Reflection and Transmission
at a Potential Step

Outline

- Review: Particle in a 1-D Box

- Reflection and Transmission - Potential Step

- Reflection from a Potential Barrier

- Introduction to Barrier Penetration (Tunneling)

Reading and Applets:
.Text on Quantum Mechanics by French and Taylor
.Tutorial 10 - Quantum Mechanics in 1-D Potentials
.applets at http://phet.colorado.edu/en/get-phet/one-at-a-time
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Schrodinger: A Wave Equation for Electrons
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..The Free-Particle Schrodinger Wave Equation !

Erwin Schrddinger (1887-1961)
Image in the Public Domain



Schrodinger Equation and Energy Conservation

The Schrodinger Wave Equation

B2 0%(x)

2m Ox2

E(z) = +V(z)y()

The quantity | J|?dx is interpreted as the probability that the particle can be
found at a particular point x (within interval dx)

P(z) = || dx

© Dr. Akira Tonomura, Hitachi, Ltd., Japan. All rights reserved. This content is
excluded from our Creative Commons license. For more information, see

http://ocw.mit.edu/fairuse.
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Schrodinger Equation and Particle in a Box
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Semiconductor Nanoparticles

(aka: Quantum Dots)
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Red: bigger dots!
Blue: smaller dots!
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Photo by J. Halpert Courtesy of M. Bawendi Group, Chemistry, MIT

Core Shell

Determining QD energy
using the Schrodinger Equation
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Solutions to Schrodinger ’s Equation

B2 924

- 29m Ox2

= (B =V(2))y

Tighter confinement :> Higher energy

Even the lowest energy bound state requires some wavefunction
curvature (kinetic energy) to satisfy boundary conditions

Nodes in wavefunction :> Higher energy

The n-th wavefunction (eigenstate) has (n-1) zero-crossings




The Wavefunction

. w,z dx corresponds to a physically meaningful quantity -
d - the probability of finding the particle near x
- | d— dxis related to the momentum probability density -
L - the probability of finding a particle with a particular momentum

PHYSICALLY MEANINGFUL STATES MUST HAVE THE FOLLOWING PROPERTIES:

(finite to avoid infinite probability density)

must be continuous, with finite
(because d/ /dx is related to the momentum density)

In regions with finite potential,

(with finite d2) /dx?, to avoid infinite energies)

(it goes away when we take the absolute square)
(In fact, ) (x,t) is usually complex !)
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Solutions to Schrodinger ’s Equation

Y(X),
In what energy level is the particle? n = ... !
(@) 7
(b) 8
(c) 9 VAVAY -
What is the approximate shape of the < >
potential V(x) in which this particle is L
confined?
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WHICH WAVEFUNCTION CORRESPONDS TO WHICH POTENTIAL WELL ?
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NOTICE THAT FOR EINITE POTENTIAL WELLS WAVEFUNCTIONS ARE NOT ZERO AT THE WELL BOUNDARY
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. h? 0? 2m (E, =V
In Region 2: (B, — V)¢ = — 5 &UZD =) k% — ( 5 )

10



A Simple .
Potential Step b = Be—iki®
-------------------------------------- E =FE,
v
E=0 >
Region 1 ‘ Region 2 L
x =0
P = Ae Ik 4 Beikix Wy = Cle—ikza
1 is continuous: 11(0) = 92(0) —> A+B=C

8¢ IS continuous: g _g _ _@
o S-0(0) = o-15(0) = A-B=-C
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Total Energy = Potential Energy (* Configure Energy... )
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( Make Quantum Measurement } Position (nm)

Example from: http://phet.colorado.edu/en/get-phet/one-at-a-time
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Quantum Electron Currents

Given an electron of mass m
that is located in space with charge density p = ¢ |(z)|”

and moving with momentum < p > corresponding to < v >= hk/m

... then the current density for a single electron is given by

J = pv=ql¢|’ (hk/m)
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A Simple .
Potential Step b = Be—ik
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A Simple R
Potential Step Vg = Be—ikie
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IBM Almaden STM of Coppe

Image originally created by the IBM Corporation.

© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/fairuse.
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© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/fairuse.
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Image originally created by the IBM Corporation.

© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.
19



] — A —Jjkiz — — KT
A Simple pa=Ae - Yo=Ce
Potential Step b = Be—iki®
v
------------------------------------- E=FE,
E=0 >
Region 1 ‘ Region 2 L
x =0
h? 07 2mE,
In Region 1: =5 &Uf =) ki = 72
2 52 om (B, — V
In Region 2: (B, — V) = — 2hm g;ﬁ —> 12 m( - )

20



A Simple .
Potential Step b = Be—iki®
v
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A Simple .
Potential Step b = Be—iki®
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Total reflection = Transmission must be zero
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Quantum Tunneling Through a Thin Potential Barrier

Total Reflection at Boundary
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A Rectanqgular ;
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A Rectanqular
Potential Step

for E, < V:
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Flash Memory

Electrons \
H H
Erased Programmed
“1” “O”
Image is in the public domain : T
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Electrons tunnel preferentially when a voltage is applied
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MOSFET: Transistor in a Nutshell

Conduction electron flow

5i/SiGe Body
(25 nm)

Buried Oxide
(155 nm)

Semiconductor

Image courtesy of J. Hoyt Group, EECS, MIT
Photo by L. Gomez

Tunneling causes thin insulating layers
to become leaky !

Image is in the public domain
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Reading Flash Memory

UNPROGRAMMED PROGRAMMED
CONTROL GATE CONTROL GATE
cood | oooad »é».»__% »

— cooo |80 0
FLOATING GATE FLOATING GATE
] ecee|eeee

To obtain the same channel charge, the programmed
higher control-gate voltage than the unprogrammed gate

gate needs a

How do we WRITE Flash Memory ?
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Example: Barrier Tunneling

e Let’ s consider a tunneling problem:

An electron with a total energy of T L =2a

approaches a potential barrier with a height of
. If the width of the barrier is

, What is the probability that the — -\ —

electron will tunnel through the barrier? X

gap
2
A V2
2m 2m 6eV
_ ‘(V—E)=2 ‘(V—-E,) =2 ~ 12.6 nm ™"
: \/h2 ( ) 7T\/ pz ¢ ) 7T\/1.5056V—nm2 e

T — 46—2(12.6 nm_l)(0.18 nm) _ 4(0011) _ 44%

Question: What will T be if we double the width of the gap?
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Multiple Choice Questions

Consider a particle tunneling through a barrier: T
1. Which of the following will increase the v
likelihood of tunneling?
a. decrease the height of the barrier - oL

b. decrease the width of the barrier
c. decrease the mass of the particle

2. What is the energy of the particles that have successfully “escaped”?
a. < initial energy
b. = initial energy
c. > Initial energy
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Application of Tunneling:
Scanning Tunneling Microscopy (STM)

Due to the quantum effect of “barrier penetration,” the
electron density of a material extends beyond its surface:

One can exploit this O material ) O STM tip )
to measure the

: ~ 1 nm
electron density on a "‘ }‘*

material’ s surface:

material

Sodium atoms
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« STM images —— m
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Image originally created .'.' Y ."0:‘-‘. T "3‘0‘-'...
by IBM Corporation Ahtasanaa il ot ang

© IBM Corporation. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse. Image is in the public domain
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