Lecture 19: Complexity

Decision Problems

- Decision problem: assignment of inputs to YES (1) or NO (0)
- Inputs are either NO inputs or YES inputs

Problem	Decision
$s-t$ Shortest Path	Does a given G contain a path from s to t with weight at most $d ?$
Negative Cycle	Does a given G contain a negative weight cycle?
Longest Simple Path	Does a given G contain a simple path with weight at least $d ?$
Subset Sum	Does a given set of integers A contain a subset with sum $S ?$
Tetris	Can you survive a given sequence of pieces in given board?
Chess	Can a player force a win from a given board?
Halting problem	Does a given computer program terminate for a given input?

- Algorithm/Program: constant-length code (working on a word-RAM with $\Omega(\log n)$-bit words) to solve a problem, i.e., it produces correct output for every input and the length of the code is independent of the instance size
- Problem is decidable if there exists a program to solve the problem in finite time

Decidability

- Program is finite (constant) string of bits, i.e., a nonnegative integer $\in \mathbb{N}$. Problem is function $p: \mathbb{N} \rightarrow\{0,1\}$, i.e., infinite string of bits.
- (\# of programs $|\mathbb{N}|$, countably infinite $) \ll(\#$ of problems $|\mathbb{R}|$, uncountably infinite)
- (Proof by Cantor's diagonalization argument, probably covered in 6.042)
- Proves that most decision problems not solvable by any program (undecidable)
- E.g., the Halting problem is undecidable (many awesome proofs in 6.045)
- Fortunately most problems we think of are algorithmic in structure and are decidable

Decidable Decision Problems

$\mathbf{R} \mid$ problems decidable in finite time
EXP problems decidable in exponential time $2^{n^{O(1)}}$
\mathbf{P} problems decidable in polynomial time $n^{O(1)}$
(' R ' comes from recursive languages) (most problems we think of are here) (efficient algorithms, the focus of this class)

- These sets are distinct, i.e., $\mathbf{P} \varsubsetneqq \mathbf{E X P} \varsubsetneqq \mathbf{R}$ (via time hierarchy theorems, see 6.045)
- E.g., Chess is in EXP $\backslash \mathbf{P}$

Nondeterministic Polynomial Time (NP)

- \mathbf{P} is the set of decision problems for which there is an algorithm A such that, for every input I of size n, A on I runs in $\operatorname{poly}(n)$ time and solves I correctly
- NP is the set of decision problems for which there is a verification algorithm V that takes as input an input I of the problem and a certificate bit string of length polynomial in the size of I, so that:
- V always runs in time polynomial in the size of I;
- if I is a YES input, then there is some certificate c so that V outputs YES on input (I, c); and
- if I is a NO input, then no matter what certificate c we choose, V always output NO on input (I, c).
- You can think of the certificate as a proof that I is a YES input.

If I is actually a No input, then no proof should work.

Problem	Certificate	Verifier
s - t Shortest Path	A path P from s to t	Adds the weights on P and checks whether $\leq d$
Negative Cycle	A cycle C	Adds the weights on C and checks whether <0
Longest Simple Path	A path P	Checks whether P is a simple path with weight $\geq d$
Subset Sum	A set of items A^{\prime}	Checks whether $A^{\prime} \in A$ has sum S
Tetris	Sequence of moves	Checks that the moves allow survival

- $\mathbf{P} \subseteq \mathbf{N P}:$ The verifier V just solves the instance ignoring any certificate
- NP \subseteq EXP: Try all possible certificates! At most $2^{n^{O(1)}}$ of them, run verifier V on all
- Open: Does $\mathbf{P}=\mathbf{N P}$? $\mathbf{N P}=\mathbf{E X P}$?
- Most people think $\mathbf{P} \varsubsetneqq \mathbf{N P}(\varsubsetneqq \mathbf{E X P})$, i.e., generating solutions harder than checking
- If you prove either way, people will give you lots of money (\$1M Millennium Prize)
- Why do we care? If can show a problem is hardest problem in $\mathbf{N P}$, then problem cannot be solved in polynomial time if $\mathbf{P} \neq \mathbf{N P}$
- How do we relate difficulty of problems? Reductions!

Reductions

- Suppose you want to solve problem A
- One way to solve is to convert A into a problem B you know how to solve
- Solve using an algorithm for B and use it to compute solution to A
- This is called a reduction from problem A to problem $B(A \rightarrow B)$
- Because B can be used to solve A, B is at least as hard as $A(A \leq B)$
- General algorithmic strategy: reduce to a problem you know how to solve

A	Conversion	B
Unweighted Shortest Path	Give equal weights	Weighted Shortest Path
Integer-weighted Shortest Path	Subdivide edges	Unweighted Shortest Path
Longest Path	Negate weights	Shortest Path

- Problem A is NP-hard if every problem in NP is polynomially reducible to A
- i.e., A is at least as hard as (can be used to solve) every problem in $\mathbf{N P}(X \leq A$ for $X \in \mathbf{N P})$
- $\mathbf{N P}$-complete $=\mathbf{N P} \cap \mathbf{N P}$-hard
- All NP-complete problems are equivalent, i.e., reducible to each other
- First NP-complete problem? Every decision problem reducible to satisfying a logical circuit, a problem called "Circuit SAT".
- Longest Simple Path and Tetris are NP-complete, so if any problem is in $\mathbf{N P} \backslash \mathbf{P}$, these are
- Chess is EXP-complete: in EXP and reducible from every problem in EXP (so $\notin \mathbf{P}$)

Problem Difficulty (informal)

Examples of NP-complete Problems

- Subset Sum from L18 ("weakly NP-complete" which is what allows a pseudopolynomialtime algorithm, but no polynomial algorithm unless $\mathbf{P}=\mathbf{N P}$)
- 3-Partition: given n integers, can you divide them into triples of equal sum? ("strongly NP-complete": no pseudopolynomial-time algorithm unless $\mathbf{P}=\mathbf{N P}$)
- Rectangle Packing: given n rectangles and a target rectangle whose area is the sum of the n rectangle areas, pack without overlap
- Reduction from 3-Partition to Rectangle Packing: transform integer a_{i} into $1 \times a_{i}$ rectangle; set target rectangle to $n / 3 \times\left(\sum_{i} a_{i}\right) / 3$
- Jigsaw puzzles: given n pieces with possibly ambiguous tabs/pockets, fit the pieces together
- Reduction from Rectangle Packing: use uniquely matching tabs/pockets to force building rectangles and rectangular boundary; use one ambiguous tab/pocket for all other boundaries
- Longest common subsequence of n strings
- Longest simple path in a graph
- Traveling Salesman Problem: shortest path that visits all vertices of a given graph (or decision version: is minimum weight $\leq d$)
- Shortest path amidst obstacles in 3D
- 3-coloring given graph (but 2-coloring $\in \mathbf{P}$)
- Largest clique in a given graph
- SAT: given a Boolean formula (made with AND, OR, NOT), is it every true?
E.g., x AND NOT x is a NO input
- Minesweeper, Sudoku, and most puzzles
- Super Mario Bros., Legend of Zelda, Pokémon, and most video games are NP-hard (many are harder)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2020
For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

