
C H A P T E R 7 

Probabilistic Models 

INTRODUCTION 

In the preceding chapters our emphasis has been on deterministic signals. In the 
remainder of this text we expand the class of signals considered to include those that 
are based on probabilistic models, referred to as random or stochastic processes. 
In introducing this important class of signals, we begin in this chapter with a 
review of the basics of probability and random variables. We assume that you have 
encountered this foundational material in a previous course, but include a review 
here for convenient reference and to establish notation. In the following chapter 
and beyond, we apply these concepts to define and discuss the class of random 
signals. 

7.1 THE BASIC PROBABILITY MODEL 

Associated with a basic probability model are the following three components, as 
indicated in Figure 7.1: 

1.	 Sample Space The sample space Ψ is the set of all possible outcomes ψ of 
the probabilistic experiment that the model represents. We require that one 
and only one outcome be produced in each experiment with the model. 

2.	 Event Algebra An event algebra is a collection of subsets of the sample 
space — referred to as events in the sample space — chosen such that unions 
of events and complements of events are themselves events (i.e., are in the 
collection of subsets). We say that a particular event has occurred if the 
outcome of the experiment lies in this event subset; thus Ψ is the “certain 
event” because it always occurs, and the empty set ∅ is the “impossible event” 
because it never occurs. Note that intersections of events are also events, 
because intersections can be expressed in terms of unions and complements. 

3.	 Probability Measure A probability measure associates with each event A 
a number P (A), termed the probability of A, in such a way that: 

(a) P (A) ≥ 0 ; 

(b) P (Ψ) = 1 ; 

(c) If A ∩ B = ∅, i.e., if events A and B are mutually exclusive, then 

P (A ∪ B) = P (A) + P (B) . 
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FIGURE 7.1 Sample space and events. 

Note that for any particular case we often have a range of options in specifying what 
constitutes an outcome, in defining an event algebra, and in assigning a probability 
measure. It is generally convenient to have as few elements or outcomes as possible 
in a sample space, but we need enough of them to enable specification of the events 
of interest to us. It is typically convenient to pick the smallest event algebra that 
contains the events of interest. We also require that there be an assignment of 
probabilities to events that is consistent with the above conditions. This assignment 
may be made on the basis of symmetry arguments or in some other way that is 
suggested by the particular application. 

7.2	 CONDITIONAL PROBABILITY, BAYES’ RULE, AND INDEPEN
DENCE 

The probability of event A, given that event B has occurred, is denoted by P (A B). |
Knowing that B has occurred in effect reduces the sample space to the outcomes 
in B, so a natural definition of the conditional probability is 

Δ P (A ∩ B)
P (A|B) = 

P (B) 
if P (B) > 0 .	 (7.1) 

It is straightforward to verify that this definition of conditional probability yields a 
valid probability measure on the sample space B. The preceding equation can also 
be rearranged to the form 

P (A ∩ B) = P (A|B)P (B) .	 (7.2) 

We often write P (AB) or P (A,B) for the joint probability P (A ∩ B). If P (B) = 0, 
then the conditional probability in (7.1) is undefined. 

By symmetry, we can also write 

P (A ∩ B) = P (B|A)P (A)	 (7.3) 

Combining the preceding two equations, we obtain one form of Bayes’ rule (or 
theorem), which is at the heart of much of what we’ll do with signal detection, 
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classification, and estimation: 

P (B|A) = 
P (A

P

|B
(A

)P 
)

(B) 
(7.4) 

A more detailed form of Bayes’ rule can be written for the conditional probability of 
one of a set of events {Bj } that are mutually exclusive and collectively exhaustive, 
i.e. Bℓ ∩ Bm = ∅ if ℓ =6 m, and 

⋃
Bj = Ψ. In this case, j 

P (A) = 
∑ 

P (A ∩ Bj ) = 
∑ 

P (A|Bj )P (Bj ) (7.5) 
j j 

so that 

P (Bℓ A) = 
P (A|Bℓ)P (Bℓ) 

(7.6) | ∑
j P (A|Bj )P (Bj ) 

Events A and B are said to be independent if 

P (A B) = P (A) (7.7) |

or equivalently if the joint probability factors as 

P (A ∩ B) = P (A)P (B) . (7.8) 

More generally, a collection of events is said to be mutually independent if the 
probability of the intersection of events from this collection, taken any number at 
a time, is always the product of the individual probabilities. Note that pairwise 
independence is not enough. Also, two sets of events A and B are said to be 
independent of each other if the probability of an intersection of events taken from 
these two sets always factors into the product of the joint probability of those events 
that are in A and the joint probability of those events that are in B. 

EXAMPLE 7.1 Transmission errors in a communication system 

A communication system transmits symbols labeled A, B, and C. Because of 
errors (noise) introduced by the channel, there is a nonzero probability that for 
each transmitted symbol, the received symbol differs from the transmitted one. 
Table 7.1 describes the joint probability for each possible pair of transmitted and 
received symbols under a certain set of system conditions. 

Symbol received 
Symbol sent A B C 

A 0.05 0.10 0.09 
B 0.13 0.08 0.21 
C 0.12 0.07 0.15 

TABLE 7.1 Joint probability for each possible pair of transmitted and received 
symbols 
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124 Chapter 7 Probabilistic Models 

For notational convenience let’s use As, Bs, Cs to denote the events that A, B or 
C respectively is sent, and Ar, Br, Cr to denote A, B or C respectively being re
ceived. So, for example, P (Ar, Bs) = 0.13 and P (Cr, Cs) = 0.15. To determine the 
marginal probability P (Ar), we sum the probabilities for all the mutually exclusive 
ways that A is received. So, for example, 

P (Ar) = P (Ar, As) + P (Ar, Bs) + P (Ar, Cs) (7.9) 

= .05 + .13 + .12 = 0.3 . 

Similarly we can determine the marginal probability P (As) as 

P (As) = P (Ar, As) + P (Br, As) + P (Cr, As) = 0.24 (7.10) 

In a communication context, it may be important to know the probability, for exam
ple, that C was sent, given that B was received, i.e., P (Cs Br). That information |
is not entered directly in the table but can be calculated from it using Bayes’ rule. 
Specifically, the desired conditional probability can be expressed as 

P (Cs, Br)
P (Cs|Br) = 

P (Br) 
(7.11) 

The numerator in (7.11) is given directly in the table as .07. The denominator is 
calculated as P (Br) = P (Br, As) + P (Br, Bs) + P (Br, Cs) = 0.25. The result then 
is that P (Cs Br) = 0.28. |
In communication systems it is also often of interest to measure or calculate the 
probability of a transmission error. Denoting this by Pt it would correspond to any 
of the following mutually exclusive events happening: 

(As ∩ Br), (As ∩ Cr), (Bs ∩ Ar), (Bs ∩ Cr), (Cs ∩ Ar), (Cs ∩ Br) (7.12) 

Pt is therefore the sum of the probabilities of these six mutually exclusive events, 
and all these probabilities can be read directly from the table in the off-diagonal 
locations, yielding Pt = 0.72. 

7.3 RANDOM VARIABLES 

A real-valued random variable X( ) is a function that maps each outcome ψ of a · 
probabilistic experiment to a real number X(ψ), which is termed the realization of 
(or value taken by) the random variable in that experiment. An additional technical 
requirement imposed on this function is that the set of outcomes {ψ} that maps to 
the interval X ≤ x must be an event in Ψ, for all real numbers x. We shall typically 
just write the random variable as X instead of X( ) or X(ψ). · 
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FIGURE 7.2 A random variable. 

It is often also convenient to consider random variables taking values that are 
not specified as real numbers but rather a finite or countable set of labels, say 
L0, L1, L2, . . .. For instance, the random status of a machine may be tracked using 
the labels Idle, Busy, and Failed. Similarly, the random presence of a target in a 
radar scan can be tracked using the labels Absent and Present. We can think of 
these labels as comprising a set of mutually exclusive and collectively exhaustive 
events, where each such event comprises all the outcomes that carry that label. 
We refer to such random variables as random events, mapping each outcome ψ 
of a probabilistic experiment to the label L(ψ), chosen from the possible values 
L0, L1, L2, . . .. We shall typically just write L instead of L(ψ). 

7.4	 CUMULATIVE DISTRIBUTION, PROBABILITY DENSITY, AND 
PROBABILITY MASS FUNCTION FOR RANDOM VARIABLES 

Cumulative Distribution Functions For a (real-valued) random variable X, 
the probability of the event comprising all ψ for which X(ψ) ≤ x is described using 
the cumulative distribution function (CDF) FX (x): 

FX (x) = P (X ≤ x) .	 (7.13) 

We can therefore write 

P (a < X ≤ b) = FX (b) − FX (a) .	 (7.14) 

In particular, if there is a nonzero probability that X takes a specific value x1, i.e. 
if P (X = x1) > 0, then FX (x) will have a jump at x1 of height P (X = x1), and 
FX (x1) − FX (x1−) = P (X = x1). The CDF is nondecreasing as a function of x; it 
starts from FX (−∞) = 0 and rises to FX (∞) = 1. 

A related function is the conditional CDF FX|L(x|Li), used to describe the distri
bution of X conditioned on some random event L taking the specific value Li, and 
assuming P (L = Li) > 0: 

P (X ≤ x, L = Li)
FX|L(x|Li) = P (X ≤ x|L = Li) = 

P (L = Li) 
. (7.15) 
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FIGURE 7.3 Example of a CDF. 

Probability Density Functions The probability density function (PDF) fX (x) 
of the random variable X is the derivative of FX (x): 

dFX (x)
fX (x) = . (7.16) 

dx 

It is of course always non-negative because FX (x) is nondecreasing. At points of 
discontinuity in FX (x), corresponding to values of x that have non-zero probability 
of occurring, there will be (Dirac) impulses in fX (x), of strength or area equal to 
the height of the discontinuity. We can write 

∫ b 

P (a < X ≤ b) = fX (x) dx . (7.17) 
a 

(Any impulse of fX (x) at b would be included in the integral, while any impulse 
at a would be left out — i.e. the integral actually goes from a+ to b+.) We can 
heuristically think of fX (x) dx as giving the probability that X lies in the interval 
(x − dx, x]: 

P (x − dx < X ≤ x) ≈ fX (x) dx . (7.18) 

Note that at values of x where fX (x) does not have an impulse, the probability of 
X having the value x is zero, i.e., P (X = x) = 0. 

A related function is the conditional PDF fX|L(x|Li), defined as the derivative of 
FX|L(x|Li) with respect to x. 

Probability Mass Function A real-valued discrete random variable X is one 
that takes only a finite or countable set of real values, {x1, x2, · · · }. (Hence this is 
actually a random event — as defined earlier — but specified numerically rather 
than via labels.) The CDF in this case would be a “staircase” function, while the 
PDF would be zero everywhere, except for impulses at the xj , with strengths cor
responding to the respective probabilities of the xj . These strengths/probabilities 
are conveniently described by the probability mass function (PMF) pX (x), which 
gives the probability of the event X = xj : 

P (X = xj ) = pX (xj ) . (7.19) 

©Alan V. Oppenheim and George C. Verghese, 2010 c
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7.5 JOINTLY DISTRIBUTED RANDOM VARIABLES 

We almost always use models involving multiple (or compound) random variables. 
Such situations are described by joint probabilities. For example, the joint CDF of 
two random variables X and Y is 

FX,Y (x, y) = P (X ≤ x, Y ≤ y) . (7.20) 

The corresponding joint PDF is 

∂2FX,Y (x, y)
fX,Y (x, y) = (7.21) 

∂x ∂y 

and has the heuristic interpretation that 

P (x − dx < X ≤ x , y − dy < Y ≤ y) ≈ fX,Y (x, y) dx dy . (7.22) 

The marginal PDF fX (x) is defined as the PDF of the random variable X considered 
on its own, and is related to the joint density fX,Y (x, y) by 

∫ +∞ 

fX (x) = fX,Y (x, y) dy . (7.23) 
−∞ 

A similar expression holds for the marginal PDF fY (y). 

We have already noted that when the model involves a random variable X and a 
random event L, we may work with the conditional CDF 

FX|L(x Li) = P (X ≤ x L = Li) = 
P (X ≤ x, L = Li) 

, (7.24) | |
P (L = Li) 

provided P (L = Li) > 0. The derivative of this function with respect to x gives 
the conditional PDF fX|L(x|Li). When the model involves two continuous random 
variables X and Y , the corresponding function of interest is the conditional PDF 
fX|Y (x|y) that describes the distribution of X, given that Y = y. However, for 
a continuous random variable Y , P (Y = y) = 0, so even though the following 
definition may seem natural, its justification is more subtle: 

fX,Y (x, y)
fX|Y (x|y) = 

fY (y) 
. (7.25) 

To see the plausibility of this definition, note that the conditional PDF fX|Y (x|y) 
must have the property that 

fX|Y (x|y) dx ≈ P (x − dx < X ≤ x | y − dy < Y ≤ y) (7.26) 

but by Bayes’ rule the quantity on the right in the above equation can be rewritten 
as 

fX,Y (x, y) dx dy 
P (x − dx < X ≤ x | y − dy < Y ≤ y) ≈ 

fY (y)dy 
. (7.27) 
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Combining the latter two expressions yields the definition of fX|Y (x|y) given in 
(7.25). 

Using similar reasoning, we can obtain relationships such as the following: 

P (L = Li X = x) = 
fX|L(x|Li)P (L = Li) 

. (7.28) |
fX (x) 

Two random variables X and Y are said to be independent or statistically indepen
dent if their joint PDF (or equivalently their joint CDF) factors into the product 
of the individual ones: 

fX,Y (x, y) = fX (x)fY (y) , or 
(7.29) 

FX,Y (x, y) = FX (x)FY (y) . 

This condition turns out to be equivalent to having any collection of events defined 
in terms of X be independent of any collection of events defined in terms of Y . 

For a set of more than two random variables to be independent, we require that the 
joint PDF (or CDF) of random variables from this set factors into the product of 
the individual PDFs (respectively, CDFs). One can similarly define independence 
of random variables and random events. 

EXAMPLE 7.2 Independence of events 

To illustrate some of the above definitions and concepts in the context of random 
variables and random events, consider two independent random variables X and Y 
for which the marginal PDFs are uniform between zero and one: 

{ 
1 0 ≤ x ≤ 1 

fX (x) = 
0 otherwise 

fY (y) = 

{ 
1 0 ≤ y ≤ 1 
0 otherwise 

Because X and Y are independent, the joint PDF fX,Y (x, y) is given by 

fX,Y (x, y) = fX (x)fY (y) 

We define the events A, B, C and D as follows: 

A = y > 
1} { 1 } 

, C = 
{

x < 
1 } 

, B = y < ,
2 2 2 
1 1 } { 1 1 }

D = x < 
2 

and y < 
2 

∪ x > 
2 

and y > 
2 

. 

These events are illustrated pictorially in Figure 7.4 
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FIGURE 7.4 Illustration of events A, B, C, and D, for Example 7.2 

Questions that we might ask include whether these events are pairwise independent, 
e.g. whether A and C are independent. To answer such questions, we consider 
whether the joint probability factors into the product of the individual probabilities. 
So, for example, 

( 
1 1 

) 
1 

P (A ∩ C) = P y > , x < = 
2 2 4 

1 
P (A) = P (C) = 

2 

Since P (A ∩ C) = P (A)P (C), events A and C are independent. However, 

( 
1 1 

) 

P (A ∩ B) = P y > , y < = 0 
2 2 

1 
P (A) = P (B) = 

2 

Since P (A ∩ B) =6 P (A)P (B), events A and B are not independent. 

1
2

Note that P (A ∩ C ∩ D) = 0 since there is no region where all three sets overlap. 
, so P (A ∩ C ∩ D) =6 P (A)P (C)P (D) and 

the events A, C, and D are not mutually independent, even though they are easily 
However, P (A) = P (C) = P (D) = 

seen to be pairwise independent. For a collection of events to be independent, we 
require the probability of the intersection of any of the events to equal the product 
of the probabilities of each individual event. So for the 3–event case, pairwise 
independence is a necessary but not sufficient condition for independence. 

7.6 EXPECTATIONS, MOMENTS AND VARIANCE 

For many purposes it suffices to have a more aggregated or approximate description 
than the PDF provides. The expectation — also termed the expected or mean 
or average value, or the first-moment — of the real-valued random variable X is 
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denoted by E[X] or X or µX , and defined as 
∫ ∞ 

E[X] = X = µX = xfX (x) dx . (7.30) 
−∞ 

In terms of the probability “mass” on the real line, the expectation gives the location 
of the center of mass. Note that the expected value of a sum of random variables 
is just the sum of the individual expected values: 

E[X + Y ] = E[X] + E[Y ] . (7.31) 

Other simple measures of where the PDF is centered or concentrated are provided 
by the median, which is the value of x for which FX (x) = 0.5, and by the mode, 
which is the value of x for which fX (x) is maximum (in degenerate cases one or 
both of these may not be unique). 

The variance or centered second-moment of the random variable X is denoted by 
σ2 and defined as X 

σ2 = E[(X − µX )
2] = expected squared deviation from the mean X ∫ ∞ 

= (x − µX )
2fX (x)dx (7.32) 

−∞ 
2= E[X2] − µX , 

where the last equation follows on writing (X − µX )
2 = X2 − 2µX X + µ2 and X 

taking the expectation term by term. We refer to E[X2] as the second-moment 
of X. The square root of the variance, termed the standard deviation, is a widely 
used measure of the spread of the PDF. 

The focus of many engineering models that involve random variables is primarily 
on the means and variances of the random variables. In some cases this is because 
the detailed PDFs are hard to determine or represent or work with. In other cases, 
the reason for this focus is that the means and variances completely determine the 
PDFs, as with the Gaussian (or normal) and uniform PDFs. 

EXAMPLE 7.3 Gaussian and uniform random variables 

Two common PDF’s that we will work with are the Gaussian (or normal) density 
and the uniform density: 

1 
2 σ√

2πσ 
e− 1 ( x−m )2 

Gaussian: fX (x) = 

{ (7.33) 
1 a < x < b 

Uniform: fX (x) = b−a 
0 otherwise 

The two parameters m and σ that define the Gaussian PDF can be shown to be its 
mean and standard deviation respectively. Similarly, though the uniform density 
can be simply parametrized by its lower and upper limits a and b as above, an 
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equivalent parametrization is via its mean m = (a + b)/2 and standard deviation 
σ = 

√
(b − a)2/12. 

There are useful statements that can be made for general PDFs on the basis of just 
the mean and variance. The most familiar of these is the Chebyshev inequality: 

1 
P 

( |X
σ

− 

X 

µX | ≥ k
) 
≤ 

k2 
. (7.34) 

This inequality implies that, for any random variable, the probability it lies at 
or more than 3 standard deviations away from the mean (on either side of the 
mean) is not greater than (1/32) = 0.11. Of course, for particular PDFs, much 
more precise statements can be made, and conclusions derived from the Chebyshev 
inequality can be very conservative. For instance, in the case of a Gaussian PDF, 
the probability of being more than 3 standard deviations away from the mean is 
only 0.0026, while for a uniform PDF the probability of being more than even 2 
standard deviations away from the mean is precisely 0. 

For much of our discussion we shall make do with evaluating the means and vari
ances of the random variables involved in our models. Also, we will be highlighting 
problems whose solution only requires knowledge of means and variances. 

The conditional expectation of the random variable X, given that the random 
variable Y takes the value y, is the real number 

∫ +∞ 

E[X Y = y] = xfX|Y (x y)dx = g(y) , (7.35) |
−∞ 

|

i.e., this conditional expectation takes some value g(y) when Y = y. We may also 
consider the random variable g(Y ), namely the function of the random variable Y 
that, for each Y = y, evaluates to the conditional expectation E[X Y = y]. We |
refer to this random variable g(Y ) as the conditional expectation of X “given Y ” (as 
opposed to “given Y = y”), and denote g(Y ) by E[X Y ]. Note that the expectation |
E[g(Y )] of the random variable g(Y ), i.e. the iterated expectation E[E[X Y ]], is |
well defined. What we show in the next paragraph is that this iterated expectation 
works out to something simple, namely E[X]. This result will be of particular use 
in the next chapter. 

Consider first how to compute E[X] when we have the joint PDF fX,Y (x, y). One 
way is to evaluate the marginal density fX (x) of X, and then use the definition of 
expectation in (7.30): 

E[X] = 
∫ ∞ 

x
(∫ ∞ 

fX,Y (x, y) dy
) 

dx . (7.36) 
−∞ −∞ 

However, it is often simpler to compute the conditional expectation of X, given 
Y = y, then average this conditional expectation over the possible values of Y , 
using the marginal density of Y . To derive this more precisely, recall that 

fX,Y (x, y) = fX|Y (x|y)fY (y) (7.37) 
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132 Chapter 7 Probabilistic Models 

and use this in (7.36) to deduce that 

E[X] = 
∫ ∞ 

fY (y)
(∫ ∞ 

xfX|Y (x|y) dx
) 

dy = EY [EX|Y [X|Y ]] . (7.38) 
−∞ −∞ 

We have used subscripts on the preceding expectations in order to make explicit 
which densities are involved in computing each of them. More simply, one writes 

E[X] = E[E[X Y ]] .	 (7.39) |

The preceding result has an important implication for the computation of the expec
tation of a function of a random variable. Suppose X = h(Y ), then E[X Y ] = h(Y ), |
so ∫ ∞ 

E[X] = E[E[X Y ]] = h(y)fY (y)dy . (7.40) |
−∞ 

This shows that we only need fY (y) to calculate the expectation of a function of 
Y ; to compute the expectation of X = h(Y ), we do not need to determine fX (x). 

Similarly, if X is a function of two random variables, X = h(Y,Z), then 
∫ ∞	 ∫ ∞ 

E[X] = h(y, z)fY,Z (y, z)dy dz . (7.41) 
−∞ −∞ 

It is easy to show from this that if Y and Z are independent, and if h(y, z) = 
g(y)ℓ(z), then 

E[g(Y )ℓ(Z)] = E[g(Y )]E[ℓ(Z)] . (7.42) 

7.7	 CORRELATION AND COVARIANCE FOR BIVARIATE RANDOM 
VARIABLES 

Consider a pair of jointly distributed random variables X and Y . Their marginal 
PDFs are simply obtained by projecting the probability mass along the y-axis and 
x-axis directions respectively: 

∫ ∞	 ∫ ∞ 

fX (x) = fX,Y (x, y) dy , fY (y) = fX,Y (x, y) dx . (7.43) 
−∞	 −∞ 

In other words, the PDF of X is obtained by integrating the joint PDF over all 
possible values of the other random variable Y — and similarly for the PDF of Y . 

It is of interest, just as in the single-variable case, to be able to capture the location 
and spread of the bivariate PDF in some aggregate or approximate way, without 
having to describe the full PDF. And again we turn to notions of mean and variance. 
The mean value of the bivariate PDF is specified by giving the mean values of each 
of its two component random variables: the mean value has an x component that 
is E[X], and a y component that is E[Y ], and these two numbers can be evaluated 
from the respective marginal densities. The center of mass of the bivariate PDF is 
thus located at 

(x, y) = (E[X], E[Y ]) .	 (7.44) 
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A measure of the spread of the bivariate PDF in the x direction may be obtained 
from the standard deviation σX of X, computed from fX (x); and a measure of 
the spread in the y direction may be obtained from σY , computed similarly from 
fY (y). However, these two numbers clearly only offer a partial view. We would 
really like to know what the spread is in a general direction rather than just along 
the two coordinate axes. We can consider, for instance, the standard deviation (or, 
equivalently, the variance) of the random variable Z defined as 

Z = αX + βY (7.45) 

for arbitrary constants α and β. Note that by choosing α and β appropriately, 
we get Z = X or Z = Y , and therefore recover the special coordinate directions 
that we have already considered; but being able to analyze the behavior of Z for 
arbitary α and β allows us to specify the behavior in all directions. 

To visualize how Z behaves, note that Z = 0 when αx+βy = 0. This is the equation 
of a straight line through the origin in the (x, y) plane, a line that indicates the 
precise combinations of values x and y that contribute to determining fZ (0), by 
projection of fX,Y (x, y) along the line. Let us call this the reference line. If Z now 
takes a nonzero value z, the corresponding set of (x, y) values lies on a line offset 
from but parallel to the reference line. We project fX,Y (x, y) along this new offset 
line to determine fZ (z). 

Before seeing what computations are involved in determining the variance of Z, 
note that the mean of Z is easily found in terms of quantities we have already 
computed, namely E[X] and E[Y ]: 

E[Z] = αE[X] + βE[Y ] . (7.46) 

As for the variance of Z, it is easy to establish from (7.45) and (7.46) that 

= α2σ2σ2 = E[Z2] − (E[Z])2 
X + β2σ2 + 2αβ σX,Y (7.47) Z Y 

where σ2 and σ2 are the variances already computed along the coordinate direc-X Y 
tions x and y, and σX,Y is the covariance of X and Y , also denoted by cov(X,Y ) 
or CX,Y , and defined as 

σX,Y = cov(X,Y ) = CX,Y = E[(X − E[X])(Y − E[Y ])] (7.48) 

or equivalently 
σX,Y = E[XY ] − E[X]E[Y ] . (7.49) 

where (7.49) follows from multiplying out the terms in parentheses in (7.48) and 
then taking term-by-term expectations. Note that when Y = X we recover the 
familiar expressions for the variance of X. The quantity E[XY ] that appears in 
(7.49), i.e., the expectation of the product of the random variables, is referred to 
as the correlation or second cross-moment of X and Y (to distinguish it from the 
second self-moments E[X2] and E[Y 2]), and will be denoted by RX,Y : 

RX,Y = E[XY ] . (7.50) 
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It is reassuring to note from (7.47) that the covariance σX,Y is the only new quantity 
needed when going from mean and spread computations along the coordinate axes 
to such computations along any axis; we do not need a new quantity for each new 
direction. In summary, we can express the location of fX,Y (x, y) in an aggregate 
or approximate way in terms of the 1st-moments, E[X] , E[Y ]; and we can express 
the spread around this location in an aggregate or approximate way in terms of the 
(central) 2nd-moments, σ2 , σ2 , σX,Y .X Y 

It is common to work with a normalized form of the covariance, namely the corre
lation coefficient ρX,Y : 

σX,Y 
ρX,Y = . (7.51) 

σX σY 

This normalization ensures that the correlation coefficient is unchanged if X and/or 
Y is multiplied by any nonzero constant or has any constant added to it. For 
instance, the centered and normalized random variables 

V = 
X − µX 

, W = 
Y − µY 

, (7.52) 
σX σY 

each of which has mean 0 and variance 1, have the same correlation coefficient as 
X and Y . The correlation coefficient might have been better called the covariance 
coefficient, since it is defined in terms of the covariance and not the correlation of 
the two random variables, but this more helpful name is not generally utilized. 

Invoking the fact that σ2 in (7.47) must be non-negative, and further noting from Z 
this equation that σ2 /β2 is quadratic in α, it can be proved by elementary analysis Z 
of the quadratic expression that 

|ρX,Y | ≤ 1 . (7.53) 

From the various preceding definitions, a positive correlation RX,Y > 0 suggests 
that X and Y tend to take the same sign, on average, whereas a positive covariance 
σX,Y > 0 — or equivalently a positive correlation coefficient ρX,Y > 0 — suggests 
that the deviations of X and Y from their respective means tend to take the same 
sign, on average. Conversely, a negative correlation suggests that X and Y tend to 
take opposite signs, on average, while a negative covariance or correlation coefficient 
suggests that the deviations of X and Y from their means tend to take opposite 
signs, on average. 

Since the correlation coefficient of X and Y captures some features of the rela
tion between their deviations from their respective means, we might expect that 
the correlation coefficient can play a role in constructing an estimate of Y from 
measurements of X, or vice versa. We shall see in the next chapter, where linear 
minimum mean-square error (LMMSE) estimation is studied, that this is indeed 
the case. 

The random variables X and Y are said to be uncorrelated (or linearly independent, 
a less common and potentially misleading term) if 

E[XY ] = E[X]E[Y ] , (7.54) 
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or equivalently if 
σX,Y = 0 or ρX,Y = 0 . (7.55) 

Thus uncorrelated does not mean zero correlation (unless one of the random vari
ables has an expected value of zero). Rather, uncorrelated means zero covariance. 
Again, a better term for uncorrelated might have been non-covariant, but this term 
is not widely used. 

Note also that independent random variables X and Y , i.e., those for which 

fX,Y (x, y) = fX (x)fY (y) , (7.56) 

are always uncorrelated, but the converse is not generally true: uncorrelated random 
variables may not be independent. If X and Y are independent, then E[XY ] = 
E[X]E[Y ] so X and Y are uncorrelated. The converse does not hold in general. 
For instance, consider the case where the combination (X,Y ) takes only the values 
(1, 0), (−1, 0). (0, 1) and (0, −1), each with equal probability 1 . Then X and Y4 
are easily seen to be uncorrelated but dependent, i.e., not independent. 

A final bit of terminology that we will shortly motivate and find useful occurs in the 
following definition: Two random variables X and Y are orthogonal if E[XY ] = 0. 

EXAMPLE 7.4 Perfect correlation, zero correlation 

Consider the degenerate case where Y is given by a deterministic linear function of 
a random variable X (so Y is also a random variable, of course): 

Y = ξX + ζ , (7.57) 

where ξ and ζ are constants. Then it is easy to show that ρX,Y = 1 if ξ > 0 and 
ρ = −1 if ξ < 0. Note that in this case the probability mass is entirely concentrated 
on the line defined by the above equation, so the bivariate PDF — if we insist on 
talking about it! — is a two-dimensional impulse (but this fact is not important in 
evaluating ρX,Y ). 

You should also have no difficulty establishing that ρX,Y = 0 if 

Y = ξX2 + ζ (7.58) 

and X has a PDF fX (x) that is even about 0, i.e., fX (−x) = fX (x). 

EXAMPLE 7.5 Bivariate Gaussian density 

The random variables X and Y are said to be bivariate Gaussian or bivariate normal 
if their joint PDF is given by 

fX,Y (x, y) = c exp
{
−q

( x − 
σX 

µX 
,
y − 

σY 

µY 
)} 

(7.59) 
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where c is a normalizing constant (so that the PDF integrates to 1) and q(v, w) 
is a quadratic function of its two arguments v and w, expressed in terms of the 
correlation coefficient ρ of X and Y : 

1 
c =	 (7.60) 

2πσX σY 

√
1 − ρ2 

q(v, w) = 
2(1 − 

1 
ρ2)

(v 2 − 2ρvw + w 2)	 (7.61) 

This density is the natural bivariate generalization of the familiar Gaussian density, 
and has several nice properties: 

•	 The marginal densities of X and Y are Gaussian. 

•	 The conditional density of Y , given X = x, is Gaussian with mean ρx and 
variance σ2 (1 − ρ2) (which evidently does not depend on the value of x); and Y 
similary for the conditional density of X, given Y = y. 

•	 If X and Y are uncorrelated, i.e., if ρ = 0, then X and Y are actually 
independent, a fact that is not generally true for other bivariate random 
variables, as noted above. 

•	 Any two affine (i.e., linear plus constant) combinations of X and Y are them
selves bivariate Gaussian (e.g., Q = X + 3Y + 2 and R = 7X + Y − 3 are 
bivariate Gaussian). 

The bivariate Gaussian PDF and indeed the associated notion of correlation were 
essentially discovered by the statistician Francis Galton (a first-cousin of Charles 
Darwin) in 1886, with help from the mathematician Hamilton Dickson. Galton was 
actually studying the joint distribution of the heights of parents and children, and 
found that the marginals and conditionals were well represented as Gaussians. His 
question to Dickson was: what joint PDF has Gaussian marginals and conditionals? 
The answer: the bivariate Gaussian! It turns out that there is a 2-dimensional 
version of the central limit theorem, with the bivariate Gaussian as the limiting 
density, so this is a reasonable model for two jointly distributed random variables 
in many settings. There are also natural generalization to many variables. 

Some of the generalizations of the preceding discussion from two random variables 
to many random variables are fairly evident. In particular, the mean of a joint PDF 

fX1,X2, ,Xℓ (x1, x2, , xℓ)	 (7.62) ··· · · · 

in the ℓ-dimensional space of possible values has coordinates that are the respective 
individual means, E[X1], , E[Xℓ]. The spreads in the coordinate directions are · · · 
deduced from the individual (marginal) spreads, σX1 , , σXℓ . To be able to com· · · 
pute the spreads in arbitrary directions, we need all the additional ℓ(ℓ−1)/2 central 
2nd moments, namely σXi,Xj for all 1 ≤ i < j ≤ ℓ (note that σXj ,Xi = σXi,Xj ) — 
but nothing more. 
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7.8	 A VECTOR-SPACE PICTURE FOR CORRELATION PROPERTIES OF 
RANDOM VARIABLES 

A vector-space picture is often useful as an aid to recalling the second-moment 
relationships between two random variables X and Y . This picture is not just a 
mnemonic: there is a very precise sense in which random variables can be thought 
of (or are) vectors in a vector space (of infinite dimensions), as long as we are only 
interested in their second-moment properties. Although we shall not develop this 
correspondence in any depth, it can be very helpful in conjecturing or checking 
answers in the linear minimum mean-square-error (LMMSE) estimation problems 
that we shall treat. 

To develop this picture, we represent the random variables X and Y as vectors X 
and Y in some abstract vector space. For the squared lengths of these vectors, 
we take the second-moments of the associated random variables, E[X2] and E[Y 2] 
respectively. Recall that in Euclidean vector space the squared length of a vector is 
the inner product of the vector with itself. This suggests that perhaps in our vector-
space interpretation the inner product < X, Y > between two general vectors X and 
Y should be defined as the correlation (or second cross-moment) of the associate 
random variables: 

< X, Y >= E[XY ] = RX,Y .	 (7.63) 

This indeed turns out to be the definition that’s needed. With this definition, the 
standard properties required of an inner product in a vector space are satisfied, 
namely: 

Symmetry: < X, Y >=< Y, X > . 

Linearity: < X, a1Y1 + a2Y2 >= a1 < X, Y1 > +a2 < X, Y2 > 

Positivity: < X, X > is positive for X = 0, and 0 otherwise. 

This definition of inner product is also consistent with the fact that we often refer 
to two random variables as orthogonal when E[XY ] = 0. 

The centered random variables X − µX and Y − µY can similary be represented as 
vectors X̃ and Ỹ in this abstract vector space, with squared lengths that are now 
the variances of the random variables X and Y : 

σ2 = E[(X − µX )
2] , σ2 = E[(Y − µY )

2] (7.64) X	 Y 

respectively. The lengths are therefore the standard deviations of the associated 
random variables, σX and σY respectively. The inner product of the vectors X̃ and 
Ỹ becomes 

< X̃, Ỹ >= E[(X − µX )(Y − µY )] = σX,Y , (7.65) 

namely the covariance of the random variables. 

In Euclidean space the inner product of two vectors is given by the product of the 
lengths of the individual vectors and the cosine of the angle between them: 

< X̃, Ỹ >= σX,Y = σX σY cos(θ) ,	 (7.66) 
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�X − µX 

� Y − µY 

θ = cos−1 ρ 

σX 

σY 

FIGURE 7.5 Random Variables as Vectors. 

so the quantity 

θ = cos−1
( σX,Y 

) 
= cos−1 ρ (7.67) 

σX σY 

can be thought of as the angle between the vectors. Here ρ is the correlation 
coefficient of the two random variables, so evidently 

ρ = cos(θ) . (7.68) 

Thus, the correlation coefficient is the cosine of the angle between the vectors. It 
is therefore not surprising at all that 

− 1 ≤ ρ ≤ 1 . (7.69) 

When ρ is near 1, the vectors are nearly aligned in the same direction, whereas 
when ρ is near −1 they are close to being oppositely aligned. The correlation 
coefficient is zero when these vectors X̃ and Ỹ (which represent the centered random 
variables) are orthogonal, or equivalently, the corresponding random variables have 
zero covariance, 

σX,Y = 0 . (7.70) 
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