
6.01: Introduction to EECS 1 Week 13 December 1, 2009 

1 

6.01: Introduction to EECS I

Optimal Search Algorithms

Week 13 December 1, 2009

The story so far

• Search domain — characterized by successors function, legal

actions, start state, goal function.

• Search tree — an explicit representation for the search space.

• Depth-first search — explore search tree by expanding deepest

node.

• Breadth-first search — explore search tree by expanding shal-

lowest node.

• Dynamic programming — do not revisit nodes.

Cost

In many applications, actions have different costs, for example, dis-

tance between cities can vary.

S

H

B

G

F

D

A

C E

2
1

3 2

41

1

6 2

2 3

4

Our algorithms thus far ignore this.

Cost

map1dist = {’S’ : [(’A’, 2), (’B’, 1)],
’A’ : [(’S’, 2), (’C’, 3), (’D’, 2)],
’B’ : [(’S’, 1), (’D’, 2), (’E’, 3)],
’C’ : [(’A’, 3), (’F’, 1)],
’D’ : [(’A’, 2), (’B’, 2), (’F’, 4), (’H’, 6)],
’E’ : [(’B’, 3), (’H’, 2)],
’F’ : [(’C’, 1), (’D’, 4), (’G’, 1)],
’H’ : [(’D’, 6), (’E’, 2), (’G’, 4)],
’G’ : [(’F’, 1), (’H’, 4)]}

Path cost is the sum of the action costs along a path.

Breadth-First Search

Enumerates all length 1 paths, then length 2 paths, then length 3

paths, etc.

S

H

B

G

F

D

A

C E

S

B

F

D

A

C ED

B F H A F H H

0 1

1 2

1
1 2 3

1

0 2 3 1

2

D G

1 2

Uniform-Cost Search

Enumerate paths in order of their total path cost.

Like breadth-first search, but:

• The agenda is a priority queue (returns least cost entry).

• Instead of testing for a goal state when we put an element into
the agenda, we test for a goal state when we take an element

out of the agenda.

Guaranteed to find a shortest path.



6.01: Introduction to EECS 1 Week 13 December 1, 2009 

2 

Priority Queue

A priority queue is a data structure with the same basic operations

as stacks and queues, with two differences:

• Items are pushed into a priority queue with a numeric score,

called a cost.
• When it is time to pop an item, the item in the priority queue

with the least cost is returned and removed from the priority

queue.

Priority Queue

Simple implementation using lists

class PQ:
def __init__(self):

self.data = []
def push(self, item, cost):

self.data.append((cost, item))
def pop(self):

(index, cost) = util.argmaxIndex(self.data, lambda (c, x): -c)
return self.data.pop(index)[1] # just return the data item

def isEmpty(self):
return self.data is []

The pop operation in this implementation can take time proportional

to the number of nodes (in the worst case).

Better algorithms (using trees) reduce run time to be proportional

to the log of the number of nodes (in the worst case).

Search Node

class SearchNode:
def __init__(self, action, state, parent, actionCost):

self.state = state
self.action = action
self.parent = parent
if self.parent:

self.cost = self.parent.cost + actionCost
else:

self.cost = actionCost

ucSearch

def ucSearch(initialState, goalTest, actions, successor):
startNode = SearchNode(None, initialState, None, 0)
if goalTest(initialState):

return startNode.path()
agenda = PQ()
agenda.push(startNode, 0)
while not agenda.isEmpty():

n = agenda.pop()
if goalTest(n.state):

return n.path()
for a in actions:

(newS, cost) = successor(n.state, a)
if not n.inPath(newS):

newN = SearchNode(a, newS, n, cost)
agenda.push(newN, newN.cost)

return None

Example

S

B

D

A

2
1

2 10

ucSearch: From S to D

Numbers on links are distances not action indices

S

B

D

A

2
1

2 10

S

B

D

A

2 1

2 10

D



6.01: Introduction to EECS 1 Week 13 December 1, 2009 

3 

ucSearch with DP

def ucSearch(initialState, goalTest, actions, successor):
startNode = SearchNode(None, initialState, None, 0)
if goalTest(initialState):

return startNode.path()
agenda = PQ()
agenda.push(startNode, 0)
expanded = { }
while not agenda.isEmpty():

n = agenda.pop()
if not expanded.has_key(n.state):

expanded[n.state] = True
if goalTest(n.state):

return n.path()
for a in actions:

(newS, cost) = successor(n.state, a)
if not expanded.has_key(newS):

newN = SearchNode(a, newS, n, cost)
agenda.push(newN, newN.cost)

return None

ucSearch with DP: From S to G

Numbers on links are distances not action indices

S

H

B

G

F

D

A

C E

2
1

3 2

41

1

6 2

2 3

4

S

B

F

D

A

C ED

A F H H

2 1

3 2

1

2

2 4 6 2

3

D G

4 1

D G

4 1

Search in Big Spaces

20.7
35

14.2
35.4

20

20.7

18.1
31.7

22.4 15

14.2

11.2

25

18.1

15.9

11.2

22.4

15.9

18.1

14.2

14.2
14.2

27

35.4
10

25

15

11.2

11.2

25.5

25.5

15

18.1

35

18.1

39.1

S

H

B

G

F

D

A

C E

I

P

L

Q

N

M

J

K

O

R

Z

V

AA

X

W

T

U

Y

15.9

25.5

Search with heuristics

A heuristic function takes a state as an argument and returns a

numeric estimate of the total cost that it will take to reach the goal

from there.

Used to focus the search in relevant direction.

Actual cost + heuristic is a better estimate of total cost.

For map-like problems, Euclidean distance from node to goal is good

heuristic.

Search in Big Spaces

20.7
35

14.2
35.4

20

20.7

18.1
31.7

22.4 15

14.2

11.2

25

18.1

15.9

11.2

22.4

15.9

18.1

14.2

14.2
14.2

27

35.4
10

25

15

11.2

11.2

25.5

25.5

15

18.1

35

18.1

39.1

S

H

B

G

F

D

A

C E

I

P

L

Q

N

M

J

K

O

R

Z

V

AA

X

W

T

U

Y

15.9

25.5

A* = ucSearch with heuristics

def ucSearch(initialState, goalTest, actions, successor, heuristic):
startNode = SearchNode(None, initialState, None, 0)
if goalTest(initialState):

return startNode.path()
agenda = PQ()
agenda.push(startNode, 0)
expanded = { }
while not agenda.isEmpty():

n = agenda.pop()
if not expanded.has_key(n.state):

expanded[n.state] = True
if goalTest(n.state):

return n.path()
for a in actions:

(newS, cost) = successor(n.state, a)
if not expanded.has_key(newS):

newN = SearchNode(a, newS, n, cost)
agenda.push(newN, newN.cost + heuristic(newS))

return None



6.01: Introduction to EECS 1 Week 13 December 1, 2009


Good and Bad Heuristics

We want heuristic close to actual distances but cheap to compute.

• The perfect heuristic – solve the problem and use the answer

(too expensive).

• Trivial heuristic – 0 for all nodes (cheap but useless).

• Admissible – always an underestimate of the actual distance.

A* is guaranteed to find shortest path with admissible heuristic

Check Yourself

Would the so-called ’Manhattan distance’, which is the sum

of the absolute differences of the x and y coordinates be an

admissible heuristic in the city navigation problem, in general?

Check Yourself

If we were trying to minimize travel time on a road network

(and so the estimated time to travel each road segment was

the cost), what would be an appropriate heuristic function?

Heuristic search examples

The 8 puzzle

Number test, again

4




MIT OpenCourseWare
http://ocw.mit.edu

6.01 Introduction to Electrical Engineering and Computer Science I
Fall 2009 
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



