Recitation 18: Subset Sum Variants

Subset Sum Review

- Input: Set of n positive integers $A[i]$
- Output: Is there subset $A^{\prime} \subset A$ such that $\sum_{a \in A^{\prime}} a=S$?
- Can solve with dynamic programming in $O(n S)$ time

Subset Sum

1. Subproblems

- Here we'll try 1-indexed prefixes for comparison
- $x(i, j)$: True if can make sum j using items 1 to i, False otherwise

2. Relate

- Is last item i in a valid subset? (Guess!)
- If yes, then try to sum to $j-A[i] \geq 0$ using remaining items
- If no, then try to sum to j using remaining items
- $x(i, j)=\mathrm{OR}\left\{\begin{array}{ll}x(i-1, j-A[i]) & \text { if } j \geq A[i] \\ x(i-1, j) & \text { always }\end{array}\right\}$
- for $i \in\{0, \ldots, n\}, j \in\{0, \ldots, S\}$

3. Topo

- Subproblems $x(i, j)$ only depend on strictly smaller i, so acyclic

4. Base

- $x(i, 0)=$ True for $i \in\{0, \ldots, n\}$ (trivial to make zero sum!)
- $x(0, j)=$ False for $j \in\{1, \ldots, S\}$ (impossible to make positive sum from empty set)

5. Original

- Solve subproblems via recursive top down or iterative bottom up
- Maximum evaluated expression is given by $x(n, S)$

6. Time

- (\# subproblems: $O(n S)) \times($ work per subproblem $O(1))=O(n S)$ running time.

Exercise: Partition - Given a set of n positive integers A, describe an algorithm to determine whether A can be partitioned into two non-intersecting subsets A_{1} and A_{2} of equal sum, i.e. $A_{1} \cap A_{2}=\emptyset$ and $A_{1} \cup A_{2}=A$ such that $\sum_{a \in A_{1}} a=\sum_{a \in A_{2}} a$.
Example: $A=\{1,4,3,12,19,21,22\}$ has partition $A_{1}=\{1,19,21\}, A_{2}=\{3,4,12,22\}$.
Solution: Run subset sum dynamic program with same A and $S=\frac{1}{2} \sum_{a \in A} a$.
Exercise: Close Partition - Given a set of n positive integers A, describe an algorithm to find a partition of A into two non-intersecting subsets A_{1} and A_{2} such that the difference between their respective sums are minimized.

Solution: Run subset sum dynamic program as above, but evaluate for every $S^{\prime} \in\left\{0, \ldots, \frac{1}{2} \sum_{a \in A} a\right\}$, and return the largest S^{\prime} such that the subset sum dynamic program returns true. Note that this still only takes $O(n S)$ time: $O(n S)$ to compute all subproblems, and then $O(n S)$ time again to loop over the subproblems to find the max true S^{\prime}.

Exercise: Can you adapt subset sum to work with negative integers?
Solution: Same as subset sum (see L19), but we allow calling subproblems with larger j. But now instead of solving $x(i, j)$ only in the range $i \in\{0, \ldots, n\}, j \in\{0, \ldots, S\}$ as in positive subset sum, we allow j to range from $j_{\text {min }}=\sum_{a \in A, a<0} a$ (smallest possible j) to $j_{\text {max }}=\sum_{a \in A, a>0} a$ (largest possible j).

$$
x(i, j)=\operatorname{OR}\{x(i-1, j-A[i]), x(i-1, j)\}\left(\text { note } j_{\min } \leq j-A[i] \leq j_{\max } \text { is always true }\right)
$$

Subproblem dependencies are still acyclic because $x(i, j)$ only depend on strictly smaller i. Base cases are $x(0,0)=$ True and $x(0, j)=$ False if $j \neq 0$. Running time is then proportional to number of constant work subproblems, $O\left(n\left(j_{\max }-j_{\min }\right)\right)$.

Alternatively, you can convert to an equivalent instance of positive subset sum and solve that. Choose large number $Q>\max \left(|S|, \sum_{a \in A}|a|\right)$. Add $2 Q$ to each integer in A to form A^{\prime}, and append the value $2 Q, n-1$ times to the end of A^{\prime}. Every element of A^{\prime} is now positive, so solve positive subset sum with $S^{\prime}=S+n(2 Q)$. Because $(2 n-1) Q<S^{\prime}<(2 n+1) Q$, any satisfying subset will contain exactly n integers from A^{\prime} since the sum of any fewer would have sum no greater than $(n-1) 2 Q+\sum_{a \in A}|a|<(2 n-1) Q$, and sum of any more would have sum no smaller than $(n+1) 2 Q-\sum_{a \in A}|a|>(2 n+1) Q$. Further, at least one integer in a satisfying subset of A^{\prime} corresponds to an integer of A since S^{\prime} is not divisible by $2 Q$. If A^{\prime} has a subset B^{\prime} summing to S^{\prime}, then the items in A corresponding to integers in B^{\prime} will comprise a nonempty subset that sums to S. Conversely, if A has a subset B that sums to S, choosing the k elements of A^{\prime} corresponding the integers in B and $n-k$ of the added $2 Q$ values in A^{\prime} will comprise a subset B^{\prime} that sums to S^{\prime}.

This is an example of a reduction: we show how to use a black-box to solve positive subset sum to solve general subset sum. However, this reduction does lead to a weaker pseudopolynomial time bound of $O(n(S+2 n Q))$ than the modified algorithm presented above.

0-1 Knapsack

- Input: Knapsack with size S, want to fill with items each item i has size s_{i} and value v_{i}.
- Output: A subset of items (may take 0 or 1 of each) with $\sum s_{i} \leq S$ maximizing value $\sum v_{i}$
- (Subset sum same as 0-1 Knapsack when each $v_{i}=s_{i}$, deciding if total value S achievable)
- Example: Items $\left\{\left(s_{i}, v_{i}\right)\right\}=\{(6,6),(9,9),(10,12)\}, S=15$
- Solution: Subset with max value is all items except the last one (greedy fails)

1. Subproblems

- Idea: Is last item in an optimal knapsack? (Guess!)
- If yes, get value v_{i} and pack remaining space $S-s_{i}$ using remaining items
- If no, then try to sum to S using remaining items
- $x(i, j)$: maximum value by packing knapsack of size j using items 1 to i

2. Relate

- $x(i, j)=\max \left\{\begin{array}{ll}v_{i}+x\left(i-1, j-s_{i}\right) & \text { if } j \geq s_{i} \\ x(i-1, j) & \text { always }\end{array}\right\}$
- for $i \in\{0, \ldots, n\}, j \in\{0, \ldots, S\}$

3. Topo

- Subproblems $x(i, j)$ only depend on strictly smaller i, so acyclic

4. Base

- $x(i, 0)=0$ for $i \in\{0, \ldots, n\}$ (zero value possible if no more space)
- $x(0, j)=0$ for $j \in\{1, \ldots, S\}$ (zero value possible if no more items)

5. Original

- Solve subproblems via recursive top down or iterative bottom up
- Maximum evaluated expression is given by $x(n, S)$
- Store parent pointers to reconstruct items to put in knapsack

6. Time

- \# subproblems: $O(n S)$
- work per subproblem $O(1)$
- $O(n S)$ running time

Exercise: Close Partition (Alternative solution)

Solution: Given integers A, solve a 0-1 Knapsack instance with $s_{i}=v_{i}=A[i]$ and $S=\frac{1}{2} \sum_{a \in A} a$, where the subset returned will be one half of a closest partition.

Exercise: Unbounded Knapsack - Same problem as 0-1 Knapsack, except that you may take as many of any item as you like.

Solution: The O-1 Knapsack formulation works directly except for a small change in relation, where i will not be decreased if it is taken once, where the topological order strictly decreases $i+j$ with each recursive call.

$$
x(i, j)=\max \left\{\begin{array}{ll}
v_{i}+x\left(i, j-s_{i}\right) & \text { if } j \geq s_{i} \\
x(i-1, j) & \text { always }
\end{array}\right\}
$$

An equivalent formulation reduces subproblems to expand work done per subproblem:

1. Subproblems:

- $x(j)$: maximum value by packing knapsack of size j using the provided items

2. Relate:

$$
\text { - } x(j)=\max \left\{v_{i}+x\left(j-s_{i}\right) \mid i \in\{1, \ldots, n\} \text { and } s_{i} \leq j\right\} \cup\{0\}, \text { for } j \in\{0, \ldots, S\}
$$

3. Topo

- Subproblems $x(j)$ only depend on strictly smaller j, so acyclic

4. Base

- $x(0)=0$ (no space to pack!)

5. Original

- Solve subproblems via recursive top down or iterative bottom up
- Maximum evaluated expression is given by $x(S)$
- Store parent pointers to reconstruct items to put in knapsack

6. Time

- \# subproblems: $O(S)$
- work per subproblem $O(n)$
- $O(n S)$ running time

We've made CoffeeScript visualizers solving subset sum and 0-1 Knapsack:
https://codepen.io/mit6006/pen/JeBvKe
https://codepen.io/mit6006/pen/VVEPod

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2020
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

