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Problem Session 3 
Problem 3-1. Hash It Out 
Insert integer keys A = [67, 13, 49, 24, 40, 33, 58] in order into a hash table of size 
9 using the hash function h(k) = (11k + 4) mod 9. Collisions should be resolved via chaining, 
where collisions are stored at the end of a chain. Draw a picture of the hash table after all keys 
have been inserted. 

Solution: 

1 0 1 2 3 4 5 6 7 8 
2 +----+----+----+----+----+----+----+----+----+ 
3 | | | | | | | | | | 
4 +----+----+----+----+----+----+----+----+----+ 
5 \/ \/ 
6 +----+ +----+ 
7 | 67 | | 24 | 
8 +----+ +----+ 
9 \/ \/ 

10 +----+ +----+ 
11 | 13 | | 33 | 
12 +----+ +----+ 
13 \/ 
14 +----+ 
15 | 49 | 
16 +----+ 
17 \/ 
18 +----+ 
19 | 40 | 
20 +----+ 
21 \/ 
22 +----+ 
23 | 58 | 
24 +----+ 

Problem 3-2. Hash Sequence 
Hash tables are not only useful for implementing Set operations; they can be used to implement 
Sequences as well! (Recall the Set and Sequence interfaces were defined in Lecture and Recita-
tion 02.) Given a hash table, describe how to use it as a black-box1 (using only its Set interface 
operations) to implement the Sequence interface such that: 

• build(A) runs in expected O(n) time, 

• get at and set at each run in expected O(1) time, 

1By black-box, we mean you should not modify the inner workings of the data structure or algorithm. 



2 Problem Session 3 

• insert at and delete at each run in expected O(n) time, and 

• the four dynamic first/last operations each run in amortized expected O(1) time. 

Solution: To use a hash table H to implement the Sequence operations, store each Sequence item 
x in an object b with key b.key and value b.val = x, and we will store these keyed objects in the 
hash table. We also maintain the lowest key s stored in the hash table, to maintain invariant that 
the n stored objects have keys (s, . . . , s + n − 1), where the ith item in the Sequence is stored in 
the object with key s + i. 

To implement build(A), for each item xi in A = (x0, . . . , xn−1) construct its keyed object b, 
initially with key b.key = i, in worst-case O(1) time; then insert it into the hash table using Set 
insert(b) in expected O(1) time, for an expected total of O(n) time. Initializing s = 0 ensures 
the invariant is satisfied. 

To implement get at(i), return the value of the stored object with key s+i using Set find(s + 
i) in expected O(1) time, which is correct by the invariant. Similarly, to implement set at(i, 
x), find the object with key s + i using find(s + i) and change its value to x, also in expected 
O(1) time. 

To implement insert at(i, x), for each j from s + n − 1 down to s + i, remove the object b 
with key j using delete(j) in expected O(1) time, change its key to j + 1 in worst-case O(1) 
time, and then insert the object with insert(b) in expected O(1) time. Then, construct a keyed 
object b0 with value x and key s + i, and insert with insert(b’) in expected O(1) time, for an 
expected total of O(n) time. This operation restores the invariant for each affected item. 

Similarly, to implement delete at(i), remove the object b0 stored at s + i with delete(s + 
i) in expected O(1) time; then for each j from s + i +1 to s + n − 1, remove the object b with key 
j using delete(j) in expected O(1) time, change its key to j − 1 in worst-case O(1) time, and 
then insert the object with insert(b) in expected O(1) time. Then return the value of object b0 , 
for an expected total of O(n) time. This operation returns the correct value by the invariant, and 
restores the invariant for each affected item. 

To implement insert last(x) or delete last(), simply reduce to insert at(s + n) or 
delete at(s + n - 1) in expected O(1) time since no objects need to be shifted. 

To implement insert first(x), construct a keyed object b with value x and key s−1 and insert 
it with insert(b) in expected O(1) time. Then setting the stored value of s to s − 1 restores the 
invariant. Similarly for delete first(), remove the object with key s using delete(s) in 
expected O(1) time, and return the value of the object. Then setting the stored value of s to s + 1 
restores the invariant. 

Problem 3-3. Critter sort 
Ashley Getem collects and trains Pocket Critters to fight other Pocket Critters in battle. She has 
collected n Critters in total, and she keeps track of a variety of statistics for each Critter Ci. De-
scribe efficient2 algorithms to sort Ashley’s Critters based on each of the following keys: 

2By “efficient”, we mean that faster correct algorithms will receive more points than slower ones. 
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(a) Species ID: an integer xi between −n and n (negative IDs are grumpy) 
Solution: These integers are in a linearly bounded range, but are not positive. So 
take worst-case O(n) time to add n to each critter’s ID so that xi ≤ 2n = u for all i, 
sort them using counting sort in worst-case O(n +2n) = O(n) time, and then subtract 
n from each ID, again in worst-case O(n) time. 

(b) Name: a unique string si containing at most 10dlg ne English letters 
Solution: Let’s assume that each string is stored sequentially in a contiguous chunk 
of memory, in an encoding such that the numerical representation of each charac-
ter is bounded above by some constant number k (e.g., 26 for efficient English let-
ter encoding, or 256 for byte encoding), where the numerical representation of one 
character ci is smaller than that of another character cj if ci comes before cj in the 
English alphabet. Then each string can be thought of as an integer between 0 and 
u = k10dlg ne 10 lg k) = nO(1)= O(n , stored in a constant number of machine words, so 
can be sorted using radix sort in worst-case O(n + n logn n

O(1)) = O(n) time. 
Alternatively, if each character in the each string si is stored in its own machine word, 
then the input has size Θ(n log n). For each string, compute its nO(1)) numerical repre-
sentation by direct computation in O(log n) arithmetic computations (which can each 
be performed in O(1) time, since each intermediate representation fits into at most 
10 machine words). Then sort using radix-sort as above. Computing the numerical 
representations of the strings takes O(n log n) time, which is linear in the size of the 
input. 

(c) Number of fights fought: a positive integer fi under n2 

Solution: These integers are in a polynomially bounded range u = n2 , so sort them 
using radix-sort in worst-case O(n + n logn n

2) = O(n) time. 
(d) Win fraction: ratio wi/fi where wi ≤ fi is the number of fights won 

Solution: Non-integer division may yield a number that requires an infinite num-
ber of digits to represent, so we cannot compute these numbers directly. Solutions 
attempting to compute and compare such numbers without accounting for precision 
should not be awarded any points. We present two solutions here. 
The first solution uses an optimal comparison sorting algorithm like merge sort to sort 
the win fractions in worst-case O(n log n) time. Two win ratios w1/f1 and w2/f2 can 
be compared via cross multiplication, since w1/f1 < w2/f2 if and only if w1f2 < 
w2f1. This solution done correctly is worth 4/5 points. 
The second solution is more tricky. The idea will be to scale the ratios sufficiently 
such that when they are not equal, their integer parts also not equal. First, for each 
win number, compute w0 i = wi · n4 in O(1) time. Then compute pi = bw0 i/fic in 
O(1) time via integer division, where w0 i = pi · fi + qi for qi = w0 i mod fi. Then, 
since each pi is a positive integer bounded by O(n6), we can sort by pi in worst-case 
O(n + n logn n

6) = O(n) time via radix sort. 
Now we must prove that sorting by pi is equivalent to sorting by wi/fi. It suffices to 
prove that wi/fi − wj /fj > 0 is true if and only if pi − pj > 0 is true. Without loss of 
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generality, assume that dw = wi/fi − wj /fj > 0. Since 

4 0 0dwn = wi/fi − wj /fj = (pi + qi/fi) − (pj + qj /fj ) = (pi − pj ) + (qi/fi − qj /fj ), 

it suffices to show that pi − pj = dwn4 − qw > 0 where qw = qi/fi − qj /fj . First, qw 

is maximized when: 
n2 − 2 0 

qw = − < 1, 
n2 − 1 1 

while dwn4 is minimized when: � � 
41 1 n 

dwn 4 = − n 4 = > 1, 
n2 − 2 n2 − 1 n4 − 3n2 + 2 

so dwn4 − qw > 0 as desired. 

Problem 3-4. College Construction 
MIT has employed Gank Frehry to build a new wing of the Stata Center to house the new College 
of Computing. MIT wants the new building be as tall as possible, but Cambridge zoning laws limit 
all new buildings to be no higher than positive integer height h. As an innovative architect, Frehry 
has decided to build the new wing by stacking two giant aluminum cubes on top of each other, into 
which rooms will be carved. However, Frehry’s supplier of aluminum cubes can only make cubes 
with a limited set of positive integer side lengths S = {s0, . . . , sn−1}. Help Frehry purchase cubes 
for the new building. 

(a) Assuming the input S fits within Θ(n) machine words, describe an expected O(n)-
time algorithm to determine whether there exist a pair of side lengths in S that exactly 
sum to h. 
Solution: It suffices to check for each si whether (h − si) ∈ S. Naively, we could 
perform this check by comparing h − si against all sj ∈ S − {si}, which would take 
O(n) time for each si, leading to O(n2) running time. We can speed up this algorithm 
by first storing the elements of S in a hash table H so that looking up each h − si 
can be done quickly. For each si ∈ S, insert si into H in expected O(1) time. Now 
all unique values that occur in S appear in H , so for each si, check whether h − si 
appears in H in expected O(1) time. (If the supplier can build only one of each block 
size, we can also check that h − si 6= si.) Building the hash table and then checking 
for matches each take expected O(n) time, so this algorithm runs in O(n) time. This 
brute force algorithm is correct because each si satisfies si + ki = h for exactly one 
integer ki, and we check all possible (si, ki). 

(b) Unfortunately for Frehry, there is no pair of side lengths in S that sum exactly to h. 
Assuming that h = 600n6, describe a worst-case O(n)-time algorithm to return a pair 
of side lengths in S whose sum is closest to h without going over. 
Solution: We do not know whether all si ∈ S are polynomially bounded in n; but we 
do know that h is. If some si ≥ h, it can certainly not be part of a pair of positive side 
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lengths from S that sum to under h. So first perform a linear scan of S and remove all 
si ≥ h to construct set S 0 . Now the integers in S 0 are each upper bounded by O(n6), 
so we can sort them in worst-case O(n + n logn n

6) time using radix-sort, and store 
the output in an array A. 
Now we can sweep the sorted list using a two-finger algorithm similar to the merge 
step in merge sort to find a pair with the largest sum at most h, if such a pair ex-
ists. Specifically, initialize indices i = 0 and j = |S 0| − 1, and repeat the follow-
ing procedure, keeping track of the largest sum t found so far initialized to zero. 
If A[i] + A[j] ≤ h, then if t < A[i] + A[j], you have found a better pair, so set 
t = A[i] + A[j]; regardless A[k] + A[j] < t for all k ≤ i, so increase i by one. Oth-
erwise if A[i] + A[j] > h, then A[i] + A[`] > h for all ` ≥ j, so decrease j by one. 
If j < i (or j = i and we want distinct si, sj ), then return False. This loop maintains 
the invariant that at the start of each loop, we have confirmed that A[k] + A[`] ≥ t 
for all k ≤ i ≤ j ≤ ` for which A[k] + A[`] ≤ h, so the algorithm is correct. Since 
each iteration of the loop takes O(1) time and decreases j − i decrease by one, and 
j − i = |S 0| − 1 starts positive and ends when j − i < 0, this procedure takes at most 
O(n) time in the worst case. 

Problem 3-5. Po-k-er Hands 

Meff Ja is a card shark who enjoys playing card games. He has found an unusual deck of cards, 
where each of the n cards in the deck is marked with a lowercase letter from the 26-character 
English alphabet. We represent a deck of cards as a sequence of letters, where the first letter 
corresponds to the top of the deck. Meff wants to play a game of Po-k-er with you. To begin the 
game, he deals you a Po-k-er hand of k cards in the following way: 

1. The deck D starts in a pile face down in a known order. 

2. Meff cuts the deck uniformly at random at some location i ∈ {0, . . . , n − 1}, 
i.e., move the top i cards in order to the bottom of the deck. 

3. Meff then deals you the top k cards from the top of the cut deck. 

4. You sort your k cards alphabetically, resulting in your Po-k-er hand. 

Let P (D, i, k) be the Po-k-er hand resulting from cutting a deck D at location i. Then cutting 
deck D = ’abcdbc’ at location 2 would result in the deck ’cdbcab’, which would then yield 
the Po-4-er hand P (D, 2, 4) = ’bccd’. From a given starting deck, many hands are possible 
depending on where the deck is cut. Meff wants to know the most likely Po-k-er hand for a given 
deck. Given that the most likely Po-k-er hand is not necessarily unique, Meff always prefers the 
lexicographically smallest hand. 

(a) Describe a data structure that can be built in O(n) time from a deck D of n cards and 
integer k, after which it can support same(i, j): a constant-time operation which 
returns True if P (D, i, k) = P (D, j, k) and False otherwise. 
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Solution: We build a direct access array mapping each index i ∈ {0, . . . , n − 1} to 
a frequency table of the letters in hand P (D, i, k), specifically a direct access array 
A of length 26 where A[j] corresponds to the number of times the (j + 1)th letter 
of the English alphabet occurs in the hand. The frequency table of hand P (D, 0, k) 
can be computed in O(k) time by simply looping through the cards in the hand and 
adding them to the frequency table. Then given the frequency table of P (D, i, k), we 
can compute the frequency table of P (D, i +1, k) in constant time by subtracting one 
from letter D[i] and adding one to letter D[i + k]. Building the above hash table then 
takes O(k) + nO(1) = O(n) time. To support same(i, j), look up indices i and j 
in the direct access array in constant time. If the corresponding frequency tables are 
the same, then the hands must also match. We can check if they match in worst-case 
constant time since each frequency has constant length (i.e., 26), so this operation 
takes worst-case O(1) time. Students my use a hash table to achieve expected O(1) 
time. 

(b) Given a deck of n cards, describe an O(n)-time algorithm to find the most likely Po-k-
er hand, breaking ties lexicographically. State whether your algorithm’s running time 
is worst-case, amortized, and/or expected. 
Solution: Build the data structure from part (a) in worst-case O(n) time, specifically 
a direct access array of hand frequency tables. Now, compute the frequency of each 
hand directly: loop through the direct access array and add each hand frequency table 
to a hash table T mapping to value 1; if a hand table h already exists in T , increase 
T [h] by 1. This procedure performs one hash table operation for each of the n hand 
tables, so it runs in expected O(n) time. Next, find the largest frequency of any hand 
directly by looping through all hands in T , keeping track of f the largest frequency 
seen in worst-case O(n) time. Then, construct a list of hand tables with frequency 
f directly by looping through all hands in T again, appending to the end of a dy-
namic array A every hand table that has frequency f , also in worst-case O(n) time. 
The lexicographically first hand will be the one whose hand frequency table is lex-
icographically last (e.g., (1,0,...)>(0,1,...) but ’a...’<’b...’), so loop 
through the hand tables and keep track of the lexicographically last hand table t in 
worst-case O(n) time. Lastly, convert hand table t back into a hand by concatenating 
k letters in order based on their frequency in worst-case O(k) time, and then return 
the hand. Then in total, this procedure runs in expected O(n) time. 
We can reduce to worst-case O(n) time using radix sort instead of a hash table to 
count the frequencies of hand tables. Namely, we apply tuple/radix sort to the data 
structure from part (a). Each hand frequency table consists of 26 numbers between 0 
and n, so we can treat them as a base-(n + 1) integer of 26 digits. Sorting by each 
digit from least to most significant, we put the hand frequency tables into lexically in-
creasing order. Now a single scan through the array, at each step checking whether the 
hand frequency table matches the previous, lets us compute the frequency of each ta-
ble. A scan of these occurrence frequencies lets us find the maximum frequency f , and 
another scan of the array lets us find the lexicographically last hand with frequency f . 
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