
    

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 18: Subset Sum Variants 

Recitation 18: Subset Sum Variants 

Subset Sum Review 

• Input: Set of n positive integers A[i] P 
• Output: Is there subset A0 ⊂ A such that a∈A0 a = S? 

• Can solve with dynamic programming in O(nS) time 

Subset Sum 

1. Subproblems 

• Here we’ll try 1-indexed prefixes for comparison 

• x(i, j): True if can make sum j using items 1 to i, False otherwise 

2. Relate 

• Is last item i in a valid subset? (Guess!) 

• If yes, then try to sum to j − A[i] ≥ 0 using remaining items 

• If no, then try to sum to j using remaining items ( ) 
x(i − 1, j − A[i]) if j ≥ A[i]

• x(i, j) = OR 
x(i − 1, j) always 

• for i ∈ {0, . . . , n}, j ∈ {0, . . . , S} 

3. Topo 

• Subproblems x(i, j) only depend on strictly smaller i, so acyclic 

4. Base 

• x(i, 0) = True for i ∈ {0, . . . , n} (trivial to make zero sum!) 

• x(0, j) = False for j ∈ {1, . . . , S} (impossible to make positive sum from empty set) 

5. Original 

• Solve subproblems via recursive top down or iterative bottom up 

• Maximum evaluated expression is given by x(n, S) 

6. Time 

• (# subproblems: O(nS)) × (work per subproblem O(1)) = O(nS) running time. 
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Exercise: Partition - Given a set of n positive integers A, describe an algorithm to determine 
whether A can be partitioned into two non-intersecting subsets A1 and A2 of equal sum, i.e.P P 
A1 ∩ A2 = ∅ and A1 ∪ A2 = A such that a∈A1 

a = a∈A2 
a. 

Example: A = {1, 4, 3, 12, 19, 21, 22} has partition A1 = {1, 19, 21}, A2 = {3, 4, 12, 22}. 

1 P 
Solution: Run subset sum dynamic program with same A and S = a.

2 a∈A 

Exercise: Close Partition - Given a set of n positive integers A, describe an algorithm to find a 
partition of A into two non-intersecting subsets A1 and A2 such that the difference between their 
respective sums are minimized. P 
Solution: Run subset sum dynamic program as above, but evaluate for every S0 ∈ {0, . . . , 1 a},

2 a∈A 
and return the largest S 0 such that the subset sum dynamic program returns true. Note that this still 
only takes O(nS) time: O(nS) to compute all subproblems, and then O(nS) time again to loop 
over the subproblems to find the max true S0 . 

Exercise: Can you adapt subset sum to work with negative integers? 

Solution: Same as subset sum (see L19), but we allow calling subproblems with larger j. But now 
instead of solving x(i, j) only in the range i ∈ {0, . . . , n}, j ∈ {0, . . . , S} as in positive subsetP P 
sum, we allow j to range from jmin = a (smallest possible j) to jmax = a a∈A,a<0 a∈A,a>0 
(largest possible j). 

x(i, j) = OR {x(i − 1, j − A[i]), x(i − 1, j)} (note jmin ≤ j − A[i] ≤ jmax is always true) 

Subproblem dependencies are still acyclic because x(i, j) only depend on strictly smaller i. Base 
cases are x(0, 0) = True and x(0, j) = False if j 6= 0. Running time is then proportional to number 
of constant work subproblems, O(n(jmax − jmin)). 

Alternatively, you can convert to an equivalent instance of positive subset sum and solve that.P 
Choose large number Q > max(|S|, |a|). Add 2Q to each integer in A to form A0 , and a∈A 
append the value 2Q, n − 1 times to the end of A0 . Every element of A0 is now positive, so solve 
positive subset sum with S0 = S + n(2Q). Because (2n − 1)Q < S 0 < (2n + 1)Q, any satisfying 
subset will contain exactly n integers from A0 since the sum of any fewer would have sum noP 
greater than (n − 1)2Q + |a| < (2n − 1)Q, and sum of any more would have sum no smaller P a∈A 
than (n + 1)2Q − |a| > (2n + 1)Q. Further, at least one integer in a satisfying subset of A0 

a∈A 
corresponds to an integer of A since S 0 is not divisible by 2Q. If A0 has a subset B0 summing to 
S 0, then the items in A corresponding to integers in B0 will comprise a nonempty subset that sums 
to S. Conversely, if A has a subset B that sums to S, choosing the k elements of A0 corresponding 
the integers in B and n − k of the added 2Q values in A0 will comprise a subset B0 that sums to S 0 . 

This is an example of a reduction: we show how to use a black-box to solve positive subset sum to 
solve general subset sum. However, this reduction does lead to a weaker pseudopolynomial time 
bound of O(n(S + 2nQ)) than the modified algorithm presented above. 
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0-1 Knapsack 

• Input: Knapsack with size S, want to fill with items each item i has size si and value vi. P P 
• Output: A subset of items (may take 0 or 1 of each) with si ≤ S maximizing value 

• (Subset sum same as 0-1 Knapsack when each vi = si, deciding if total value S achievable) 

• Example: Items {(si, vi)} = {(6, 6), (9, 9), (10, 12)}, S = 15 

• Solution: Subset with max value is all items except the last one (greedy fails) 

1. Subproblems 

• Idea: Is last item in an optimal knapsack? (Guess!) 

• If yes, get value vi and pack remaining space S − si using remaining items 

• If no, then try to sum to S using remaining items 

• x(i, j): maximum value by packing knapsack of size j using items 1 to i 

2. Relate ( ) 
vi + x(i − 1, j − si) if j ≥ si• x(i, j) = max 
x(i − 1, j) always 

• for i ∈ {0, . . . , n}, j ∈ {0, . . . , S} 

3. Topo 

• Subproblems x(i, j) only depend on strictly smaller i, so acyclic 

4. Base 

• x(i, 0) = 0 for i ∈ {0, . . . , n} (zero value possible if no more space) 

• x(0, j) = 0 for j ∈ {1, . . . , S} (zero value possible if no more items) 

5. Original 

• Solve subproblems via recursive top down or iterative bottom up 

• Maximum evaluated expression is given by x(n, S) 

• Store parent pointers to reconstruct items to put in knapsack 

6. Time 

• # subproblems: O(nS) 

• work per subproblem O(1) 

• O(nS) running time 
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Exercise: Close Partition (Alternative solution) 

1 P 
Solution: Given integers A, solve a 0-1 Knapsack instance with si = vi = A[i] and S = a,

2 a∈A 
where the subset returned will be one half of a closest partition. 

Exercise: Unbounded Knapsack - Same problem as 0-1 Knapsack, except that you may take as 
many of any item as you like. 

Solution: The O-1 Knapsack formulation works directly except for a small change in relation, 
where i will not be decreased if it is taken once, where the topological order strictly decreases i + j 
with each recursive call. ( ) 

vi + x(i, j − si) if j ≥ si 
x(i, j) = max 

x(i − 1, j) always 

An equivalent formulation reduces subproblems to expand work done per subproblem: 

1. Subproblems: 

• x(j): maximum value by packing knapsack of size j using the provided items 

2. Relate: 

• x(j) = max{vi + x(j − si) | i ∈ {1, . . . , n} and si ≤ j} ∪ {0}, for j ∈ {0, . . . , S} 

3. Topo 

• Subproblems x(j) only depend on strictly smaller j, so acyclic 

4. Base 

• x(0) = 0 (no space to pack!) 

5. Original 

• Solve subproblems via recursive top down or iterative bottom up 

• Maximum evaluated expression is given by x(S) 

• Store parent pointers to reconstruct items to put in knapsack 

6. Time 

• # subproblems: O(S) 

• work per subproblem O(n) 

• O(nS) running time 

We’ve made CoffeeScript visualizers solving subset sum and 0-1 Knapsack: 
https://codepen.io/mit6006/pen/JeBvKe 

https://codepen.io/mit6006/pen/VVEPod 

https://codepen.io/mit6006/pen/JeBvKe
https://codepen.io/mit6006/pen/VVEPod
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