
 

       

           
              
              

          
            

           
             

           
              

      
              

               
              

               
              

                 
             

               
                 

3.3 CONDITIONS FOR FIELDS TO BE QUASISTATIC 

An appreciation for the quasistatic approximations will come with a consideration 
of many case studies. Justification of one or the other of the approximations hinges 
on using the quasistatic fields to estimate the “error” fields, which are then hopefully 
found to be small compared to the original quasistatic fields. 

In developing any mathematical “theory” for the description of some part of 
the physical world, approximations are made. Conclusions based on this “theory” 
should indeed be made with a concern for implicit approximations made out of 
ignorance or through oversight. But in making quasistatic approximations, we are 
fortunate in having available the “exact” laws. These can always be used to test 
the validity of a tentative approximation. 

Provided that the system of interest has dimensions that are all within a factor 
of two or so of each other, order of magnitude arguments easily illustrate how the 
error fields are related to the quasistatic fields. The examples shown in Fig. 3.3.1 
are not to be considered in detail, but rather should be regarded as prototypes. The 
candidate for the EQS approximation in part (a) consists of metal spheres that are 
insulated from each other and driven by a source of EMF. In the case of part (b), 
which is proposed for the MQS approximation, a current source drives a current 
around a one­turn loop. The dimensions are “on the same order” if the diameter of 
one of the spheres, is within a factor of two or so of the spacing between spheres 
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Sec. 3.3 Conditions for Quasistatics 

Fig. 3.3.1 Prototype systems involving one typical length. (a) EQS system 
in which source of EMF drives a pair of perfectly conducting spheres having 
radius and spacing on the order of L. (b) MQS system consisting of perfectly 
conducting loop driven by current source. The radius of the loop and diameter 
of its cross­section are on the order of L. 

and if the diameter of the conductor forming the loop is within a similar factor of 
the diameter of the loop. 

If the system is pictured as made up of “perfect conductors” and “perfect 
insulators,” the decision as to whether a quasistatic field ought to be classified as 
EQS or MQS can be made by a simple rule of thumb: Lower the time rate of change 
(frequency) of the driving source so that the fields become static. If the magnetic 
field vanishes in this limit, then the field is EQS; if the electric field vanishes the 
field is MQS. In reality, materials are not “perfect,” neither perfect conductors nor 
perfect insulators. Therefore, the usefulness of this rule depends on understanding 
under what circumstances materials tend to behave as “perfect” conductors, and 
insulators. Fortunately, nature provides us with metals that are extremely good 
conductors– and with gases, liquids, and solids that are very good insulators– so 
that this rule is a good intuitive starting point. Chapters 7, 10, and 15 will provide 
a more mature view of how to classify quasistatic systems. 

The quasistatic laws are now used in the order summarized by (3.2.5)­(3.2.9) 
to estimate the field magnitudes. With only one typical length scale L, we can 
approximate spatial derivatives that make up the curl and divergence operators 
by 1/L. 

ELECTROQUASISTATIC MAGNETOQUASISTATIC 

Thus, it follows from Gauss’ law, (3.2.5a), 
that typical values of E and ρ are re­
lated by

 oE ρL 
= ρ ⇒ E = (1a)

L  o 

Thus, it follows from Ampère’s law, 
(3.2.5b), that typical values of H 
and J are related by 

H 
= J ⇒ H = JL (1b)

L 

As suggested by the integral forms of the laws so far used, these fields and 
their sources are sketched in Fig. 3.3.1. The EQS laws will predict E lines that 
originate on the positive charges on one electrode and terminate on the negative 
charges on the other. The MQS laws will predict lines of H that close around the 
circulating current. 

If the excitation were sinusoidal in time, the characteristic time τ for the 
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Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

sinusoidal steady state response would be the reciprocal of the angular frequency 
ω. In any case, if the excitations are time varying, with a characteristic time τ , then 

the time varying charge implies a cur­
rent, and this in turn induces an H. 
We could compute the current in the 
conductors from charge conservation, 
(3.2.7a), but because we are interested 
in the induced H, we use Ampère’s 
law, (3.2.8a), evaluated in the free space 
region. The electric field is replaced in 
favor of the charge density in this ex­
pression using (1a). 

H oE 
= ⇒ 

L τ 
(2a)

L2

H = = 
oEL ρ 

τ τ 

the time­varying current implies an 
H that is time­varying. In accor­
dance with Faraday’s law, (3.2.7b), 
the result is an induced E. The mag­
netic field intensity is replaced by J 
in this expression by making use of 
(1b). 

E 
= 

µoH ⇒ 
L 

E = 

τ 

µoHL 
= 

µoJL2 (2b) 

τ τ 

What errors are committed by ignoring the magnetic induction and displace­
ment current terms in the respective EQS and MQS laws? 

The electric field induced by the qua­
sistatic magnetic field is estimated by 
using the H field from (2a) to esti­
mate the contribution of the induc­
tion term in Faraday’s law. That is, 
the term originally neglected in (3.2.1a) 
is now estimated, and from this a curl 
of an error field evaluated. 

Eerror 
= 

µoρL
2 

⇒ 
L τ2 

(3a) 
µoρL

3 

Eerror = 
τ2 

The magnetic field induced by the 
displacement current represents an 
error field. It can be estimated from 
Ampère’s law, by using (2b) to eval­
uate the displacement current that 
was originally neglected in (3.2.2b). 

Herror 
= 

oµoJL2 

⇒ 
L τ2 

(3b) 
oµoJL3 

Herror = 
τ2 

3



     

       
         

   

 

 
 

  

  
 

       
        

    

    
  

            
               

                
          

           
           

  
  

  
   

 

               
              

            
               

    
             

             
             

              
       

           
               

                 
              

                
               

              
             

 	       
 

               
                
              

            
           

             
       

           
          

    	
 

Sec. 3.3 Conditions for Quasistatics 

It follows from this expression and (1a) 
that the ratio of the error field to the 
quasistatic field is 

L2Eerror µo o
= (4a)

E τ2 

It then follows from this and (1b) 
that the ratio of the error field to 
the quasistatic field is 

L2Herror oµo
= (4b)

H τ2 

For the approximations to be justified, these error fields must be small com­
pared to the quasistatic fields. Note that whether (4a) is used to represent the EQS 
system or (4b) is used for the MQS system, the conditions on the spatial scale L 
and time τ (perhaps the reciprocal frequency) are the same. 

Both the EQS and MQS approximations are predicated on having sufficiently 
slow time variations (low frequencies) and sufficiently small dimensions so that 

µo�oL
2 L � 1 ⇒ � τ	 (5)

τ2 c 

where c = 1/ 
√ 

�oµo. The ratio L/c is the time required for an electromagnetic wave 
to propagate at the velocity c over a length L characterizing the system. Thus, 
either of the quasistatic approximations is valid if an electromagnetic wave can 
propagate a characteristic length of the system in a time that is short compared to 
times τ of interest. 

If the conditions that must be fulfilled in order to justify the quasistatic ap­
proximations are the same, how do we know which approximation to use? For 
systems modeled by free space and perfect conductors, such as we have considered 
here, the answer comes from considering the fields that are retained in the static 
limit (infinite τ or zero frequency ω). 

Recapitulating the rule expressed earlier, consider the pair of spheres shown 
in Fig. 3.3.1a. Excited by a constant source of EMF, they are charged, and the 
charges give rise to an electric field. But in this static limit, there is no current and 
hence no magnetic field. Thus, the static system is dominated by the electric field, 
and it is natural to represent it as being EQS even if the excitation is time­varying. 

Excited by a dc source, the circulating current in Fig. 3.3.1b gives rise to a 
magnetic field, but there are no charges with attendant electric fields. This time it 
is natural to use the MQS approximation when the excitation is time varying. 

Example 3.3.1.	 Estimate of Error Introduced by Electroquasistatic 
Approximation 

Consider a simple structure fed by a set of idealized sources of EMF as shown 
in Fig. 3.3.2. Two circular metal disks, of radius b, are spaced a distance d apart. 
A distribution of EMF generators is connected between the rims of the plates so 
that the complete system, plates and sources, is cylindrically symmetric. With the 
understanding that in subsequent chapters we will be examining the underlying 
physical processes, for now we assume that, because the plates are highly conducting, 
E must be perpendicular to their surfaces. 

The electroquasistatic field laws are represented by (3.2.5a) and (3.2.6a). A 
simple solution for the electric field between the plates is 

E 
E = iz ≡ Eoiz	 (6)

d 
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Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

Fig. 3.3.2 Plane parallel electrodes having no resistance, driven at 
their outer edges by a distribution of sources of EMF. 

Fig. 3.3.3 Parallel plates of Fig. 3.3.2, showing volume containing 
lower plate and radial surface current density at its periphery. 

where the sign definition of the EMF, E , is as indicated in Fig. 3.3.2. The field 
of (6) satisfies (3.2.5a) and (3.2.6a) in the region between the plates because it 
is both irrotational and solenoidal (no charge is assumed to exist in the region 
between the plates). Further, the field has no component tangential to the plates 
which is consistent with the assumption of plates with no resistance. Finally, Gauss’ 
jump condition, (1.3.17), can be used to find the surface charges on the top and 
bottom plates. Because the fields above the upper plate and below the lower plate 
are assumed to be zero, the surface charge densities on the bottom of the top plate 
and on the top of the bottom plate are

 − oEz(z = d) = − oEo; z = d
σs = (7) 

oEz(z = 0) = oEo; z = 0 

There remains the question of how the electric field in the neighborhood of the 
distributed source of EMF is constrained. We assume here that these sources are 
connected in such a way that they make the field uniform right out to the outer 
edges of the plates. Thus, it is consistent to have a field that is uniform throughout 
the entire region between the plates. Note that the surface charge density on the 
plates is also uniform out to r = b. At this point, (3.2.5a) and (3.2.6a) are satisfied 
between and on the plates. 

In the EQS order of laws, conservation of charge comes next. Rather than using 
the differential form, (3.2.7a), we use the integral form, (1.5.2). The volume V is a 
cylinder of circular cross­section enclosing the lower plate, as shown in Fig. 3.3.3. Be­
cause the radial surface current density in the plate is independent of φ, integration 
of J · da on the enclosing surface amounts to multiplying Kr by the circumference, 
while the integration over the volume is carried out by multiplying σs by the surface 
area, because the surface charge density is uniform. Thus, 

dEo b o dEo
Kr2πb + πb2 o = 0 ⇒ Kr

  
r=b 

= − (8)
dt 2 dt 

In order to find the magnetic field, we make use of the “secondary” EQS 
laws, (3.2.8a) and (3.2.9a). Ampère’s law in integral form, (1.4.1), is convenient for 
the present case of high symmetry. The displacement current is z directed, so the 
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Sec. 3.3 Conditions for Quasistatics 

Fig. 3.3.4 Cross­section of system shown in Fig. 3.3.2 showing surface 
and contour used in evaluating correction E field. 

surface S is taken as being in the free space region between the plates and having a 
z­directed normal. i l 

∂ oE 
H · ds = · izda (9)

∂t 
C S 

The symmetry of structure and source suggests that H must be φ independent. A 
centered circular contour of radius r, as in Fig. 3.3.2, with z in the range 0 < z < d, 
gives 

dEo 2 r dEo
Hφ2πr = o πr ⇒ Hφ = o (10)

dt 2 dt 

Thus, for this specific configuration, we are at a point in the analysis represented 
by (2a) in the order of magnitude arguments. 

Consider now “higher order” fields and specifically the error committed by 
neglecting the magnetic induction in the EQS approximation. The correct statement 
of Faraday’s law is (3.2.1a), with the magnetic induction retained. Now that the 
quasistatic H has been determined, we are in a position to compute the curl of E 
that it generates. 

Again, for this highly symmetric configuration, it is best to use the integral 
law. Because H is φ directed, the surface is chosen to have its normal in the φ 
direction, as shown in Fig. 3.3.4. Thus, Faraday’s integral law (1.6.1) becomes 

i l 
∂µoHφ

E · ds = − iφ · da (11)
∂t 

C S 

We use the contour shown in Fig. 3.3.4 and assume that the E induced by the 
magnetic induction is independent of z. Because the tangential E field is zero on 
the plates, the only contributions to the line integral on the left in (11) come from 
the vertical legs of the contour. The surface integral on the right is evaluated using 
(10). 

b 
µo od 

l 
l l d

2Eo
[Ez(b)− Ez(r)]d = r dr

2 dt2 
r (12) 

d2µo od 2 2 Eo 
= (b − r )

4 dt2 

The field at the outer edge is constrained by the EMF sources to be Eo, and so it 
follows from (12) that to this order of approximation the electric field is 

oµo d
2Eo

Ez = Eo + (r 2 − b2) (13)
4 dt2 

We have found that the electric field at r  = b differs from the field at the edge. How 
big is the difference? This depends on the time rate of variation of the electric field. 

6



       

            
  

      

        
            

                  

 
   

 
  

 

            

  

  
 

                 
             

  
  

      
 

  
    

                 
                 

               
          

              
             

             
       

   

            
            

               
             

 
     

 

                
               

Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

For purposes of illustration, assume that the electric field is sinusoidally varying 
with time. 

Eo(t) = A cos ωt (14) 

Thus, the time characterizing the dynamics is 1/ω. 
Introducing this expression into (13), and calling the second term the “error 

field,” the ratio of the error field and the field at the rim, where r = b, is 

|Eerror | 1 2 = ω2 
oµo(b − r 2) (15)

Eo 4 

The error field will be negligible compared to the quasistatic field if 

ω2 
oµob

2 

� 1 (16)
4 

for all r between the plates. In terms of the free space wavelength λ, defined as the √ 
distance an electromagnetic wave propagates at the velocity c = 1/ oµo in one 
cycle 2π/ω 

λ 2π √ 
= : c ≡ 1/ µo o (17) 

c ω 

(16) becomes 

b2 � (λ/π)2 (18) 

In free space and at a frequency of 1 MHz, the wavelength is 300 meters. Hence, if 
we build a circular disk capacitor and excite it at a frequency of 1 MHz, then the 
quasistatic laws will give a good approximation to the actual field as long as the 
radius of the disk is much less than 300 meters. 

The correction field for a MQS system is found by following steps that are 
analogous to those used in the previous example. Once the magnetic and electric 
fields have been determined using the MQS laws, the error magnetic field induced 
by the displacement current can be found. 

3.4 QUASISTATIC SYSTEMS1 

Whether we ignore the magnetic induction and use the EQS approximation, or 
neglect the displacement current and make a MQS approximation, times of interest 
τ must be long compared to the time τem required for an electromagnetic wave to 
propagate at the velocity c over the largest length L of the system. 

τem = 
L � τ (1) 
c 

1 This section makes use of the integral laws at a level somewhat more advanced than neces­
sary in preparation for the next chapter. It can be skipped without loss of continuity. 
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Sec. 3.4 Quasistatic Systems 

Fig. 3.4.1 Range of characteristic times over which quasistatic approxima­
tion is valid. The transit time of an electromagnetic wave is τem while τ? is a 
time characterizing the dynamics of the quasistatic system. 

Fig. 3.4.2 (a) Quasistatic system showing (b) its EQS subsystem and 
(c) its MQS subsystem. 

This requirement is given a graphic representation in Fig. 3.4.1. 
For a given characteristic time (for example, a given reciprocal frequency), it 

is clear from (1) that the region described by the quasistatic laws is limited in size. 
Systems can often be divided into subregions that are small enough to be quasistatic 
but, by virtue of being interconnected through their boundaries, are dynamic in 
their behavior. With the elements regarded as the subregions, electric circuits are 
an example. In the physical world of perfect conductors and free space (to which we 
are presently limited), it is the topology of the conductors that determines whether 
these subregions are EQS or MQS. 

A system that is described by quasistatic laws but retains a dynamical be­
havior exhibits one or more characteristic times. On the characteristic time axis in 
Fig. 3.4.1, τ? is one such time. The quasistatic system model provides a meaningful 
description provided that the one or more characteristic times τ? are long compared 
to τem. The following example illustrates this concept. 

Example 3.4.1. A Quasistatic System Exhibiting Resonance 

Shown in cross­section in Fig. 3.4.2 is a resonator used in connection with electron 
beam devices at microwave frequencies. The volume enclosed by its perfectly con­
ducting boundaries can be broken into the two regions shown. The first of these is 
bounded by a pair of circular plane parallel conductors having spacing d and radius 
b. This region is EQS and described in Example 3.3.1. 

The second region is bounded by coaxial, perfectly conducting cylinders which 
form an annular region having outside radius a and an inside radius b that matches 
up to the outer edge of the lower plate of the EQS system. The coaxial cylinders are 
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Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

Fig. 3.4.3 Surface S and contour C for evaluating H­field using Ampère’s 
law. 

shorted by a perfectly conducting plate at the bottom, where z = 0. A similar plate 
at the top, where z = h, connects the outer cylinder to the outer edge of the upper 
plate in the EQS subregion. 

For the moment, the subsystems are isolated from each other by driving the 
MQS system with a current source Ko (amps/meter) distributed around the periph­
ery of the gap between conductors. This gives rise to axial surface current densities 
of Ko and −Ko(b/a) on the inner and outer cylindrical conductors and radial surface 
current densities contributing to J · da in the upper and lower plates, respectively. 
(Note that these satisfy the MQS current continuity requirement.) 

Because of the symmetry, the magnetic field can be determined by using the 
integral MQS form of Ampère’s law. So that there is a contribution to the integration 
of J · da, a surface is selected with a normal in the axial direction. This surface is 
enclosed by a circular contour having the radius r, as shown in Fig. 3.4.3. Because 
of the axial symmetry, Hφ is independent of φ, and the integrations on S and C 
amount to multiplications. 

i l
H · ds = · ⇒ 2πrHφ = 2πbKo (2)J izda 

C S 

Thus, in the annulus, 
b 

Hφ = Ko (3) 
r 

In the regions outside the annulus, H is zero. Note that this is consistent with 
Ampère’s jump condition, (1.4.16), evaluated on any of the boundaries using the 
already determined surface current densities. Also, we will find in Chap. 10 that 
there can be no time­varying magnetic flux density normal to a perfectly conducting 
boundary. The magnetic field given in (3) satisfies this condition as well. 

In the hierarchy of MQS laws, we have now satisfied (3.2.5b) and (3.2.6b) and 
come next to Faraday’s law, (3.2.7b). For the present purposes, we are not interested 
in the details of the distribution of electric field. Rather, we use the integral form of 
Faraday’s law, (1.6.1), integrated on the surface S shown in Fig. 3.4.4. The integral 
of E · ds along the perfect conductor vanishes and we are left with 

bl 
dλfEab = E · ds = (4)
dt 

a 

where the EMF across the gap is as defined by (1.6.2), and the flux linked by C is 
consistent with (1.6.8). 

l l 
dr 

λf = h
a 

µoHφdr = µobhKo

a 

= µohb ln
 a 

Ko (5) 
r b

b b 

9



    

            
  

       

   
    

   
  

               
                
           

            
    

      

               

   

            
             

  
       

  
   

   
   

  

       

   
    

 

     
  
 

  
  

 
 

 

               
              

              
            

             
                 

                   

Sec. 3.4 Quasistatic Systems 

Fig. 3.4.4 Surface S and contour C used to determine EMF using 
Faraday’s law. 

These last two expressions combine to give 

a dKoEab = µohb ln (6)
b dt 

Just as this expression serves to relate the EMF and surface current density at the 
gap of the MQS system, (3.3.8) relates the gap variables defined in Fig. 3.4.2b for the 
EQS subsystem. The subsystems are now interconnected by replacing the distributed 
current source driving the MQS system with the peripheral surface current density 
of the EQS system. 

Kr + Ko = 0 (7) 

In addition, the EMF’s of the two subsystems are made to match where they join. 

−E = Eab (8) 

With (3.3.8) and (3.3.6), respectively, substituted for Kr and Eab, these expressions 
become two differential equations in the two variables Eo and Ko describing the 
complete system. 

b o dEo− + Ko = 0 (9)
2 dt 

a dKo−dEo = µobh ln (10)
b dt 

Elimination of Ko between these expressions gives 

d2Eo 
+ ωo

2Eo = 0 (11)
dt2 

where ωo is defined as 
2d 

ω2 = (12)o
oµohb2 ln 

a
b 

and it follows that solutions are a linear combination of sin ωot and cos ωot. 
As might have been suspected from the outset, what we have found is a re­

sponse to initial conditions that is oscillatory, with a natural frequency ωo. That is, 
the parallel plate capacitor that comprises the EQS subsystem, connected in parallel 
with the one­turn inductor that is the MQS subsystem, responds to initial values 
of Eo and Ko with an oscillation that at one instant has Eo at its peak magnitude 
and Ko = 0, and a quarter cycle later has Eo = 0 and Ko at its peak magnitude. 

10



       

               
               

                
              
               

           
              

             
              

              
                    

              
              

       

           
              

              
                 

            
     

    

           
             

            
    

               
           

               
                
             

  
 

    
 

                 
             

            
            

           

Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

Fig. 3.4.5 In terms of characteristic time τ , the dynamic regime in which the 
system of Fig. 3.4.2 is quasistatic but capable of being in a state of resonance. 

Remember that oEo is the surface charge density on the lower plate in the EQS 
section. Thus, the oscillation is between the charges in the EQS subsystem and the 
currents in the MQS subsystem. The distribution of field sources in the system as a 
whole is determined by a dynamical interaction between the two subsystems. 

If the system were driven by a current source having the frequency ω, it 
would display a resonance at the natural frequency ωo. Under what conditions can 
the system be in resonance and still be quasistatic? In this case, the characteristic 
time for the system dynamics is the reciprocal of the resonance frequency. The EQS 
subsystem is indeed EQS if b/c � τ , while the annular subsystem is MQS if h/c � τ . 
Thus, the resonance is correctly described by the quasistatic model if the times have 
the ordering shown in Fig. 3.4.5. Essentially, this is achieved by making the spacing 
d in the EQS section very small. 

With the region of interest containing media, the appropriate quasistatic limit 
is often as much determined by the material properties as by the topology. In 
Chaps. 7 and 10, we will consider lossy materials where the distributions of field 
sources depend on the time rates of change and a given region can be EQS or MQS 
depending on the electrical conductivity. We return to the subject of quasistatics 
in Chaps. 12 and 14. 

3.5 OVERVIEW OF APPLICATIONS 

Electroquasistatics is the subject of Chaps. 4–7 and magnetoquasistatics the topic 
of Chaps. 8–10. Before embarking on these subjects, consider in this section some 
practical examples that fall in each category, and some that involve the electrody­
namics of Chaps. 12–14. 

Our starting point is at location A at the upper right in Fig. 3.5.1. With 
frequencies that range from 60­400 MHz, television signals propagate from remote 
locations to our homes as electromagnetic waves. If the frequency is f , the field 
passes through one period in the time 1/f . Setting this equal to the transit time, 
(3.1.l7) gives an expression for the wavelength, the distance the wave travels during 
one cycle. 

c 
L ≡ λ = 

f 

Thus, for channel 2 (60 MHz) the wavelength is about 5 m, while for channel 54 it 
is about 20 cm. The distance between antenna and receiver is many wavelengths, 
and hence the fields undergo many oscillations while traversing the space between 
the two. The dynamics is not quasistatic but rather intimately involves the electro­
magnetic wave represented by inset B and described in Sec. 3.1. 
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Sec. 3.5 Overview of Applications 

Fig. 3.5.1 Quasistatic and electrodynamic fields in the physical world. 

The field induces charges and currents in the antenna, and the resulting sig­
nals are conveyed to the TV set by a transmission line. At TV frequencies, the line 
is likely to be many wavelengths long. Hence, the fields surrounding the line are also 
not quasistatic. But the radial distributions of current in the elements of the anten­
nas and in the wires of the transmission line are governed by magnetoquasistatic 
(MQS) laws. As suggested by inset C, the current density tends to concentrate 
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Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

adjacent to the conductor surfaces and this skin effect is MQS. 
Inside the television set, in the transistors and picture tube that convert the 

signal to an image and sound, electroquasistatic (EQS) processes abound. Included 
are dynamic effects in the transistors (E) that result from the time required for an 
electron or hole to migrate a finite distance through a semiconductor. Also included 
are the effects of inertia as the electrons are accelerated by the electric field in the 
picture tube (D). On the other hand, the speaker that transduces the electrical 
signals into sound is most likely MQS. 

Electromagnetic fields are far closer to the viewer than the television set. As 
is obvious to those who have had an electrocardiogram, the heart (F) is the source 
of a pulsating current. Are the distributions of these currents and the associated 
fields described by the EQS or MQS approximation? On the largest scales of the 
body, we will find that it is MQS. 

Of course, there are many other sources of electrical currents in the body. 
Nerve conduction and other electrical activity in the brain occur on much smaller 
length scales and can involve regions of much less conductivity. These cases can be 
EQS. 

Electrical power systems provide diverse examples as well. The step­down 
transformer on a pole outside the home (G) is MQS, with dynamical processes 
including eddy currents and hysteresis. 

The energy in all these examples originates in the fuel burned in a power 
plant. Typically, a steam turbine drives a synchronous alternator (H). The fields 
within this generator of electrical power are MQS. However, most of the electronics 
in the control room (J) are described by the EQS approximation. In fact, much 
of the payoff in making computer components smaller is gained by having them 
remain EQS even as the bit rate is increased. The electrostatic precipitator (I), 
used to remove flyash from the combustion gases before they are vented from the 
stacks, seems to be an obvious candidate for the EQS approximation. Indeed, even 
though some modern precipitators use pulsed high voltage and all involve dynamic 
electrical discharges, they are governed by EQS laws. 

The power transmission system is at high voltage and therefore might nat­
urally be regarded as EQS. Certainly, specification of insulation performance (K) 
begins with EQS approximations. However, once electrical breakdown has occurred, 
enough current can be faulted to bring MQS considerations into play. Certainly, 
they are present in the operation of high­power switch gear. To be even a fraction of 
a wavelength at 60 Hz, a line must stretch the length of California. Thus, in so far 
as the power frequency fields are concerned, the system is quasistatic. But certain 
aspects of the power line itself are MQS, and others EQS, although when lightning 
strikes it is likely that neither approximation is appropriate. 

Not all fields in our bodies are of physiological origin. The man standing 
under the power line (L) finds himself in both electric and magnetic fields. How is 
it that our bodies can shield themselves from the electric field while being essentially 
transparent to the magnetic field without having obvious effects on our hearts or 
nervous systems? We will find that currents are indeed induced in the body by both 
the electric and magnetic fields, and that this coupling is best understood in terms 
of the quasistatic fields. By contrast, because the wavelength of an electromagnetic 
wave at TV frequencies is on the order of the dimensions of the body, the currents 
induced in the person standing in front of the TV antenna at A are not quasistatic. 
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Sec. 3.6 Summary 

As we make our way through the topics outlined in Fig. 3.5.1, these and other 
physical situations will be taken up by the examples. 

3.6 SUMMARY 

From a mathematical point of view, the summary of quasistatic laws given in Table 
3.6.1 is an outline of the next seven chapters. 

An excursion down the left column and then down the right column of the 
outline represented by Fig. 1.0.1 carries us down the corresponding columns of the 
table. Gauss’ law and the requirement that E be irrotational, (3.2.5a) and (3.2.6a), 
are the subjects of Chaps. 4–5. In Chaps. 6 and 7, two types of charge density 
are distinguished and used to represent the effects of macroscopic media on the 
electric field. In Chap. 6, where polarization charge is used to represent insulating 
media, charge is automatically conserved. But in Chap. 7, where unpaired charges 
are created through conduction processes, the charge conservation law, (3.2.7a), 
comes into play on the same footing as (3.2.5a) and (3.2.6a). In stages, starting in 
Chap. 4, the ability to predict self­consistent distributions of E and ρ is achieved 
in this last EQS chapter. 

Ampére’s law and magnetic flux continuity, (3.2.5b) and (3.2.6b), are featured 
in Chap. 8. First, the magnetic field is determined for a given distribution of current 
density. Because current distributions are often controlled by means of wires, it is 
easy to think of practical situations where the MQS source, the current density, is 
known at the outset. But even more, the first half of Chap. 7 was already devoted 
to determining distributions of “stationary” current densities. The MQS current 
density is always solenoidal, (3.2.5c), and the magnetic induction on the right in 
Faraday’s law, (3.2.7b), is sometimes negligible so that the electric field can be 
essentially irrotational. Thus, the first half of Chap. 7 actually starts the sequence 
of MQS topics. In the second half of Chap. 8, the magnetic field is determined 
for systems of perfect conductors, where the source distribution is not known until 
the fields meet certain boundary conditions. The situation is analogous to that 
for EQS systems in Chap. 5. Chapters 9 and 10 distinguish between effects of 
magnetization and conduction currents caused by macroscopic media. It is in Chap. 
10 that Faraday’s law, (3.2.7b), comes into play in a field theoretical sense. Again, 
in stages, in Chaps. 8–10, we attain the ability to describe a self­consistent field 
and source evolution, this time of H and its sources, J. 

The quasistatic approximations and ordering of laws can just as well be stated 
in terms of the integral laws. Thus, the differential laws summarized in Table 3.6.1 
have the integral law counterparts listed in Table 3.6.2. 
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Introduction To Electroquasistatics and Magnetoquasistatics Chapter 3 

TABLE 3.6.1 

SUMMARY OF QUASISTATIC DIFFERENTIAL 

LAWS IN FREE SPACE 

ELECTROQUASISTATIC MAGNETOQUASISTATIC Reference Eq. 

� · oE = ρ 

� × E = 0 

� · J + 
∂ρ 

∂t 
= 0 

� × H = J; � · J = 0 

� · µoH = 0 

� × E = 
−∂µoH 

∂t 

(3.2.5) 

(3.2.6) 

(3.2.7) 

Secondary 

� × H = J + 
∂ oE 

∂t 

� · µoH = 0 

� · oE = ρ (3.2.8) 

(3.2.9) 

TABLE 3.6.2 

SUMMARY OF QUASISTATIC INTEGRAL 

LAWS IN FREE SPACE 

(a) 

ELECTROQUASISTATIC 

(b) 

MAGNETOQUASISTATIC Eq. 

�
S oE · da = 

�
V 

ρdv 

�
C 

E · ds = 0 

�
S 
J · da + d 

dt 

�
V 

ρdV = 0 

�
C 

H · ds = 
�

S 
J · da; 

�
S 
J · da = 0 

�
S 
µoH · da = 0 

�
C 

E · ds = − d 
dt 

�
S 
µ0H · da 

(1) 

(2) 

(3) 

Secondary 

�
C 

H · ds = 
�

S 
J · da + d 

dt 

�
S oE · da 

�
S 
µoH · da = 0 

�
S oE · da = 

�
V 

ρdv (4) 

(5) 
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