
Wavepackets 

  Outline 
 
-  Review: Reflection & Refraction 
-  Superposition of Plane Waves 
- Wavepackets 
-  ΔΔkk –− ΔΔxx Relations 
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Sample Midterm 2 
(one of these would be Student X’s Problem) 

Q1:  Midterm 1 re-mix 
 (Ex: actuators with dielectrics) 

 

Q2:  Lorentz oscillator 
 (absorption / reflection / dielectric constant / 
  index of refraction / phase velocity) 

 

Q3:  EM Waves  
 (Wavevectors / Poynting / Polarization /  

  Malus' Law / Birefringence /LCDs) 
 

Q4:  Reflection & Refraction 
 (Snell's Law, Brewster angle, Fresnel Equations) 

 

Q5:  Interference / Diffraction 
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Electromagnetic Plane Waves 

The Wave Equation 

∂2Ey ∂2 ωEy k == εμ
∂z2 ∂t2 c

Ey = A1 cos (ωt− kz) +A2 cos (ωt+ kz)

A
Hx = − 1 A2

cos (ωt
η

− kz) + cos (ωt+ kz)
η

t

�E

�H
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incident wave 

Medium 1 Medium 2 

•

•
 
•

•

�H

E

reflected  
wave 

transmitted
wave 

Reflection of EM Waves at Boundaries 
� �E1 (z = 0) = E2 (z = 0)

  Write traveling wave terms in 
each region 

  Determine boundary condition 
 
  Infer relationship of ω1,2 & k1,2 

  Solve for Ero (r) and Eto (t) 

�

� �E2 = Et

a= ˆxEt0e
−jk2z

a= ˆxtEi0e
−jk2z

� � �E1 = Ei + Er

a= ˆx
(
Ei0e

−jk1z + Er0e
+jk1z

a= ˆx

)
(
Ei0e

−jk1z + rEi0e
+jk1z

)
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Reflection of EM Waves at Boundaries 

•  Write traveling wave terms in 
each region 

•  Determine boundary condition 

•  Infer relationship of ω1,2 & k1,2 

•  Solve for Ero (r) and Eto (t) 

incident 
wave 

Medium 1 Medium 2 

�H

�E E1 (z = 0) =
�H1 (z = 0) =

transmitted  
wave reflected  

wave 

� �E2 (z = 0)
�H2 (z = 0)

�E1 a= ˆx
(
Ei0e

−jk1z + Er0e
+jk1z(

E E� i0
H1 a= ˆy e−jk1z

)

η1
− r0

e+jk1z

η1

)

At normal incidence.. 

�E2 a= ˆxEt0e
−jk2z

E� t0
H2 a= ˆy e−jk2z

η2

Er

r = 0 η2 η
=

− 1

Ei
0 η2 + η1
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E-field  
polarization 
perpendicular to 
the plane of  
incidence (TE) 

E-field 
polarization 
parallel to  
the plane of 
incidence (TM) 

• 

�Ei = ây �Ei0e
−jkixx−jkizz

x

y z

•  Write traveling wave terms in 
each region 

•  Determine boundary condition 

•  Infer relationship of ω1,2 & k1,2 

•  Solve for Ero (r) and Eto (t) 

Oblique Incidence at Dielectric Interface 

�Hi a= ˆyHi0e
−jkixx−jkizz
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•  Infer relationship of ω1,2 & k

•  Solve for Ero (r) and Eto (t) 

�Er = âyEr0e
−jkrxx+jkrzz

�Et = âyEt0e
−jktxx−jktzz

�Ei = âyEi0e
−jkixx−jkizz

• 

x

y z

•  Write traveling wave terms in 
each region 

•  Determine boundary condition 

1,2 

Oblique Incidence at Dielectric Interface 
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•  Write traveling wave terms in 
each region 

•  Determine boundary condition 

•  Infer relationship of ω1,2 & 

•  Solve for Ero (r) and Eto (t) 

�Er = âyEr0e
−jkrxx+jkrzz

�Et = âyEt0e
−jktxx−jktzz

�Ei = âyEi0e
−jkixx−jkizz

• 

x

y z

k1,2 

Oblique Incidence at Dielectric Interface 

Tangential field is continuous (z=0).. 

Ei0e
−jkixx + Er0e

−jkrxx = Et0e
−jktxx
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Snell’s Law 

Tangential E-field is continuous … 

Ei0e
−jkixx + Er0e

−jkrxx = Et0e
−jktxx

REMINDER: 

ω ωn
k = =

vp c

• 

x

y z

n1 n2

kix = krx

n1 sin θi = n1 sin θr

θi = θr

kix = ktx

n1 sin θi = n2 sin θt
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Incidence Angle 

Re
fl

ec
ti

on
 C

oe
ff

ic
ie

nt
s 

θi

θc

θB

|r⊥|
|r‖|

n1 = 1.44
n2 = 1.00

Reflection of Light 
(Optics Viewpoint … μ1 = μ2) 

TE 

TM 

E-field 
perpendicular 
to the plane of 

incidence 

E-field 
parallel to 

the plane of 
incidence 

�Hr
�Er

�Et

�Ht�Ei

�Hi

�Hr

�Er

�Et

�Ht�Ei

�Hi • 

x

y z

n1 cos θi θ
=

− n2 cos t
TE: r⊥

n1 cos θi + n2 cos θt

n2 cos θi
TM: r =

− n1 cos θt
‖

n2 cos θi + n1 cos θt
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Electromagnetic Plane Waves 

The Wave Equation 

∂2Ey ∂2 ωEy k == εμ
∂z2 ∂t2 c

Ey = A1 cos (ωt− kz) +A2 cos (ωt+ kz)

A
Hx = − 1 A

cos (ωt
η

�E

t

�H

− 2
kz) + cos (ωt+ kz)

η

•  When did this plane wave turn on? 

•  Where is there no plane wave? 
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Superposition Example: Reflection 

How do we get a wavepacket (localized EM waves) ? 

incident wave 

Medium 1 Medium 2 

�H

transmitted wave 
reflected wave 

�E
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Superposition Example: Interference 

What if the interfering waves do not have the same frequency (ω, k) ? 

Incident 
Light 
Path 

Reflected 
Light 
Paths 

Thin Part of Bubble 

Incident 
Light 
Path 

Reflected 
Light 
Paths 

Thick Part of Bubble 

Outer Surface 
of Bubble 

Inner Surface  
of Bubble 

Reflected Light Pathways Through Soap Bubbles 

Constructive Interference Destructive Interference 
(Wavefronts in Step) (Wavefronts out of Step) 

Image by Ali T http://www.flickr 
.com/photos/77682540@N00/27 

89338547/ on Flickr. 
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In Figure above the waves are chosen to have a 10% 
frequency difference.  So when the slower wave goes 
through 5 full cycles (and is positive again), the faster 

wave goes through 5.5 cycles (and is negative). 

Two waves at different frequencies  
    … will constructively interfere and destructively interfere at different times 

time
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Wavepackets: Superpositions Along Travel Direction 

� �E = E ej(ω1t−k1z)
o + ej(ω2t−k2z) 4πŷ

k2 + k1

SUPERPOSITION OF TWO WAVES OF DIFFERENT FREQUENCIES 
(hence different k’s)  

REMINDER: 

n
k = ω

c

( )
| |

4π

|k2 − k1|
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Wavepackets: Superpositions Along Travel Direction 

WHAT WOULD WE GET IF WE SUPERIMPOSED  
 WAVES OF MANY DIFFERENT FREQUENCIES ?  

� �E = Eo

∫ +∞
f (k) e+j(ωt−kz)dk

−∞

LET’S SET THE FREQUENCY DISTRIBUTION as GAUSSIAN 

2
1 (k k

f (k √ exp
−

2πσk
f(k)

ko
k

σk

− o)
) =

2σ2
k

REMINDER: 

n
k = ω

c

( )
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2

0.4

0.3

0.2

0.1
0.1% 0.1%

2.1% 2.1%

13.6%13.6%

34.1% 34.1%

μ

Reminder: Gaussian Distribution  
σ

50% of data within  ±√

μ specifies the position of the bell curve’s central peak 
σ specifies the half-distance between inflection points 

FOURIER TRANSFORM OF A GAUSSIAN IS A GAUSSIAN 

Fx e−ax2

(k) =

√
π
e−

2 2π k
a

a

1
f (x) = √ e−

(x− 2μ)
22σ

2πσ

[ ]
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Gaussian Wavepacket in Space 

Re{En (z, to)} t = to

SUM OF SINUSOIDS 
= WAVEPA  CKET

WE SET THE FREQUENCY DISTRIBUTION as GAUSSIAN 

∑
n

Re{En (z, to)}

2
1

f (k) = √ exp
2πσk

(
(k − k− o)

2σ2
k

)
f(k)

ko
k

σk
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∑
n

Re{En(z, t1)}

Re{En(z, t1)} t = t1

z

kn

Re{En(z, to)}

∑
n

Re{En(z, to)}

t = to

z

kn

Gaussian Wavepacket in Time 

E(z, t) = Eoexp

(
σ2

− k 2
(ct− z)

2

)
cos (ωot− koz)

GAUSSIAN ENVELOPE 
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Δz =
1√
2σk

Gaussian Wavepacket in Space 

E(z, t) = Eoexp

(
σ2

− k (ct− 2
z)

)
cos (ωot− koz)

2

GAUSSIAN 
 ENVELOPE

In free space  … 

ω
k =

c

… this plot then shows the PROBABILITY OF
WHICH k (or frequency) EM WAVES are  

MOST LIKELY TO BE IN THE WAVEPACKET 

  

  
ΔkΔz = 1/2  

WAVE PACKET 

λo

λo =
2π

ko

f(k)

k

σk

ko
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Gaussian Wavepacket in Time 
2

E(z, t) = E exp

(
σ− k 2

o (ct
2

− z)

)
cos (ωot− koz)

If you want to LOCATE THE WAVEPACKET WITHIN THE SPACE Δz  
you need to use a set of EM-WAVES THAT SPAN THE WAVENUMBER SPACE OF Δk = 1/(2Δz) 

UNCERTAINTY 
RELATIONS 

Δz = Δt
n
c

Δk = Δω

c

n

ΔkΔz = 1/2

ΔωΔt = 1/2

WAVE PACKET 

λo

λo =
2π

ko

Δk

Δz
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Wavepacket Reflection 

EcEc
∗E(z, t)
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Wavepackets in 2-D and 3-D 

Contours of constant amplitude 

2-D 

3-D 

E(x, z)E∗(x, z)

E(x, z)E∗(x, z)

t = to

Spherical probability distribution  
for the magnitude of the amplitudes  

of the waves in the wave packet. 
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electron 

incident 
photon 

  Suppose the positions and speeds of all particles in  
the universe are measured to sufficient accuracy at a 
particular instant in time 

  It is possible to predict the motions of every particle at 
any time in the future (or in the past for that matter) 

In the next few lectures we will start 
 considering the limits of 

 Light Microscopes
and how these might affect our 

understanding of the world we live in 
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Key Takeaways 

GAUSSIAN WAVEPACKET IN SPACE (
σ2

E(z, t) = Eoexp − k (ct
2

− 2
z)

)
cos (ωot− koz)

GAUSSIAN 
 ENVELOPE

UNCERTAINTY ΔkΔz = 1/2
RELATIONS 

ΔωΔt = 1/2

WAVE PACKET 

λo

λo =
2π

ko
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