MITOCW | Lecture 16

PROFESSOR:

The following content is provided under a Creative Commons license. Your support
will help MIT OpenCourseWare continue to offer high-quality educational resources
for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

He ended up last Thursday's lectures talking about Gaussian distributions. As he
said, one of the interesting things about a Gaussian is it can be fully characterized
by its mean and its standard deviation. And this concept of being able to take a
curve and characterize it with a small number of parameters is something we'll

continue to see as a very important way of looking at modeling physical systems.

And in fact, that is the part of the term that we've entered. And it's a part of the term
we'll spend a lot of time on. And the whole issue is, how do we construct

computational models that will help us understand the real world?

When we can, we love to model distributions as Gaussians, or normal, because
they're so nicely characterized. We have nice rules of thumb that tell us how close
things lie to the mean, et cetera. However, it's important to understand that if
something is not actually normally distributed and we pretend it is, we can get very

misleading results out of our model.

So let's think about the fact that not all distributions are normal. So consider rolling a
single die. Each of the 6 outcomes is equally probable. So we would not expect to

see a peak, say, at 3 or 4, and a trough at 1. A 3 or a 4 is the same probability as 1.

Similarly, if one thinks about the Massachusetts state lottery, or any fair lottery, the
probability of each number coming up is the same. So it would be a flat line. If you
had a million numbers, the probability of each number is 1 over a million. And so if

you plotted the probability of each number, again, you'd get a flat line.

Such distributions are called uniform. Each result is equally probable. We can fully

characterize a uniform distribution with a single parameter, its range. If | tell you it

ranges over 1 to a million, that's all you need to know to know what the distribution

looks like. So they're even simpler than normal distributions.

Uniform distributions occur quite often in games devised by humans, but almost
never in nature. And typically they're not very useful for modeling complex systems.
We have to work hard to invent something that's normal. Most things are not
naturally that way. I'm sorry, to invent things that are uniform. Normal, as we saw

last time, occurs all the time in nature.

The other thing that occurs quite frequently are exponential distributions. They're
used in a lot of different ways. For example, people who are trying to plan things like
highway systems use exponential distributions to model inter-arrival times, how
much time there is between each car, say, entering the Mass Turnpike. We'll see

many other examples of them.

The key thing about them is they have the property of being memoryless. They are

in fact the only continuous distributions that are memoryless.

So let's look at an example with which some of you are more familiar than you want
to be, the concentration of a drug in the human body. For those who are watching

on OpenCourseWare, it's not because all the students are drug users. It's because
they're working on a problem set that involves modeling drugs in the human body. |

don't know how many of you are drug users, all right?

Assume that at each time step, each molecule has a probability p of being cleared
by the body. The system is memoryless in the sense that at each step, the
probability of a particular molecule being cleared is independent of what happened
at the previous steps. So the fact that a molecule didn't get cleared at time t has no
impact on whether or not it will be cleared at time t1. The probability doesn't go up

as it doesn't get cleared. So it's independent of the previous steps.

So at time t equals 1, what's the probability of the molecule still being in the human
body? If the probability of being cleared at each step is p, it's 1 minus p, right? So if

the probability of being cleared was 0.5 at each time step, the time that it still exists

2

after the first time step is 1 minus 0.5--i.e., 0.5.

So what's the probability of it still being in the human body at time t equals 2?7 Well,
it wasn't cleared at time 1. Since it's memoryless, whether or not it's cleared at time
2 is also 1/p. And so it existing still after two steps is going to be 1 minus p squared.
We saw that with independent probabilities. And the nice thing about working with

exponential distributions is we know that the probabilities are independent.

More generally, its still being in the body at time t is going to be 1 minus p to the t.
So we have a nice closed-form solution that will give us the probability of each

molecule surviving until time t. All right?

So now let's look at the question of, suppose that at time t equals 0, there are m0
molecules. Now we can ask, how many molecules are there likely to be at any time

t? Well, let's write a little program to look at that.

So that's this program, clear. We'll start with n, the number of molecules, the
probability of clearing it at each step, and the number of steps. And we'll keep track
of the num remaining. So at the beginning, we have n molecules remaining. And
then for t in range steps, we're just going to multiply n, the number we started with,

times the probability of each molecule still existing. And then we'll plot it.

Does that make sense? So this is a tiny bit of code that basically implements that

formula over on the board.

Let's run it. And we'll run it starting with a 1,000 molecules, a probability of each

being cleared of 0.01, and we'll look at 500 time steps.

All right. This is kind of interesting. We're getting a straight line. That doesn't look
like an exponential, does it? Or does it? Why do we have a straight line here?
Somebody? Because | used a semilog axis. So let's look at it now without that. We
now see something that really does look like exponential decay. It drops very quickly

in the beginning, and then it asymptotes towards 0.

But of course it never quite gets there in a continuous model. If we had a discrete

model, we would eventually have to get to 0, because that last molecule would
either get cleared or not. But in a continuous world-- which is in this case probably
not a good model, or not a perfect model | should say, because it allows us to have
a quarter of a molecule there, which we kind of know is physiologically nonsense,

biochemically nonsense.

But you can see we get this exponential decay. But as we saw previously, if we plot
an exponential on a log axis, as the math would tell us, we get a straight line. And
that, in fact, is a very simple and nice way to see whether you have an exponential
distribution. Put it on a log axis, see if it's straight. It's a good trick, and one we use a

lot.

OK. So there, | took the physical model | described and derived, through a little bit
of math, what the result should be, and implemented some code to give us a plot of

what that told us.

Let's look at a different way of doing it. | could've instead written a Monte Carlo
simulation to do the same kind of thing. So here, instead of working out the
probabilities, | just tried to write some code that exactly mimicked the physical

process that | was talking about.

So instead of knowing that | could just look at 1 minus p to the t, at each step, |
cleared some molecules. | just used random.random. If | came out with something
less than the clear probability, | got rid of that molecule. And | did that for each
molecule, deciding whether or not it should be cleared. For molecule m in range,
looking at all the remaining molecules, | either clear one or | don't. And then | can

plot that.

So let's look what happens if | compare the two results. So I'm going to do the
original analytical model of clear, and then the simulation model of clearing, and see

what | get.

Well, much to my relief, I get kind of the same curve. Not exactly. You'll notice that

the blue curve, the analytical model, is a beautiful smooth curve, whereas the red

AUDIENCE:

PROFESSOR:

curve has got a little bit of jaggies. It's clearly very similar to the blue curve, but not
identical. It doesn't surprise me. There is some randomness in there. And in fact, |
could have gotten unlucky and gotten something that didn't look like the blue curve.

But given the sample size, that would have been quite surprising.

Which of these two models do you like better? So we've got two models. We've got
one I'll call the analytic model, and one I'll call the simulation model. Both show
exponential decay. That is to say the number of molecules declines exponentially,

quite quickly. But they're not quite identical.

So which would we prefer? Or which would you prefer? There is no right answer for
this. Just for fun, I'll ask for a poll. Who prefers the analytical model? Who prefer the

simulation? All right. Somebody who prefers the analytical, tell me why.

It looks a lot nicer.

Well, all right. It looks a lot nicer. That's kind of human nature, to prefer something
that looks prettier. On the other hand, what we're really interested in is the question
of not aesthetics, but fidelity to the actual physical situation. A straight line might

look even nicer, but it wouldn't be accurate.

So when we think about evaluating a model, what we really should be asking, |
think, are two questions. One is fidelity. And another way to think about that is
credibility. Typically, we're creating a model because we don't know the actual
answer. And we're trying to see what might actually happen if we, say, ran a

physical experiment.

And so we have to ask the question of, do we believe the results the model are
giving us. And so that sort of boils down to not a question of mathematics, but a
question of reasoning. Can we look at the model and convince ourselves that it is

accurate?

And the other question is utility. And | can think about that as, in some sense, what

questions are answerable with the model?

So the first one is pretty much a question of personal preference. And for this
particular simulation, which is pretty simple, or this particular model, it's hard to
argue that one is more believable than the other. | might argue the second is more
believable, because it's a direct implementation of the physical system. | didn't rely

on my math being right. But the math is pretty simple here.

What's, I think, more apparent is in this case there is some additional utility offered
by the simulation model. And it's often true of that, simulation models, that we can
ask what-if questions, because we can easily change the model to be slightly

different in ways that is usually harder for an analytic model.

For example, suppose these drug molecules had this peculiar property that every
100 time steps, they could clone themselves. And so every molecule that was there
became two molecules. Unlikely for the drug. Not so unlikely for, say, a bacterium or

a virus, as you've seen.

Well, a little hard to figure out how to do the probabilities in the case that that
happens, because we'll no longer get this beautiful, simple exponential decay. But
quite easy to think about how we would change the simulation model, which is what

| have done here.

So | said here, if time is not equal to 0 and time is evenly divisible by 100, then I'm
just going to double the number of molecules. Every living molecule will clone itself.

And now we'll see what we get.

Well, we get this rather peculiar-looking sawtooth distribution. We still have, overall,
an exponential decay. But we see every once in while it jumps up, and then it comes
down. It's not so easy to write a simple closed-form formula that describes this, but
very easy to produce a simulation model that gives you some insight to what's
happening here. And that's, | think, one of the great attractions of simulation

modeling, is we get to do this sort of thing.

Many, many physical systems exhibit exponential decay or exponential growth. For

example, people in Japan now are very interested in half-life of various radioactive

particles. And when we talk about half-life, we mean that there is exponential decay
in radioactivity. That's what half-life is. So people are looking at what is the half-life

of iodine, say, versus other radioactive particles.

We also see exponential growth a lot. | used to have a swimming pool which | had
to maintain, and | realized if | let the algae get out of control in the pool, it went from
having very little algae to having a lot of algae very quickly, because the algae

doubles every period. And so all of a sudden, it takes off.

So exponential growth is-- exponential decay are important things. We see them all
the time. People use the word very carelessly when they mean quick growth. They

say exponential. But of course, it has a very specific meaning.

OK. We've now, for the moment at least, finished our short venture into probability
and distributions. We'll come back to it a little bit when we talk about how to lie with
statistics. But before we do that, before we leave probability for a while, just for fun, |
want to pose to you one of these probability problems that hurts people's heads. It's

a very popular one.

How many people here have heard of the Monty Hall problem? OK; a lot of you. So
as we play the game, those of you who know the answer, I'll ask your forbearance
not to blurt it out. So it's a wonderful problem. It's so exciting that people have

written books about it.

So here's how it works. This is from a game show called, | think, Let's Make a Deal,
with the host, Monty Hall, who did it forever. So the way it works is you start with
three doors. Behind one of the doors is a great prize-- for example, an automobile.
Behind each of the other doors is a booby prize, typically a goat. | don't know why

people don't like goats, but apparently they don't.

So the way it works is Monty invites someone from the audience, chosen on the
basis of their outlandish costumes. And they come down and they're told what
wonderful prize is behind one of the doors. And then they're asked to choose a

door. So the person might choose a door and say, I'll choose door number one.

AUDIENCE:

AUDIENCE:

AUDIENCE:

AUDIENCE:

AUDIENCE:

AUDIENCE:

AUDIENCE:

Monty then opens one of the other two doors. He knows which doors have the
goats and which door has the car. He opens a door with the goat. So now there are
two doors left. And he asks the contestant, do you want to switch. Do you want to

stick with door one or would you like to switch to door two?

And the Monty Hall problem is, what should she do? And the audience will always
shout out advice. So | do have a simulation of that. I'd like to run. | need three
people to volunteer to be doors. Come on, three doors. It's not so hard. Come on
down. And | need one person to volunteer to be the contest. Is anybody in a
costume here? | don't know. Mitch is kind of in one, but-- all right. These are the
contestants. All right, you're door number (2). You're door number (1). You are door

number (3).

A contestant please. There's $1 in one of these. You can actually win something of
value. All right, we have a contestant coming down. Oh, all right, we have two

contestants coming down. All right. The aisle wins.

All right, choose a door. You choose door number (2). All right, let us open door
number (1). And let's see what's in door number (1). Show it to the class. Itis a
goat. Now you have a choice. You can stick with your original decision, or you can

switch to door number (3). Suggestions?

Switch.

Switch.

Switch.

Switch.

Lower one.

Don't switch it.

Switch.

PROFESSOR:

All right. She is going to stick with door number (2). Let us open door number (2).

She wins $1. It is yours. Don't spend it all at once. Thank you, everybody.

All right, now, was she lucky or was she smart, is the question? Does it matter? This
was a subject of enormous debate in the mathematical community. In 1991, Parade
magazine published a correct solution to the problem, and approximately 10,000
readers, including a 1,000 with PhDs in mathematics, wrote to Parade telling them

they had published the wrong solution. And the debate roiled on.

So who thinks she was lucky and who thinks it actually matters whether you switch?
Who thinks it matters, those who don't know the problem? Who thinks it doesn't
matter? All right. The doesn't-matters win by a small margin. And in fact, that's what
the readers of Parade thought. But they were wrong. It matters a lot whether you

switch.

Let's do the analysis first, analytically, and then we'll do a simulation. So the player
makes a choice. And this is some interesting ways to think about probability. And
with the probability of 1/3, the player has chosen the correct door. All right? Now
that means that with a probability of 2 out of 3, the car lies behind one of the other

two doors.

Now here's the key step. Monty opens a door that he knows does not contain the
prize. The key thing to notice here is the choice of doors is not independent of the
choice of the player, because Monty will never choose the door that the player has

initially picked.

Now since the probability of the prize being behind the two remaining doors is 2 out
of 3, the probability of the prize being behind one of the doors that he did not open

is 2 out of 3 -- in fact, behind the other door.

In fact, you were extraordinarily lucky to win the dollar, because switching doubles
the odds of winning. Because remember, your odds of winning were 1 out of 3 when
you first chose the door. That left two doors. The probability of the car being behind

one of those two doors was 2/3.

Monty opened the one that didn't contain the car, because he knew it contained a
goat. So that must mean the probability of the car being behind the remaining door

is 2 out of 3. So you double your odds of winning.

The logic is kind of clear. It didn't stop people from aggressively debating it for the
longest of times. And | kind of didn't believe it myself. So | did what | usually do, is |
wrote some code. And let's look at two pieces of code here. And again, the theme
here is how we can use simulation models to understand slightly complex, or more

than slightly complex, situations.

So here's the way the game works. So I've got a simple simulation that counts the
number of wins. And the way it's done is, for t in range number of trials, the
contestant picks 1, 2, or 3 at random. I've tried to mimic exactly the game. So the

car is behind one of the doors. The contestant guesses a door.

And then there's this 'choose' function to open one of the two. And we're going to

have 2 ways of choosing which door gets opened.

So the Monty Hall way-- Monty chooses. He takes the guessed door and the prize
door, and he opens the non-guess that contains the goat. So if (1) is the guessed
door, and (1) is not the guessed door and it's not the prize door, then he opens (1).

Same thing for (2). And if (1) or (2) is not the choice, he opens (3).

As opposed to the random choose function, which just chooses at random between
the doors that weren't guessed. So it might open the car, at which point the contest

is told, sorry, you lose, you don't even have a choice anymore.

We're then going to run the simulation with Monty choosing and random choice, and
see what we get. So you've got the code on the handout to do this. I'm not going to
go over the details. The thing to notice about it is it's yet another example of how we
can use PyLab to do some interesting plots. This time I'm going to print a pie chart,

just to show that we can do those. And let's see what happens.

So people understand what's going on? That I've got these two functions,

montyChoose and randomChoose. I'm using those functions as parameters, a very
10

convenient thing, and running the simulation each way. And let's see what happens.

All right. So what we see here is, when | run montyChoose, sure enough, it comes
out to about 2/3 of the time, you win if you change, and only 1/3 of the time if you
don't, pretty close to what the math predicts. In fact, sort of astonishingly close. On
the other hand, if Monte had been just choosing at random, then we see it really

doesn't matter whether you switch or not.

So again, from a probability point of view, we see how subtle these things can be
based upon whether decisions are independent of previous decisions, or not
independent. And we also see, in some sense, that we can write a very small piece
of code that actually provides a simulation of a real, in this case, game, and we can
have, | think, a lot of confidence. We can look at the code and say, is it really the
way the game is described? Yes. And then we get nice results that tell us what to

do.

And in this case it tells us that, if Monty is choosing based upon what he knows,
then by all means, you should switch. And I'm sorry that it didn't work out that way
when we played the game, but that's the way probabilities are, that you didn't switch

and you lucked out. So now you're a rich lady.

All right. So that's one thing we can do. One more thing | want to talk about, before
we leave the subject of Monte Carlo simulations-- it's pretty clear that these kind of
simulations are very useful for tackling problems in which predictive non-
determinism plays a role. And at first blush, you might think that, OK, that's the only
time we should use a Monte Carlo simulation, when there's some inherent
randomness in the problem, and therefore it's hard to model analytically, and

therefore we'll use randomness in the code.

Interestingly enough, particularly in recent years, but for quite a while, people have
understood the notion of using randomized algorithms to solve problems in which
randomness plays no role. And that's a little surprising, but an incredibly useful
concept to put in your bag of tricks, the ability to use randomization to solve

problems that are not random.
11

So let me talk about an example. Consider the concept of pi. Pi has been around for
a long time. For thousands of years, people have known that there's a constant--
called pi since about the 18th century-- associated with circles, such that the
circumference of a circle is always going to be equal to pi times the diameter. The

area of a circle is always going to be pi r-squared, et cetera.

So for thousands of years, people knew that there was such a constant. They just
didn't know what it was. And there's a long and beautiful history of people
attempting to estimate pi. About the earliest estimate I've found is from the
Egyptians, in something called the Rhind Papyrus, from 1650 BC, or thereabouts.
And it estimated pi to be 4 times-- let me get this right-- 8/9 squared, which is 3.16,

more or less. That was pretty good.

About a 1,000 years later, an estimate of pi appears in the Bible. Or at least, it's
implied by the Bible in a description of one of Solomon's construction projects. It
says, "And he made a molten sea, 10 cubits from the one brim to the other. It was
round all about, and his height was five cubits. And a line of 30 cubits did compass it

round about."

So you can take that and solve for pi, because you've given the circumference, and
other details, the diameter. You can solve for pi. And you see, if you do that, pi
comes out to be exactly 3. Not quite as accurate as the Egyptians had 1,000 years

earlier.

Now perhaps the Bible is wrong. | don't want to offend anybody. Or perhaps the
molten sea wasn't perfectly circular. Or maybe the circumference was measured
from the wall outside and the diameter from the inside. Or maybe it was just that
was a good enough number to use in construction, because a cubit was something
like the length of your forearm. Different people have different length forearms, and

there was no reason to try and be more precise. Who knows?

The best estimate of pi in ancient times was from Archimedes of Syracuse. And he
did something quite amazing for around 200 BC. He didn't give the value of pi. He

12

said, | don't know what the value is, but | can give you an upper bound and a lower

bound.

And he did this by carefully constructing a polygon with a huge number of tiny little
straight lines that would approximate a circle, and then actually measuring things.
So he built a polygon with 96 sides, and concluded that pi was somewhere between
223 divided by 71, and 22/7. Very sophisticated at the time, to be giving upper and

lower bounds.

If we look at what the middle of that is, it's actually amazingly good. It's 3.1418. Not

bad.

All right. What does this have to do with Monte Carlo simulations? Many years later-
- in fact, in the 1700s, two French mathematicians invented another way of
computing pi. Buffon and Laplace. Actually Buffon first proposed it. He got it wrong.
Laplace corrected it. And they said, we can find pi using a stochastic simulation.
They didn't use those words, but that's what they basically described. And they

talked about it in terms of needle-dropping.

So think about having a square, and inscribing in the square a circle. And you'll
excuse my lack of artistic ability. So they put one of those on the floor. And then
they dropped needles, which would get carried around by the wind and land in
some random place. And they counted the number of needles that landed in the

circle, and the number of needles that landed in the square but not in the circle.

And then they did a little math. Let's assume for the sake of argument here that the
radius of the circle is 1. They observed the following equation must hold, that the
needles in the circle over the needles in the square should be equal to the area of
the circle divided by the area of the square. It seems logical, if they're landing at

random, that they would get distributed proportional to the area.

And then they solved for pi, knowing that the area of the circle is pi r-squared. They
could then say that pi-- in fact, in this case, since we know the radius is 1, and 1

squared is 1, that tells us that the area of the circle should be pi, right? Pi times 1.

13

So they said pi is equal to the area of the circle, which is equal to the area of the

square times the needles in the circle, divided by the needles in the square.

So they had that formula. Unfortunately they couldn't drop enough needles to get a
very good estimate. So they described how to do it. But this was an experiment.
They did the math, they had a nice formula. They did not have an experimental
apparatus that would actually let them drop enough needles to get a very good
estimate. It would take a lot of patience. And maybe they wouldn't land at random.

Who knows what.

Fortunately, today, we have a much easier way to do that. So we can write some
code that does the simulation. We're going to have a way to throw the needles or
drop the needles. And then what we're going to do is we're going to have a
simulation that we're going to run, that's going to-- | don't know how many needles

to drop.

I'm going to keep dropping needles until | get a small enough standard deviation
that | can be confident that | have a bound on pi with some confidence interval. In
fact, I'm going to use 5% here, and use that rule of thumb that Mitch talked about

last time, about standard deviations.

And | say, all right, I'm going to keep running the experiment until the standard
deviation of trials is 5% or less. Two standard deviations is small enough that | get
my answer within some precision. I'm going to ask here for a precision of 0.01. And
so therefore my standard deviation should be that precision divided by 4, because
I'm looking for 2 standard deviations on either side of the mean, which is why I'm

dividing by 4 and not by 2. So | divide by 4 and | see what | get.

So let's run it. And this will take a little bit of time. It will take no time if | don't
uncomment the code to actually run the experiment. Estimate pi. And we'll get some

estimates.

So what we can see here is that my estimates change as | run experiments. Every

time | run this-- or not every time, | often get a different number of needles | need.

14

But you can see that my first estimate is not very good. My estimates do get better,
though not monotonically better. But what does get monotonically better is the

standard deviation gets smaller and smaller, which is what you would expect.

So there's no guarantee that by running a bigger trial, | get a more accurate result.
What there is a guarantee is that | can have more confidence in my result. | could

have gotten lucky and run a small number of needles and gotten it exactly right by
chance. But | would have been wrong to assume it was right, because let's pretend

we didn't know what the value of pi was, a priori.

But what | can say here is since my standard deviation is now 0.002, and if we look
at it, we'll see that these things are normally distributed, | can be pretty sure that the
true value of pi is 3.1407 et cetera, plus or minus 0.00023, et cetera, with a 95%

confidence.

So this is using the stuff that you saw in the last lecture to now combine that
statistical background with this simulation to compute a pretty darn good estimate of
pi. And if | ran more needles, if | wanted to get more precise, | can get as precise as

| want to be, as many digits of precision as | want.

So again, what we see here is that we've been able to solve a problem that had
nothing to do with randomness. The value of pi is not a random number. And yet we
used randomness to solve it. A very common technique. And we use some very
simple statistics to know whether or not we should believe our solution. And so

those are the two lessons | want you to take home.

Now if you look at your handout, you'll see that at the bottom, I've used the same
technique to do integration. If you think about what integration means, when you
ask, what is the integral of some formula, what you learned when you first looked at
calculus was that that was the area under some curve, right? That's what the
integral is. And you learned all sorts of complicated mathematics to solve

complicated integrals.

Well, you can pose an integration problem exactly analogous to this. You draw your

15

curve. You drops some needles. You count how many fall under the curve, how
many don't fall under the curve in some larger area. And you can solve the
integration. And that's exactly what I've done here, where f is the function being

integrated. | won't go through the details.

Now in fact, this kind of simulation is not a good way to solve single integrals. It's
much better to use something like Simpson's rule, whatever that is. But in fact, it is
frequently used in practice for more complicated things, a double or triple
integration, where the mathematics gets fairly complicated. People will often solve
those problems using a Monte Carlo simulation. It's a practical method for tackling
it. And again, in your handout, you'll see a very simple piece of code that does a

double integral.

All right. That's all for today.

16

