Recitation 18: Subset Sum Variants

Subset Sum Review

- Input: Set of n positive integers $A[i]$
- Output: Is there subset $A' \subset A$ such that $\sum_{a \in A'} a = S$?
- Can solve with dynamic programming in $O(nS)$ time

Subset Sum

1. Subproblems
 - Here we’ll try 1-indexed prefixes for comparison
 - $x(i, j)$: True if can make sum j using items 1 to i, False otherwise

2. Relate
 - Is last item i in a valid subset? (Guess!)
 - If yes, then try to sum to $j - A[i] \geq 0$ using remaining items
 - If no, then try to sum to j using remaining items
 - $x(i, j) = \text{OR} \begin{cases} x(i - 1, j - A[i]) & \text{if } j \geq A[i] \\ x(i - 1, j) & \text{always} \end{cases}$
 - for $i \in \{0, \ldots, n\}, j \in \{0, \ldots, S\}$

3. Topo
 - Subproblems $x(i, j)$ only depend on strictly smaller i, so acyclic

4. Base
 - $x(i, 0) = \text{True}$ for $i \in \{0, \ldots, n\}$ (trivial to make zero sum!)
 - $x(0, j) = \text{False}$ for $j \in \{1, \ldots, S\}$ (impossible to make positive sum from empty set)

5. Original
 - Solve subproblems via recursive top down or iterative bottom up
 - Maximum evaluated expression is given by $x(n, S)$

6. Time
 - $(\# \text{subproblems}: O(nS)) \times (\text{work per subproblem } O(1)) = O(nS)$ running time.
Exercise: Partition - Given a set of n positive integers A, describe an algorithm to determine whether A can be partitioned into two non-intersecting subsets A_1 and A_2 of equal sum, i.e. $A_1 \cap A_2 = \emptyset$ and $A_1 \cup A_2 = A$ such that $\sum_{a \in A_1} a = \sum_{a \in A_2} a$.

Example: $A = \{1, 4, 3, 12, 19, 21, 22\}$ has partition $A_1 = \{1, 19, 21\}$, $A_2 = \{3, 4, 12, 22\}$.

Solution: Run subset sum dynamic program with same A and $S = \frac{1}{2} \sum_{a \in A} a$.

Exercise: Close Partition - Given a set of n positive integers A, describe an algorithm to find a partition of A into two non-intersecting subsets A_1 and A_2 such that the difference between their respective sums are minimized.

Solution: Run subset sum dynamic program as above, but evaluate for every $S' \in \{0, \ldots, \frac{1}{2} \sum_{a \in A} a\}$, and return the largest S' such that the subset sum dynamic program returns true. Note that this still only takes $O(nS)$ time: $O(nS)$ to compute all subproblems, and then $O(nS)$ time again to loop over the subproblems to find the max true S'.

Exercise: Can you adapt subset sum to work with negative integers?

Solution: Same as subset sum (see L19), but we allow calling subproblems with larger j. But now instead of solving $x(i, j)$ only in the range $i \in \{0, \ldots, n\}, j \in \{0, \ldots, S\}$ as in positive subset sum, we allow j to range from $j_{\text{min}} = \sum_{a \in A, a < 0} a$ (smallest possible j) to $j_{\text{max}} = \sum_{a \in A, a > 0} a$ (largest possible j).

$$x(i, j) = \text{OR} \{x(i - 1, j - A[i]), x(i - 1, j)\} \text{ (note } j_{\text{min}} \leq j - A[i] \leq j_{\text{max}} \text{ is always true)}$$

Subproblem dependencies are still acyclic because $x(i, j)$ only depend on strictly smaller i. Base cases are $x(0, 0) = \text{True}$ and $x(0, j) = \text{False}$ if $j \neq 0$. Running time is then proportional to number of constant work subproblems, $O(n(j_{\text{max}} - j_{\text{min}}))$.

Alternatively, you can convert to an equivalent instance of positive subset sum and solve that. Choose large number $Q > \max(|S|, \frac{1}{2} \sum_{a \in A} |a|)$. Add $2Q$ to each integer in A to form A', and append the value $2Q$, $n - 1$ times to the end of A'. Every element of A' is now positive, so solve positive subset sum with $S' = S + n(2Q)$. Because $(2n - 1)Q < S' < (2n + 1)Q$, any satisfying subset will contain exactly n integers from A' since the sum of any fewer would have sum no greater than $(n - 1)2Q + \sum_{a \in A} |a| < (2n - 1)Q$, and sum of any more would have sum no smaller than $(n + 1)2Q - \sum_{a \in A} |a| > (2n + 1)Q$. Further, at least one integer in a satisfying subset of A' corresponds to an integer of A since S' is not divisible by $2Q$. If A' has a subset B' summing to S', then the items in A corresponding to integers in B' will comprise a nonempty subset that sums to S. Conversely, if A has a subset B that sums to S, choosing the k elements of A' corresponding the integers in B and $n - k$ of the added $2Q$ values in A' will comprise a subset B' that sums to S'.

This is an example of a reduction: we show how to use a black-box to solve positive subset sum to solve general subset sum. However, this reduction does lead to a weaker pseudopolynomial time bound of $O(n(S + 2nQ))$ than the modified algorithm presented above.
0-1 Knapsack

- Input: Knapsack with size S, want to fill with items each item i has size s_i and value v_i.
- Output: A subset of items (may take 0 or 1 of each) with $\sum s_i \leq S$ maximizing $\sum v_i$
- (Subset sum same as 0-1 Knapsack when each $v_i = s_i$, deciding if total value S achievable)
- Example: Items $\{(s_i, v_i)\} = \{(6, 6), (9, 9), (10, 12)\}$, $S = 15$
- Solution: Subset with max value is all items except the last one (greedy fails)

1. Subproblems
 - Idea: Is last item in an optimal knapsack? (Guess!)
 - If yes, get value v_i and pack remaining space $S - s_i$ using remaining items
 - If no, then try to sum to S using remaining items
 - $x(i, j)$: maximum value by packing knapsack of size j using items 1 to i

2. Relate
 - $x(i, j) = \max \left\{ v_i + x(i - 1, j - s_i) \text{ if } j \geq s_i, \right.$
 - $\left. x(i - 1, j) \text{ always} \right\}$
 - for $i \in \{0, \ldots, n\}, j \in \{0, \ldots, S\}$

3. Topo
 - Subproblems $x(i, j)$ only depend on strictly smaller i, so acyclic

4. Base
 - $x(i, 0) = 0$ for $i \in \{0, \ldots, n\}$ (zero value possible if no more space)
 - $x(0, j) = 0$ for $j \in \{1, \ldots, S\}$ (zero value possible if no more items)

5. Original
 - Solve subproblems via recursive top down or iterative bottom up
 - Maximum evaluated expression is given by $x(n, S)$
 - Store parent pointers to reconstruct items to put in knapsack

6. Time
 - # subproblems: $O(nS)$
 - work per subproblem $O(1)$
 - $O(nS)$ running time
Recitation 18: Subset Sum Variants

Exercise: Close Partition (Alternative solution)

Solution: Given integers A, solve a 0-1 Knapsack instance with $s_i = v_i = A[i]$ and $S = \frac{1}{2} \sum_{a \in A} a$, where the subset returned will be one half of a closest partition.

Exercise: Unbounded Knapsack - Same problem as 0-1 Knapsack, except that you may take as many of any item as you like.

Solution: The O-1 Knapsack formulation works directly except for a small change in relation, where i will not be decreased if it is taken once, where the topological order strictly decreases $i + j$ with each recursive call.

$$x(i, j) = \max \left\{ \begin{array}{l} v_i + x(i, j - s_i) \quad \text{if } j \geq s_i \\ x(i - 1, j) \quad \text{always} \end{array} \right\}$$

An equivalent formulation reduces subproblems to expand work done per subproblem:

1. **Subproblems:**
 - $x(j)$: maximum value by packing knapsack of size j using the provided items

2. **Relate:**
 - $x(j) = \max\{v_i + x(j - s_i) | i \in \{1, \ldots, n\} \text{ and } s_i \leq j\} \cup \{0\}$, for $j \in \{0, \ldots, S\}$

3. **Topo**
 - Subproblems $x(j)$ only depend on strictly smaller j, so acyclic

4. **Base**
 - $x(0) = 0$ (no space to pack!)

5. **Original**
 - Solve subproblems via recursive top down or iterative bottom up
 - Maximum evaluated expression is given by $x(S)$
 - Store parent pointers to reconstruct items to put in knapsack

6. **Time**
 - # subproblems: $O(S)$
 - work per subproblem $O(n)$
 - $O(nS)$ running time

We’ve made CoffeeScript visualizers solving subset sum and 0-1 Knapsack:
https://codepen.io/mit6006/pen/JeBvKe
https://codepen.io/mit6006/pen/VVEPod