Lecture 18: Pseudopolynomial

Dynamic Programming Steps (SRT BOT)

1. **Subproblem** definition subproblem \(x \in X \)
 - Describe the meaning of a subproblem *in words*, in terms of parameters
 - Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence
 - Often multiply possible subsets across multiple inputs
 - Often record partial state: add subproblems by incrementing some auxiliary variables
 - Often smaller integers than a given integer (*today’s focus*)

2. **Relate** subproblem solutions recursively \(x(i) = f(x(j), \ldots) \) for one or more \(j < i \)
 - Identify a question about a subproblem solution that, if you knew the answer to, reduces the subproblem to smaller subproblem(s)
 - Locally brute-force all possible answers to the question

3. **Topological order** to argue relation is acyclic and subproblems form a DAG

4. **Base** cases
 - State solutions for all (reachable) independent subproblems where relation breaks down

5. **Original problem**
 - Show how to compute solution to original problem from solutions to subproblem(s)
 - Possibly use parent pointers to recover actual solution, not just objective function

6. **Time** analysis
 - \(\sum_{x \in X} \text{work}(x) \), or if \(\text{work}(x) = O(W) \) for all \(x \in X \), then \(|X| \cdot O(W) \)
 - \(\text{work}(x) \) measures **nonrecursive** work in relation; treat recursions as taking \(O(1) \) time
Rod Cutting

• Given a rod of length L and value $v(\ell)$ of rod of length ℓ for all $\ell \in \{1, 2, \ldots, L\}$
• Goal: Cut the rod to maximize the value of cut rod pieces
• Example: $L = 7$, $v = [0, 1, 10, 13, 18, 20, 31, 32]$

• Maybe greedily take most valuable per unit length?
• Nope! $\arg \max_\ell v[\ell] / \ell = 6$, and partitioning $[6, 1]$ yields 32 which is not optimal!
• Maximization problem on value of partition

1. Subproblems
 • $x(\ell)$: maximum value obtainable by cutting rod of length ℓ
 • For $\ell \in \{0, 1, \ldots, L\}$

2. Relate
 • First piece has some length p (Guess!)
 • $x(\ell) = \max\{v(p) + x(\ell - p) \mid p \in \{1, \ldots, \ell\}\}$
 • (draw dependency graph)

3. Topological order
 • Increasing ℓ: Subproblems $x(\ell)$ depend only on strictly smaller ℓ, so acyclic

4. Base
 • $x(0) = 0$ (length-zero rod has no value!)

5. Original problem
 • Maximum value obtainable by cutting rod of length L is $x(L)$
 • Store choices to reconstruct cuts
 • If current rod length ℓ and optimal choice is ℓ', remainder is piece $p = \ell - \ell'$
 • (maximum-weight path in subproblem DAG!)

6. Time
 • # subproblems: $L + 1$
 • work per subproblem: $O(\ell) = O(L)$
 • $O(L^2)$ running time
Is This Polynomial Time?

- **(Strongly) polynomial time** means that the running time is bounded above by a constant-degree polynomial in the input size measured in words.

- In Rod Cutting, input size is \(L + 1 \) words (one integer \(L \) and \(L \) integers in \(v \))

- \(O(L^2) \) is a constant-degree polynomial in \(L + 1 \), so YES: (strongly) polynomial time

```python
# recursive
def cut_rod(l, v):
    if l < 1: return 0  # base case
    if l not in x:      # check memo
        for piece in range(1, l + 1):  # try piece
            x_ = v[piece] + cut_rod(l - piece, v)  # recurrence
            if (l not in x) or (x[l] < x_):  # update memo
                x[l] = x_
    return x[l]

# iterative
def cut_rod(L, v):
    x = [0] * (L + 1)  # base case
    for l in range(1, L + 1):  # topological order
        for piece in range(1, l + 1):  # try piece
            x_ = v[piece] + x[l - piece]  # recurrence
            if x[l] < x_:  # update memo
                x[l] = x_
    return x[L]

# iterative with parent pointers
def cut_rod_pieces(L, v):
    x = [0] * (L + 1)  # base case
    parent = [None] * (L + 1)  # parent pointers
    for l in range(1, L + 1):  # topological order
        for piece in range(1, l + 1):  # try piece
            x_ = v[piece] + x[l - piece]  # recurrence
            if x[l] < x_:  # update memo
                x[l] = x_
        parent[l] = l - piece  # update parent
    l, pieces = L, []
    while parent[l] is not None:  # walk back through parents
        piece = l - parent[l]
        pieces.append(piece)
        l = parent[l]
    return pieces
```
Subset Sum

- Input: Sequence of \(n \) positive integers \(A = \{a_0, a_1, \ldots, a_n\} \)
- Output: Is there a subset of \(A \) that sums exactly to \(T \)? (i.e., \(\exists A' \subseteq A \) s.t. \(\sum_{a \in A'} a = T \))
- Example: \(A = (1, 3, 4, 12, 19, 21, 22), T = 47 \) allows \(A' = \{3, 4, 19, 21\} \)
- Optimization problem? Decision problem! Answer is YES or NO, TRUE or FALSE
- In example, answer is YES. However, answer is NO for some \(T \), e.g., \(2, 6, 9, 10, 11, \ldots \)

1. Subproblems
 - \(x(i, t) = \text{does any subset of } A[i:] \text{ sum to } t? \)
 - For \(i \in \{0, 1, \ldots, n\}, t \in \{0, 1, \ldots, T\} \)

2. Relate
 - Idea: Is first item \(a_i \) in a valid subset \(A' \)? (Guess!)
 - If yes, then try to sum to \(t \) \(a_i \) 0 using remaining items
 - If no, then try to sum to \(t \) using remaining items
 - \(x(i, t) = \text{OR} \left\{ \begin{array}{ll} x(i + 1, t) & A[i] \text{ if } t \geq A[i] \\ x(i + 1, t) & \text{always} \end{array} \right. \)

3. Topological order
 - Subproblems \(x(i, t) \) only depend on strictly larger \(i \), so acyclic
 - Solve in order of decreasing \(i \)

4. Base
 - \(x(i, 0) = \text{YES} \) for \(i \in \{0, \ldots, n\} \) (space packed exactly!)
 - \(x(0, t) = \text{NO} \) for \(j \in \{1, \ldots, T\} \) (no more items available to pack)

5. Original problem
 - Original problem given by \(x(0, T) \)
 - Example: \(A = (3, 4, 3, 1), T = 6 \) solution: \(A' = (3, 3) \)
 - Bottom up: Solve all subproblems (Example has 35)
Lecture 18: Pseudopolynomial

- Top down: Solve only **reachable** subproblems (Example, only $14!$)

6. **Time**

- # subproblems: $O(nT)$, $O(1)$ work per subproblem, $O(nT)$ time
Is This Polynomial?

- Input size is \(n + 1 \): one integer \(T \) and \(n \) integers in \(A \)

- Is \(O(nT) \) bounded above by a polynomial in \(n + 1 \)? NO, not necessarily

- On \(w \)-bit word RAM, \(T \leq 2^w \) and \(w = \lg(n + 1) \), but we don’t have an upper bound on \(w \)

- E.g., \(w = n \) is not unreasonable, but then running time is \(O(2^n) \), which is exponential

Pseudopolynomial

- Algorithm has pseudopolynomial time: running time is bounded above by a constant-degree polynomial in input size and input integers

- Such algorithms are polynomial in the case that integers are polynomially bounded in input size, i.e., \(n^{O(1)} \) (same case that Radix Sort runs in \(O(n) \) time)

- Counting sort \(O(n + u) \), radix sort \(O(n \log_n u) \), direct-access array build \(O(n + u) \), and Fibonacci \(O(n) \) are all pseudopolynomial algorithms we’ve seen already

- Radix sort is actually weakly polynomial (a notion in between strongly polynomial and pseudopolynomial): bounded above by a constant-degree polynomial in the input size measured in bits, i.e., in the logarithm of the input integers

- Contrast with Rod Cutting, which was polynomial

 - Had pseudopolynomial dependence on \(L \)

 - But luckily had \(L \) input integers too

 - If only given subset of sellable rod lengths (Knapsack Problem, which generalizes Rod Cutting and Subset Sum — see recitation), then algorithm would have been only pseudopolynomial

Complexity

- Is Subset Sum solvable in polynomial time when integers are not polynomially bounded?

- No if \(P \neq \text{NP} \). What does that mean? Next lecture!
Main Features of Dynamic Programs

- Review of examples from lecture

- Subproblems:
 - Prefix/suffixes: Bowling, LCS, LIS, Floyd–Warshall, Rod Cutting (coincidentally, really Integer subproblems), Subset Sum
 - Substrings: Alternating Coin Game, Arithmetic Parenthesization
 - Multiple sequences: LCS
 - Integers: Fibonacci, Rod Cutting, Subset Sum
 * Pseudopolynomial: Fibonacci, Subset Sum
 - Vertices: DAG shortest paths, Bellman–Ford, Floyd–Warshall

- Subproblem constraints/expansion:
 - Nonexpansive constraint: LIS (include first item)
 - $2 \times$ expansion: Alternating Coin Game (who goes first?), Arithmetic Parenthesization (min/max)
 - $\Theta(1) \times$ expansion: Piano Fingering (first finger assignment)
 - $\Theta(n) \times$ expansion: Bellman–Ford (# edges)

- Relation:
 - Branching = # dependant subproblems in each subproblem
 - $\Theta(1)$ branching: Fibonacci, Bowling, LCS, Alternating Coin Game, Floyd–Warshall, Subset Sum
 - Θ (degree) branching (source of $|E|$ in running time): DAG shortest paths, Bellman–Ford
 - $\Theta(n)$ branching: LIS, Arithmetic Parenthesization, Rod Cutting
 - Combine multiple solutions (not path in subproblem DAG): Fibonacci, Floyd–Warshall, Arithmetic Parenthesization

- Original problem:
 - Combine multiple subproblems: DAG shortest paths, Bellman–Ford, Floyd–Warshall, LIS, Piano Fingering