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Lecture 19: Complexity 

Decision Problems 
• Decision problem: assignment of inputs to YES (1) or NO (0) 

• Inputs are either NO inputs or YES inputs 
Problem 

s-t Shortest Path Does a given G contain a path from s to t with weight at most d? 
Negative Cycle Does a given G contain a negative weight cycle? 

Longest Simple Path Does a given G contain a simple path with weight at least d? 
Subset Sum Does a given set of integers A contain a subset with sum S? 

Tetris Can you survive a given sequence of pieces in given board? 
Chess Can a player force a win from a given board? 

Halting problem Does a given computer program terminate for a given input? 

Decision 

• Algorithm/Program: constant-length code (working on a word-RAM with Ω(log n)-bit 
words) to solve a problem, i.e., it produces correct output for every input and the length 
of the code is independent of the instance size 

• Problem is decidable if there exists a program to solve the problem in finite time 

Decidability 
• Program is finite (constant) string of bits, i.e., a nonnegative integer ∈ N. 

Problem is function p : N → {0, 1}, i.e., infinite string of bits. 

• (# of programs |N|, countably infinite) � (# of problems |R|, uncountably infinite) 

• (Proof by Cantor’s diagonalization argument, probably covered in 6.042) 

• Proves that most decision problems not solvable by any program (undecidable) 

• E.g., the Halting problem is undecidable (many awesome proofs in 6.045) 

• Fortunately most problems we think of are algorithmic in structure and are decidable 

Decidable Decision Problems 
R problems decidable in finite time (‘R’ comes from recursive languages) 

EXP problems decidable in exponential time 2nO(1) (most problems we think of are here) 
P problems decidable in polynomial time nO(1) (efficient algorithms, the focus of this class) 

• These sets are distinct, i.e., P $ EXP $ R (via time hierarchy theorems, see 6.045) 

• E.g., Chess is in EXP \ P 
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Nondeterministic Polynomial Time (NP) 
• P is the set of decision problems for which there is an algorithm A such that, for every input 
I of size n, A on I runs in poly(n) time and solves I correctly 

• NP is the set of decision problems for which there is a verification algorithm V that takes as 
input an input I of the problem and a certificate bit string of length polynomial in the size 
of I , so that: 

– V always runs in time polynomial in the size of I; 

– if I is a YES input, then there is some certificate c so that V outputs YES on input (I, c); 
and 

– if I is a NO input, then no matter what certificate c we choose, V always output NO on 
input (I, c). 

• You can think of the certificate as a proof that I is a YES input. 
If I is actually a NO input, then no proof should work. 

Problem Certificate Verifier 
s-t Shortest Path 

Negative Cycle 
Longest Simple Path 

Subset Sum 
Tetris 

A path P from s to t 
A cycle C 
A path P 
A set of items A0 

Sequence of moves 

Adds the weights on P and checks whether ≤ d 
Adds the weights on C and checks whether < 0 
Checks whether P is a simple path with weight ≥ d 
Checks whether A0 ∈ A has sum S 
Checks that the moves allow survival 

• P ⊆ NP: The verifier V just solves the instance ignoring any certificate 

• NP ⊆ EXP: Try all possible certificates! At most 2nO(1) of them, run verifier V on all 

• Open: Does P = NP? NP = EXP? 

• Most people think P $ NP ($ EXP), i.e., generating solutions harder than checking 

• If you prove either way, people will give you lots of money ($1M Millennium Prize) 

• Why do we care? If can show a problem is hardest problem in NP, 
then problem cannot be solved in polynomial time if P 6= NP 

• How do we relate difficulty of problems? Reductions! 
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Reductions 
• Suppose you want to solve problem A 

• One way to solve is to convert A into a problem B you know how to solve 

• Solve using an algorithm for B and use it to compute solution to A 

• This is called a reduction from problem A to problem B (A → B) 

• Because B can be used to solve A, B is at least as hard as A (A ≤ B) 

• General algorithmic strategy: reduce to a problem you know how to solve 

A Conversion B 
Unweighted Shortest Path 
Integer-weighted Shortest Path 
Longest Path 

Give equal weights 
Subdivide edges 
Negate weights 

Weighted Shortest Path 
Unweighted Shortest Path 
Shortest Path 

• Problem A is NP-hard if every problem in NP is polynomially reducible to A 

• i.e., A is at least as hard as (can be used to solve) every problem in NP (X ≤ A for X ∈ NP) 

• NP-complete = NP ∩ NP-hard 

• All NP-complete problems are equivalent, i.e., reducible to each other 

• First NP-complete problem? Every decision problem reducible to satisfying a logical circuit, 
a problem called “Circuit SAT”. 

• Longest Simple Path and Tetris are NP-complete, so if any problem is in NP \ P, these are 

• Chess is EXP-complete: in EXP and reducible from every problem in EXP (so ∈/ P) 
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Examples of NP-complete Problems 
• Subset Sum from L18 (“weakly NP-complete” which is what allows a pseudopolynomial-

time algorithm, but no polynomial algorithm unless P = NP) 

• 3-Partition: given n integers, can you divide them into triples of equal sum? (“strongly 
NP-complete”: no pseudopolynomial-time algorithm unless P = NP) 

• Rectangle Packing: given n rectangles and a target rectangle whose area is the sum of the n 
rectangle areas, pack without overlap 

– Reduction from 3-Partition to Rectangle Packing: transform integer ai into 1 × ai rect-P 
angle; set target rectangle to n/3 × ( i ai) /3 

• Jigsaw puzzles: given n pieces with possibly ambiguous tabs/pockets, fit the pieces together 

– Reduction from Rectangle Packing: use uniquely matching tabs/pockets to force build-
ing rectangles and rectangular boundary; use one ambiguous tab/pocket for all other 
boundaries 

• Longest common subsequence of n strings 

• Longest simple path in a graph 

• Traveling Salesman Problem: shortest path that visits all vertices of a given graph (or deci-
sion version: is minimum weight ≤ d) 

• Shortest path amidst obstacles in 3D 

• 3-coloring given graph (but 2-coloring ∈ P) 

• Largest clique in a given graph 

• SAT: given a Boolean formula (made with AND, OR, NOT), is it every true? 
E.g., x AND NOT x is a NO input 

• Minesweeper, Sudoku, and most puzzles 

• Super Mario Bros., Legend of Zelda, Pokémon, and most video games are NP-hard (many 
are harder) 
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