Lecture 10: Depth-First Search

Previously

- Graph definitions (directed/undirected, simple, neighbors, degree)
- Graph representations (Set mapping vertices to adjacency lists)
- Paths and simple paths, path length, distance, shortest path
- Graph Path Problems
 - Single Pair Reachability \((G, s, t) \)
 - Single Source Reachability \((G, s) \)
 - Single Pair Shortest Path \((G, s, t) \)
 - Single Source Shortest Paths \((G, s) \) (SSSP)
- Breadth-First Search (BFS)
 - algorithm that solves Single Source Shortest Paths
 - with appropriate data structures, runs in \(O(|V| + |E|) \) time (linear in input size)

Examples

\[G_1 \]
\[G_2 \]
Depth-First Search (DFS)

- Searches a graph from a vertex \(s \), similar to BFS
- Solves Single Source Reachability, not SSSP. Useful for solving other problems (later!)
- Return (not necessarily shortest) parent tree of parent pointers back to \(s \)

Idea! Visit outgoing adjacencies recursively, but never revisit a vertex
- i.e., follow any path until you get stuck, backtrack until finding an unexplored path to explore
- \(P(s) = \text{None} \), then run \(\text{visit}(s) \), where
- \(\text{visit}(u) : \)
 - for every \(v \in \text{Adj}(u) \) that does not appear in \(P \):
 * set \(P(v) = u \) and recursively call \(\text{visit}(v) \)
 - (DFS finishes visiting vertex \(u \), for use later!)

Example: Run DFS on \(G_1 \) and/or \(G_2 \) from \(a \)

Correctness

- **Claim:** DFS visits \(v \) and correctly sets \(P(v) \) for every vertex \(v \) reachable from \(s \)
- **Proof:** induct on \(k \), for claim on only vertices within distance \(k \) from \(s \)
 - Base case (\(k = 0 \)): \(P(s) \) is set correctly for \(s \) and \(s \) is visited
 - Inductive step: Consider vertex \(v \) with \(\delta(s,v) = k' + 1 \)
 - Consider vertex \(u \), the second to last vertex on some shortest path from \(s \) to \(v \)
 - By induction, since \(\delta(s,u) = k' \), DFS visits \(u \) and sets \(P(u) \) correctly
 - While visiting \(u \), DFS considers \(v \in \text{Adj}(u) \)
 - Either \(v \) is in \(P \), so has already been visited, or \(v \) will be visited while visiting \(u \)
 - In either case, \(v \) will be visited by DFS and will be added correctly to \(P \)

Running Time

- Algorithm visits each vertex \(u \) at most once and spends \(O(1) \) time for each \(v \in \text{Adj}(u) \)
- Work upper bounded by \(O(1) \times \sum_{u \in V} \deg(u) = O(|E|) \)
- Unlike BFS, not returning a distance for each vertex, so DFS runs in \(O(|E|) \) time
Full-BFS and Full-DFS

- Suppose want to explore entire graph, not just vertices reachable from one vertex
- **Idea!** Repeat a graph search algorithm A on any unvisited vertex

 - Repeat the following until all vertices have been visited:
 - Choose an arbitrary unvisited vertex s, use A to explore all vertices reachable from s

- We call this algorithm **Full-A**, specifically Full-BFS or Full-DFS if A is BFS or DFS
- Visits every vertex once, so both Full-BFS and Full-DFS run in $O(|V| + |E|)$ time
- **Example:** Run Full-DFS/Full-BFS on G_1 and/or G_2

![Graphs G_1 and G_2]

Graph Connectivity

- An undirected graph is **connected** if there is a path connecting every pair of vertices
- In a directed graph, vertex u may be reachable from v, but v may not be reachable from u
- Connectivity is more complicated for directed graphs (we won’t discuss in this class)
- **Connectivity**(G): is undirected graph G connected?
- **ConnectedComponents**(G): given undirected graph $G = (V, E)$, return partition of V into subsets $V_i \subseteq V$ (connected components) where each V_i is connected in G and there are no edges between vertices from different connected components
- Consider a graph algorithm A that solves Single Source Reachability
- **Claim:** A can be used to solve Connected Components
- **Proof:** Run Full-A. For each run of A, put visited vertices in a connected component
Topological Sort

- A **Directed Acyclic Graph (DAG)** is a directed graph that contains no directed cycle.
- A **Topological Order** of a graph \(G = (V, E) \) is an ordering \(f \) on the vertices such that: every edge \((u, v) \in E \) satisfies \(f(u) < f(v) \).
- **Exercise:** Prove that a directed graph admits a topological ordering if and only if it is a DAG.
- How to find a topological order?
- A **Finishing Order** is the order in which a Full-DFS finishes visiting each vertex in \(G \)
- **Claim:** If \(G = (V, E) \) is a DAG, the reverse of a finishing order is a topological order
- **Proof:** Need to prove, for every edge \((u, v) \in E \) that \(u \) is ordered before \(v \), i.e., the visit to \(v \) finishes before visiting \(u \). Two cases:
 - If \(u \) visited before \(v \):
 * Before visit to \(u \) finishes, will visit \(v \) (via \((u, v) \) or otherwise)
 * Thus the visit to \(v \) finishes before visiting \(u \)
 - If \(v \) visited before \(u \):
 * \(u \) can’t be reached from \(v \) since graph is acyclic
 * Thus the visit to \(v \) finishes before visiting \(u \)

Cycle Detection

- Full-DFS will find a topological order if a graph \(G = (V, E) \) is acyclic
- If reverse finishing order for Full-DFS is not a topological order, then \(G \) must contain a cycle
- Check if \(G \) is acyclic: for each edge \((u, v) \), check if \(v \) is before \(u \) in reverse finishing order
- Can be done in \(O(|E|) \) time via a hash table or direct access array
- To return such a cycle, maintain the set of **ancestors** along the path back to \(s \) in Full-DFS
- **Claim:** If \(G \) contains a cycle, Full-DFS will traverse an edge from \(v \) to an ancestor of \(v \).
- **Proof:** Consider a cycle \((v_0, v_1, \ldots, v_k, v_0) \) in \(G \)
 - Without loss of generality, let \(v_0 \) be the first vertex visited by Full-DFS on the cycle
 - For each \(v_i \), before visit to \(v_i \) finishes, will visit \(v_{i+1} \) and finish
 - Will consider edge \((v_i, v_{i+1}) \), and if \(v_{i+1} \) has not been visited, it will be visited now
 - Thus, before visit to \(v_0 \) finishes, will visit \(v_k \) (for the first time, by \(v_0 \) assumption)
 - So, before visit to \(v_k \) finishes, will consider \((v_k, v_0) \), where \(v_0 \) is an ancestor of \(v_k \)

