remaining items

• If no, then try to sum to j using remaining items ()
x(i − 1, j − A[i]) if j ≥ A[i]

• x(i, j) = OR
x(i − 1, j) always

• for i ∈ {0, . . . , n}, j ∈ {0, . . . , S}

3. Topo

• Subproblems x(i, j) only depend on strictly smaller i, so acyclic

4. Base

• x(i, 0) = True for i ∈ {0, . . . , n} (trivial to make zero sum!)

• x(0, j) = False for j ∈ {1, . . . , S} (impossible to make positive sum from empty set)

5. Original

• Solve subproblems via recursive top down or iterative bottom up

• Maximum evaluated expression is given by x(n, S)

6. Time

• (# subproblems: O(nS)) × (work per subproblem O(1)) = O(nS) running time.

2 Recitation 18: Subset Sum Variants

Exercise: Partition - Given a set of n positive integers A, describe an algorithm to determine
whether A can be partitioned into two non-intersecting subsets A1 and A2 of equal sum, i.e.P P
A1 ∩ A2 = ∅ and A1 ∪ A2 = A such that a∈A1

a = a∈A2
a.

Example: A = {1, 4, 3, 12, 19, 21, 22} has partition A1 = {1, 19, 21}, A2 = {3, 4, 12, 22}.

1 P
Solution: Run subset sum dynamic program with same A and S = a.

2 a∈A

Exercise: Close Partition - Given a set of n positive integers A, describe an algorithm to find a
partition of A into two non-intersecting subsets A1 and A2 such that the difference between their
respective sums are minimized. P
Solution: Run subset sum dynamic program as above, but evaluate for every S0 ∈ {0, . . . , 1 a},

2 a∈A
and return the largest S 0 such that the subset sum dynamic program returns true. Note that this still
only takes O(nS) time: O(nS) to compute all subproblems, and then O(nS) time again to loop
over the subproblems to find the max true S0 .

Exercise: Can you adapt subset sum to work with negative integers?

Solution: Same as subset sum (see L19), but we allow calling subproblems with larger j. But now
instead of solving x(i, j) only in the range i ∈ {0, . . . , n}, j ∈ {0, . . . , S} as in positive subsetP P
sum, we allow j to range from jmin = a (smallest possible j) to jmax = a a∈A,a<0 a∈A,a>0
(largest possible j).

x(i, j) = OR {x(i − 1, j − A[i]), x(i − 1, j)} (note jmin ≤ j − A[i] ≤ jmax is always true)

Subproblem dependencies are still acyclic because x(i, j) only depend on strictly smaller i. Base
cases are x(0, 0) = True and x(0, j) = False if j 6= 0. Running time is then proportional to number
of constant work subproblems, O(n(jmax − jmin)).

Alternatively, you can convert to an equivalent instance of positive subset sum and solve that.P
Choose large number Q > max(|S|, |a|). Add 2Q to each integer in A to form A0 , and a∈A
append the value 2Q, n − 1 times to the end of A0 . Every element of A0 is now positive, so solve
positive subset sum with S0 = S + n(2Q). Because (2n − 1)Q < S 0 < (2n + 1)Q, any satisfying
subset will contain exactly n integers from A0 since the sum of any fewer would have sum noP
greater than (n − 1)2Q + |a| < (2n − 1)Q, and sum of any more would have sum no smaller P a∈A
than (n + 1)2Q − |a| > (2n + 1)Q. Further, at least one integer in a satisfying subset of A0

a∈A
corresponds to an integer of A since S 0 is not divisible by 2Q. If A0 has a subset B0 summing to
S 0, then the items in A corresponding to integers in B0 will comprise a nonempty subset that sums
to S. Conversely, if A has a subset B that sums to S, choosing the k elements of A0 corresponding
the integers in B and n − k of the added 2Q values in A0 will comprise a subset B0 that sums to S 0 .

This is an example of a reduction: we show how to use a black-box to solve positive subset sum to
solve general subset sum. However, this reduction does lead to a weaker pseudopolynomial time
bound of O(n(S + 2nQ)) than the modified algorithm presented above.

3

vi

Recitation 18: Subset Sum Variants

0-1 Knapsack

• Input: Knapsack with size S, want to fill with items each item i has size si and value vi. P P
• Output: A subset of items (may take 0 or 1 of each) with si ≤ S maximizing value

• (Subset sum same as 0-1 Knapsack when each vi = si, deciding if total value S achievable)

• Example: Items {(si, vi)} = {(6, 6), (9, 9), (10, 12)}, S = 15

• Solution: Subset with max value is all items except the last one (greedy fails)

1. Subproblems

• Idea: Is last item in an optimal knapsack? (Guess!)

• If yes, get value vi and pack remaining space S − si using remaining items

• If no, then try to sum to S using remaining items

• x(i, j): maximum value by packing knapsack of size j using items 1 to i

2. Relate ()
vi + x(i − 1, j − si) if j ≥ si• x(i, j) = max
x(i − 1, j) always

• for i ∈ {0, . . . , n}, j ∈ {0, . . . , S}

3. Topo

• Subproblems x(i, j) only depend on strictly smaller i, so acyclic

4. Base

• x(i, 0) = 0 for i ∈ {0, . . . , n} (zero value possible if no more space)

• x(0, j) = 0 for j ∈ {1, . . . , S} (zero value possible if no more items)

5. Original

• Solve subproblems via recursive top down or iterative bottom up

• Maximum evaluated expression is given by x(n, S)

• Store parent pointers to reconstruct items to put in knapsack

6. Time

• # subproblems: O(nS)

• work per subproblem O(1)

• O(nS) running time

4 Recitation 18: Subset Sum Variants

Exercise: Close Partition (Alternative solution)

1 P
Solution: Given integers A, solve a 0-1 Knapsack instance with si = vi = A[i] and S = a,

2 a∈A
where the subset returned will be one half of a closest partition.

Exercise: Unbounded Knapsack - Same problem as 0-1 Knapsack, except that you may take as
many of any item as you like.

Solution: The O-1 Knapsack formulation works directly except for a small change in relation,
where i will not be decreased if it is taken once, where the topological order strictly decreases i + j
with each recursive call. ()

vi + x(i, j − si) if j ≥ si
x(i, j) = max

x(i − 1, j) always

An equivalent formulation reduces subproblems to expand work done per subproblem:

1. Subproblems:

• x(j): maximum value by packing knapsack of size j using the provided items

2. Relate:

• x(j) = max{vi + x(j − si) | i ∈ {1, . . . , n} and si ≤ j} ∪ {0}, for j ∈ {0, . . . , S}

3. Topo

• Subproblems x(j) only depend on strictly smaller j, so acyclic

4. Base

• x(0) = 0 (no space to pack!)

5. Original

• Solve subproblems via recursive top down or iterative bottom up

• Maximum evaluated expression is given by x(S)

• Store parent pointers to reconstruct items to put in knapsack

6. Time

• # subproblems: O(S)

• work per subproblem O(n)

• O(nS) running time

We’ve made CoffeeScript visualizers solving subset sum and 0-1 Knapsack:
https://codepen.io/mit6006/pen/JeBvKe

https://codepen.io/mit6006/pen/VVEPod

https://codepen.io/mit6006/pen/JeBvKe
https://codepen.io/mit6006/pen/VVEPod

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

