Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 18: Pseudopolynomial

Lecture 18: Pseudopolynomial

Dynamic Programming Steps (SRT BOT)

1. Subproblem definition subproblem z € X

* Describe the meaning of a subproblem in words, in terms of parameters

» Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence

* Often multiply possible subsets across multiple inputs

* Often record partial state: add subproblems by incrementing some auxiliary variables

» Often smaller integers than a given integer (today’s focus)
2. Relate subproblem solutions recursively (i) = f(x(j),...) for one or more j < i

* Identify a question about a subproblem solution that, if you knew the answer to, reduces
the subproblem to smaller subproblem(s)

* Locally brute-force all possible answers to the question
3. Topological order to argue relation is acyclic and subproblems form a DAG
4. Base cases

* State solutions for all (reachable) independent subproblems where relation breaks down
5. Original problem

» Show how to compute solution to original problem from solutions to subproblem(s)

* Possibly use parent pointers to recover actual solution, not just objective function
6. Time analysis

* > ex work(z), or if work(z) = O(W) for all z € X, then | X |- O(W)

 work(z) measures nonrecursive work in relation; treat recursions as taking O(1) time

Lecture 18: Pseudopolynomial

Rod Cutting

Given a rod of length L and value v(¢) of rod of length ¢ for all ¢ € {1,2,..., L}
Goal: Cut the rod to maximize the value of cut rod pieces

Example: L =7, v = [(g, %, 120, 133, 148, 250, 361, 372]

Maybe greedily take most valuable per unit length?

Nope! arg max, v[(|/¢ = 6, and partitioning [6, 1] yields 32 which is not optimal!
Solution: v[2] + v[2] + v[3] = 10 + 10 + 13 = 33

Maximization problem on value of partition

. Subproblems

* | z(¢): maximum value obtainable by cutting rod of length ¢

e For¢ € {0,1,...,L}

Relate

* First piece has some length p (Guess!)

* 2(f) = max{u(p) +2(¢ —p) |pe{l,....(}}
* (draw dependency graph)

Topological order

* Increasing ¢: Subproblems z(¢) depend only on strictly smaller ¢, so acyclic

. Base

* 2(0) = 0 (length-zero rod has no value!)
Original problem

» Maximum value obtainable by cutting rod of length L is x(L)
* Store choices to reconstruct cuts
o If current rod length ¢ and optimal choice is ¢, remainder is piece p = ¢ — ¢

* (maximum-weight path in subproblem DAG!)
Time

* # subproblems: L + 1
* work per subproblem: O(¢) = O(L)

* O(L?) running time

Lecture 18: Pseudopolynomial

Is This Polynomial Time?

* (Strongly) polynomial time means that the running time is bounded above by a constant-

degree polynomial in the input size measured in words

* In Rod Cutting, input size is L + 1 words (one integer L and L integers in v)

» O(L?) is a constant-degree polynomial in L + 1, so YES: (strongly) polynomial time

recursive
x = {}
def cut_rod(l, v):
if 1 < 1: return 0
if 1 not in x:
for piece in range(l, 1 + 1):

X_ = v[piece] + cut_rod(l - piece,

if (1 not in x) or (x[1l] < x_):

x[1l] = x_
return x[1]

iterative
def cut_rod(L, vVv):
x = [0] = (L + 1)
for 1 in range(L + 1):
for piece in range(l, 1 + 1):
X_ = v[piece] + x[1 - piece]
1if x[1] < x_
x[1l] = x_
return x[L]

iterative with parent pointers
def cut_rod_pieces (L, v):
x = [0] = (L + 1)
parent = [None] x (L + 1)
for 1 in range(l, L + 1):
for piece in range(l, 1 + 1):

X_ = v[pliece] + x[1l - piece]
if x[1] < x_
x[1] = x_
parent[1l] = 1 - piece
1, pieces = L, []
while parent[1l] is not None:
piece = 1 - parent([l]

pieces.append (piece)
1 = parent[1l]
return pieces

e 4= o W 3 3

EEE e

base case
check memo
try piece
recurrence
update memo

base case
topological order
try piece
recurrence

update memo

base case

parent pointers
topological order
try piece
recurrence

update memo

update parent

walk back through parents

4 Lecture 18: Pseudopolynomial

Subset Sum

* Input: Sequence of n positive integers A = {ag, a1,...,a,-1}

* Output: Is there a subset of A that sums exactly to 7'? (i.e., 3A’ C A s.t. Zae pwa="T7
* Example: A = (1,3,4,12,19,21,22), T = 47 allows A’ = {3,4, 19,21}

» Optimization problem? Decision problem! Answer is YES or NO, TRUE or FALSE

* In example, answer is YES. However, answer is NO for some 7, e.g., 2,6,9, 10,11, ...

1. Subproblems

* |z(i,t) = does any subset of A[i :] sum to ¢?

e Fori € {0,1,...,n},t €{0,1,...,T}

2. Relate

e Idea: Is first item a; in a valid subset A’? (Guess!)
* If yes, then try to sum to ¢ — a; > 0 using remaining items
* If no, then try to sum to ¢ using remaining items

N x(i+1,t — A[i]) ift > Ali
20 t) = OR{ x(i+ 1,1) always

3. Topological order

* Subproblems z(i,t) only depend on strictly larger i, so acyclic

* Solve in order of decreasing i
4. Base

e 2(1,0) = YES for i € {0,...,n} (space packed exactly!)

* z(n,t) =No for j € {1,...,T} (no more items available to pack)
5. Original problem

* Original problem given by z(0,7T")

* Example: A = (3,4,3,1),T = 6 solution: A’ = (3,3)

* Bottom up: Solve all subproblems (Example has 35)

Lecture 18: Pseudopolynomial

0 1 2 3 4 5 g @) 0 1 2 3 4 5 6
TT/’> / Al =1 T [@ /Zl
T |6 4 A3 =3 T T ;4
7ot ¢ o Aj=4 i T e
T | et /(All]=3 T /(
T|& [& o O O O] i=0 T®# OO0 o O O 9

F F F F F F F F F F F F

0 1 2 3 4 5 g) 0 1 2 3 4 5 6
A3 =3

e f

o o oo < Apl=4 i
|l — 1T —T —]

|l — 1T —T —]
ok g Al =3
(il il o i=0

6. Time

* # subproblems: O(nT"), O(1) work per subproblem, O(nT") time

5
(i,)
Al =1
A[3] =3
A2 =4
Al =3
i=0
(i,)
Al =1
A[3] =3
A2 =4
Al =3
i=0

6 Lecture 18: Pseudopolynomial

Is This Polynomial?
* Input size is n + 1: one integer 7" and n integers in A
* Is O(nT') bounded above by a polynomial in n 4+ 1? NO, not necessarily
* On w-bit word RAM, T' < 2" and w > lg(n + 1), but we don’t have an upper bound on w

* E.g., w = n is not unreasonable, but then running time is O(n2"), which is exponential

Pseudopolynomial

* Algorithm has pseudopolynomial time: running time is bounded above by a constant-
degree polynomial in input size and input integers

* Such algorithms are polynomial in the case that integers are polynomially bounded in input
size, i.e., n°1) (same case that Radix Sort runs in O(n) time)

* Counting sort O(n + u), radix sort O(nlog, u), direct-access array build O(n + u), and
Fibonacci O(n) are all pseudopolynomial algorithms we’ve seen already

» Radix sort is actually weakly polynomial (a notion in between strongly polynomial and
pseudopolynomial): bounded above by a constant-degree polynomial in the input size mea-
sured in bits, i.e., in the logarithm of the input integers

* Contrast with Rod Cutting, which was polynomial

— Had pseudopolynomial dependence on L
— But luckily had > L input integers too

— If only given subset of sellable rod lengths (Knapsack Problem, which generalizes
Rod Cutting and Subset Sum — see recitation), then algorithm would have been only
pseudopolynomial

Complexity
* Is Subset Sum solvable in polynomial time when integers are not polynomially bounded?

* No if P # NP. What does that mean? Next lecture!

Lecture 18: Pseudopolynomial 7

Main Features of Dynamic Programs

* Review of examples from lecture

* Subproblems:

Prefix/suffixes: Bowling, LCS, LIS, Floyd—Warshall, Rod Cutting (coincidentally, re-
ally Integer subproblems), Subset Sum

Substrings: Alternating Coin Game, Arithmetic Parenthesization

Multiple sequences: LCS

Integers: Fibonacci, Rod Cutting, Subset Sum
+ Pseudopolynomial: Fibonacci, Subset Sum
— Vertices: DAG shortest paths, Bellman—Ford, Floyd—Warshall

e Subproblem constraints/expansion:

— Nonexpansive constraint: LIS (include first item)

— 2 X expansion: Alternating Coin Game (who goes first?), Arithmetic Parenthesization
(min/max)

- ©(1) X expansion: Piano Fingering (first finger assignment)

- ©(n) X expansion: Bellman—Ford (# edges)

¢ Relation:

Branching = # dependant subproblems in each subproblem

— ©(1) branching: Fibonacci, Bowling, LCS, Alternating Coin Game, Floyd-Warshall,
Subset Sum

© (degree) branching (source of | E| in running time): DAG shortest paths, Bellman—
Ford

- ©(n) branching: LIS, Arithmetic Parenthesization, Rod Cutting

Combine multiple solutions (not path in subproblem DAG): Fibonacci, Floyd-
Warshall, Arithmetic Parenthesization

* Original problem:

— Combine multiple subproblems: DAG shortest paths, Bellman—Ford, Floyd—Warshall,
LIS, Piano Fingering

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

