

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 19: Complexity

Lecture 19: Complexity

Decision Problems
• Decision problem: assignment of inputs to YES (1) or NO (0)

• Inputs are either NO inputs or YES inputs
Problem

s-t Shortest Path Does a given G contain a path from s to t with weight at most d?
Negative Cycle Does a given G contain a negative weight cycle?

Longest Simple Path Does a given G contain a simple path with weight at least d?
Subset Sum Does a given set of integers A contain a subset with sum S?

Tetris Can you survive a given sequence of pieces in given board?
Chess Can a player force a win from a given board?

Halting problem Does a given computer program terminate for a given input?

Decision

• Algorithm/Program: constant-length code (working on a word-RAM with Ω(log n)-bit
words) to solve a problem, i.e., it produces correct output for every input and the length
of the code is independent of the instance size

• Problem is decidable if there exists a program to solve the problem in finite time

Decidability
• Program is finite (constant) string of bits, i.e., a nonnegative integer ∈ N.

Problem is function p : N → {0, 1}, i.e., infinite string of bits.

• (# of programs |N|, countably infinite) � (# of problems |R|, uncountably infinite)

• (Proof by Cantor’s diagonalization argument, probably covered in 6.042)

• Proves that most decision problems not solvable by any program (undecidable)

• E.g., the Halting problem is undecidable (many awesome proofs in 6.045)

• Fortunately most problems we think of are algorithmic in structure and are decidable

Decidable Decision Problems
R problems decidable in finite time (‘R’ comes from recursive languages)

EXP problems decidable in exponential time 2nO(1) (most problems we think of are here)
P problems decidable in polynomial time nO(1) (efficient algorithms, the focus of this class)

• These sets are distinct, i.e., P $ EXP $ R (via time hierarchy theorems, see 6.045)

• E.g., Chess is in EXP \ P

2 Lecture 19: Complexity

Nondeterministic Polynomial Time (NP)
• P is the set of decision problems for which there is an algorithm A such that, for every input
I of size n, A on I runs in poly(n) time and solves I correctly

• NP is the set of decision problems for which there is a verification algorithm V that takes as
input an input I of the problem and a certificate bit string of length polynomial in the size
of I , so that:

– V always runs in time polynomial in the size of I;

– if I is a YES input, then there is some certificate c so that V outputs YES on input (I, c);
and

– if I is a NO input, then no matter what certificate c we choose, V always output NO on
input (I, c).

• You can think of the certificate as a proof that I is a YES input.
If I is actually a NO input, then no proof should work.

Problem Certificate Verifier
s-t Shortest Path

Negative Cycle
Longest Simple Path

Subset Sum
Tetris

A path P from s to t
A cycle C
A path P
A set of items A0

Sequence of moves

Adds the weights on P and checks whether ≤ d
Adds the weights on C and checks whether < 0
Checks whether P is a simple path with weight ≥ d
Checks whether A0 ∈ A has sum S
Checks that the moves allow survival

• P ⊆ NP: The verifier V just solves the instance ignoring any certificate

• NP ⊆ EXP: Try all possible certificates! At most 2nO(1) of them, run verifier V on all

• Open: Does P = NP? NP = EXP?

• Most people think P $ NP ($ EXP), i.e., generating solutions harder than checking

• If you prove either way, people will give you lots of money ($1M Millennium Prize)

• Why do we care? If can show a problem is hardest problem in NP,
then problem cannot be solved in polynomial time if P 6= NP

• How do we relate difficulty of problems? Reductions!

3 Lecture 19: Complexity

Reductions
• Suppose you want to solve problem A

• One way to solve is to convert A into a problem B you know how to solve

• Solve using an algorithm for B and use it to compute solution to A

• This is called a reduction from problem A to problem B (A → B)

• Because B can be used to solve A, B is at least as hard as A (A ≤ B)

• General algorithmic strategy: reduce to a problem you know how to solve

A Conversion B
Unweighted Shortest Path
Integer-weighted Shortest Path
Longest Path

Give equal weights
Subdivide edges
Negate weights

Weighted Shortest Path
Unweighted Shortest Path
Shortest Path

• Problem A is NP-hard if every problem in NP is polynomially reducible to A

• i.e., A is at least as hard as (can be used to solve) every problem in NP (X ≤ A for X ∈ NP)

• NP-complete = NP ∩ NP-hard

• All NP-complete problems are equivalent, i.e., reducible to each other

• First NP-complete problem? Every decision problem reducible to satisfying a logical circuit,
a problem called “Circuit SAT”.

• Longest Simple Path and Tetris are NP-complete, so if any problem is in NP \ P, these are

• Chess is EXP-complete: in EXP and reducible from every problem in EXP (so ∈/ P)

4 Lecture 19: Complexity

Examples of NP-complete Problems
• Subset Sum from L18 (“weakly NP-complete” which is what allows a pseudopolynomial-

time algorithm, but no polynomial algorithm unless P = NP)

• 3-Partition: given n integers, can you divide them into triples of equal sum? (“strongly
NP-complete”: no pseudopolynomial-time algorithm unless P = NP)

• Rectangle Packing: given n rectangles and a target rectangle whose area is the sum of the n
rectangle areas, pack without overlap

– Reduction from 3-Partition to Rectangle Packing: transform integer ai into 1 × ai rect-P
angle; set target rectangle to n/3 × (i ai) /3

• Jigsaw puzzles: given n pieces with possibly ambiguous tabs/pockets, fit the pieces together

– Reduction from Rectangle Packing: use uniquely matching tabs/pockets to force build-
ing rectangles and rectangular boundary; use one ambiguous tab/pocket for all other
boundaries

• Longest common subsequence of n strings

• Longest simple path in a graph

• Traveling Salesman Problem: shortest path that visits all vertices of a given graph (or deci-
sion version: is minimum weight ≤ d)

• Shortest path amidst obstacles in 3D

• 3-coloring given graph (but 2-coloring ∈ P)

• Largest clique in a given graph

• SAT: given a Boolean formula (made with AND, OR, NOT), is it every true?
E.g., x AND NOT x is a NO input

• Minesweeper, Sudoku, and most puzzles

• Super Mario Bros., Legend of Zelda, Pokémon, and most video games are NP-hard (many
are harder)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	L19.pdf
	cover.pdf
	Blank Page

