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Hypothesis Testing 

INTRODUCTION 

The topic of hypothesis testing arises in many contexts in signal processing and 
communications, as well as in medicine, statistics and other settings in which a 
choice among multiple options or hypotheses is made on the basis of limited and 
noisy data. For example, from tests on such data, we may need to determine: 
whether a person does or doesn’t have a particular disease; whether or not a par
ticular radar return indicates the presence of an aircraft; which of four values was 
transmitted at a given time in a PAM system; and so on. 

Hypothesis testing provides a framework for selecting among M possible choices or 
hypotheses in some principled or optimal way. In our discussion we will initially 
focus on M = 2, i.e., on binary hypothesis testing, to illustrate the key concepts. 
Though Section 13.1 introduces the discussion in the context of binary pulse am
plitude modulation in noise, the presentation and results in Section 13.2 apply to 
the general problem of binary hypothesis testing. In Sections 13.3 and 13.4 we 
explicitly treat the case of more than two hypotheses. 

13.1 BINARY PULSE AMPLITUDE MODULATION IN NOISE 

In Chapter 12 we introduced the basic principles of pulse amplitude modulation, 
and considered the effects of pulse rate, pulse shape, and channel and receiver 
filtering in PAM systems. We also developed and discussed the condition for no 
inter-symbol interference (the no-ISI condition). Under the assumption of no ISI, 
we want to now examine the effect of noise in the channel. Toward this end, we 
again consider the overall PAM model in Figure 13.1, with the channel noise v(t) 
represented as an additive term. 

For now we will assume no post-filtering at the receiver, i.e., assume f(t) = δ(t). 
In Chapter 14 we will see how performance is improved with the use of filtering in 
the receiver. The basic pulse p(t) going through the channel with impulse response 
h(t) produces a signal at the channel output that we represent by s(t) = p(t) ∗ h(t). 
Figure 13.1 thus reduces to the overall system shown in Figure 13.2. 

Since we are assuming no ISI, we can carry out our discussion for just a single pulse 
index n, which we will choose as n = 0 for convenience. We therefore focus, in the 
system of Figure 13.2, on 

b[0] = r(0) = a[0]s(0) + v(0) . (13.1) 
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FIGURE 13.1 Overall model of a PAM system. 

v(t) 
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Sample every T 

FIGURE 13.2 Simplified representation of a PAM system. 

Writing r(0), a[0] and v(0) simply as r, a and v respectively, and setting s(0) = 1 
without loss of generality, the relation of interest to us is 

r = a + v . (13.2) 

Our broad objective is to determine the value of a as well as possible, given the 
measured value r. There are several variations of this problem, depending on the 
nature of the transmitted sequence a[n] and the characteristics of the noise. The 
amplitude a[n] may span a continuous range or it may be discrete (e.g., binary). 
The amplitude may correspondingly be modeled as a random variable A with a 
known PDF or PMF; then a is the specific value that A takes in a particular 
outcome or instance of the probabilistic model. The contribution of the noise also 
is typically represented as a random variable V , usually continuous, with v being 
the specific value that it takes. We may thus model the quantity r at the receiver 
as the observation of a random variable R, with 

R = A + V , (13.3) 

and we want to estimate the value that the random variable A takes, given that 
R = r. Consequently, we need to add a further processing step to our receiver, in 
which an estimate of A is obtained. 

In the case where the pulse amplitude can be only one of two values, i.e., in the 
case of binary signaling, finding an estimate of A reduces to deciding, on the basis 
of the observed value r of R, which of the two possible amplitudes was transmitted. 
Two common forms of binary signaling in PAM systems are on/off signaling and 
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antipodal signaling. Letting a1 and a0 denote the two possible amplitudes (repre
senting for example a binary “one” or “zero”), in on/off signaling we have a0 = 0, 

= 0, whereas in antipodal signaling a0 = 0. a1 6 = −a1 6
Thus, in binary signaling, the required post-processing corresponds to deciding be
tween two alternatives or hypotheses, where the available information may include 
some prior information along with a measurement r of the single continuous random 
variable R. (The extension to multiple hypotheses and multiple measurements will 
be straightforward once the two-hypothesis case is understood.) The hypotheses 
are listed below: 

Hypothesis H0: the transmitted amplitude A takes the value a0, so R = a0 + V . 

Hypothesis H1: the transmitted amplitude A takes the value a1, so R = a1 + V . 

Our task now is to decide, given the measurement R = r, whether H0 or H1 is 
responsible for the measurement. The next section develops a framework for this 
sort of hypothesis testing task. 

13.2 BINARY HYPOTHESIS TESTING 

Our general binary hypothesis testing task is to decide, on the basis of a mea
surement r of a random variable R, which of two hypotheses — H0 or H1 — is 
responsible for the measurement. We shall indicate these decisions by ‘H0’ and ‘H1 ’ 
respectively (where the quotation marks are intended to suggest the announcement 
of a decision). An alternative notation is Ĥ = H0 and Ĥ = H1 respectively, where 
Ĥ denotes our estimate of, or decision on, the hypothesis H. 

Suppose H is modeled as a random quantity, and assume we know the a priori (i.e., 
prior) probabilities 

P (H0 is true) = P (H = H0) = P (H0) = p0 (13.4) 

and 
P (H1 is true) = P (H = H1) = P (H1) = p1 (13.5) 

(where the last two equalities in each case simply define streamlined notation that 
we will be using). We shall also require the conditional densities fR|H (r|H0) and 
fR|H (r|H1) that tell us how the measured variable is distributed under the two 
respective hypotheses. These conditional densities in effect constitute the relevant 
specifications of how the measured data relates to the two hypotheses. For example, 
in the PAM setting, with R defined as in (13.3) and assuming V is independent of 
A under each hypothesis, these conditional densities are simply 

fR|H (r|H0) = fV (r − a0) and fR|H (r|H1) = fV (r − a1) . (13.6) 

It is natural in many settings, as in the case of digital communication by PAM, to 
want to minimize the probability of picking the wrong hypothesis, i.e., to choose 
with minimum probability of error between the hypotheses, given the measurement 
R = r. We will, for most of our discussion of hypothesis testing, focus on this 
criterion of minimum probability of error. 
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230 Chapter 13 Hypothesis Testing 

13.2.1 Deciding with Minimum Probability of Error: The MAP Rule 

Consider first how one would choose between H0 and H1 with minimum probability 
of error in the absence of any measurement of R. If we make the choice ‘H0’, then 
we make an error precisely when H0 does not hold, so the probability of error 
with this choice is 1 − P (H0) = 1 − p0. Similarly, if we chose ‘H1’, then the 
probability of error is 1 − P (H1) = 1 − p1 = p0. Thus, for minimum probability of 
error, we should decide in favor of whichever hypothesis has maximum probability 
— an intuitively reasonable conclusion. (The preceding reasoning extends in the 
same way to choosing one from among many hypotheses, and leads to the same 
conclusion.) 

What changes when we aim to choose between H0 and H1 with minimum probabil
ity of error, knowing that R = r? The same reasoning applies as in the preceding 
paragraph, except that all probabilities now need to be conditioned on the mea
surement R = r. We conclude that to minimize the conditional probability of 
error, P (error R = r), we need to decide in favor of whichever hypothesis has |
maximum conditional probability, conditioned on the measurement R = r. (If 
there were several random variables for which we had measurements, rather than 
just the single random variable R, we would simply condition on all the available 
measurements.) Thus, if P (H1 R = r) > P (H0 R = r), we decide ‘H1’, and if | |
P (H1 R = r) < P (H0 R = r), we decide ‘H0’. This may be compactly written as | |

‘H1 ’ 
> 

P (H1 R = r) P (H0 R = r) . (13.7) |
< 

|
‘H0 ’ 

(If the two conditional probabilities happen to be equal, we get the same conditional 
probability of error whether we choose ‘H0’ or ‘H1’.) The corresponding conditional 
probability of error is 

P (error|R = r) = min{1 − P (H0|R = r), 1 − P (H1|R = r)} . (13.8) 

The overall probability of error, Pe, associated with the use of the above decision 
rule (but before knowing what specific value of R is measured) is obtained by 
averaging the conditional probability of error in (13.8) over all possible values of r 
that might be measured, using the PDF fR(r) as a weighting function. We shall 
study Pe in more detail shortly. 

The conditional probabilities P (H0 R = r) and P (H1 R = r) that appear in the | |
expression (13.7) are referred to as the a posteriori or posterior probabilities of the 
hypotheses, to distinguish them from the a priori or prior probabilities, P (H0) and 
P (H1). The decision rule in (13.7) is accordingly referred to as the maximum a 
posteriori probability rule, usually abbreviated as the “MAP” rule. 

To actually evaluate the posterior probabilities in (13.7), we use Bayes’ rule to 
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rewrite them in terms of known quantities, so the decision rule becomes 

‘H1 ’ 
p1fR|H (r H1) > p0fR|H (r H0)|

< 
|

, (13.9) 
fR(r) fR(r) 

‘H0 ’ 

under the reasonable assumption that fR(r) > 0, i.e., that the PDF of R is positive 
at the value r that was actually measured. (In any case, we only need to specify our 
decision rule at values of r for which fR(r) > 0, because the choices made at other 
values of r do not affect the overall probability of error, Pe.) Since the denominator 
is the same and positive on both sides of the above expression, we may further 
simplify it to 

‘H1 ’ 
> 

p1fR|H (r|H1) <
p0fR|H (r|H0) . (13.10) 

‘H0 ’ 

This now provides us with an easily visualized and implemented decision rule. We 
first use the prior probabilities pi = P (Hi) to scale the PDFs fR|H (r|Hi) that 
describe how the measured quantity R is distributed under each of the hypotheses. 
We then decide in favor of the hypothesis associated with whichever scaled PDF is 
largest at the measured value r. (The preceding description also applies to choosing 
with minimum probability of error among multiple hypotheses, rather than just two, 
and given measurements of several associated random variables, rather than just 
one — the reasoning is identical.) 

13.2.2 Understanding Pe: False Alarm, Miss and Detection 

The sample space that is relevant to evaluating a decision rule consists of the 
following four mutually exclusive and collectively exhaustive possibilities: Hi is 
true and we declare ‘Hj ’, i, j = 1, 2. Of the four possible outcomes, the two that 
represent errors are (H0, ‘H1’) and (H1, ‘H0’). Therefore, the probability of error 
Pe — averaged over all possible values of the measured random variable — is given 
by 

Pe = P (H0, ‘H1’) + P (H1, ‘H0’) 

= p0P (‘H1 ’|H0) + p1P (‘H0 ’|H1) . (13.11) 

The conditional probability P (‘H1 ’ H0) is referred to as the conditional probability |
of a false alarm, and denoted by PFA. The conditional probability P (‘H0 ’ H1)|
is referred to as the conditional probability of a miss, and denoted by PM . The 
word “conditional” is usually omitted from these terms in normal use, but it is 
important to keep in mind that the probability of a false alarm and the probability 
of a miss are defined as conditional probabilities, and are furthermore conditioned 
on different events. 

The preceding terminology is historically motivated by the radar context, in which 
H1 represents the presence of a target and H0 the absence of a target. A false 
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alarm then occurs if you declare that a target is present when it actually isn’t, and 
a miss occurs if you declare that a target is absent when it actually isn’t. We will 
also make reference to the conditional probability of detection, 

PD = P (‘H1 ’|H1) . (13.12) 

In the radar context, this is the probability of declaring a target is present when it 
is actually present. As with PFA and PM , the word “conditional” is usually omitted 
in normal use, but it is important to keep in mind that the probability of detection 
is a conditional probability. 

Expressing the probability of error in terms of PFA and PM , (13.11) becomes 

Pe = p0PFA + p1PM . (13.13) 

Also note that 
P (‘H0 ’ H1) + P (‘H1 ’ H1) = 1 (13.14) | |

or 
PM = 1 − PD . (13.15) 

To explicitly relate PFA and PM to whatever the corresponding decision rule is, it 
is helpful to introduce the notion of a decision region in measurement space. In 
the case of a decision rule based on measurement of a single random variable R, 
specifying the decision rule corresponds to choosing a range of values D1 on the 
real line such that, when the measured value r of R falls in D1, we declare ‘H1’, and 
when r falls outside D1 — a region that we shall denote by D0 — then we declare 
‘H0’. This is illustrated in Figure 13.3, for some arbitrary choice of D1. (There is 
a direct generalization of this notion to the case where multiple random variables 
are measured.) 

D 

r 

f(r|H f(r|H 

1 

1) 0 ) 

FIGURE 13.3 Decision regions. The choice of D1 marked here is arbitrary, not the 
optimal choice for minimum probability of error. 

With the preceding definitions, we can write 

PFA = fR|H (r|H0)dr (13.16) 
D1 
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and 

PM = 
∫ 

D0 

fR|H (r|H1)dr . (13.17) 

13.2.3 The Likelihood Ratio Test 

Rewriting (13.10), we can state the minimum-Pe decision rule in the form 

Λ(r) = 
fR|H (r|H1) 

fR|H (r|H0) 

‘H1 ’ 
> 
< 

‘H0 ’ 

p0 

p1 
(13.18) 

or

‘H1 ’

>


Λ(r) η ,	 (13.19) 
< 

‘H0 ’ 

where Λ(r) is referred to as the likelihood ratio, and η is referred to as the thresh
old. This particular way of writing our decision rule is of interest because other 
formulations of the binary hypothesis testing problem — with criteria other than 
minimization of Pe — also often lead to a decision rule that involves comparing 
the likelihood ratio with a threshold. The only difference is that the threshold is 
picked differently in these other formulations. We describe two of these alternate 
formulations — the Neyman-Pearson approach, and minimum risk decisions — in 
later sections of this chapter. 

13.2.4 Other Scenarios 

While the above discussion of binary hypothesis testing was introduced in the con
text of binary PAM, it applies in many other scenarios. For example, in the medical 
literature, clinical tests are described using a hypothesis testing framework simi
lar to that used here for communication and signal detection problems, with H0 

generally denoting the absence of a medical condition and H1 its presence. The 
terminology in the medical context is slightly different, but still suggestive of the 
intent, as the following examples show: 

•	 PD is the sensitivity of the clinical test. 

•	 P (‘H1 ’|H0) is the probability of a false positive (rather than of a false alarm). 

•	 1 − PFA is the specificity of the test. 

•	 P (H1) is the prevalence of the condition that the test is aimed at. 

•	 P (H1 |‘H1’) is the positive predictive value of the test, and P (H0 | ‘H0’) is the 
negative predictive value. 
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Some easy exploration using Bayes’ rule and the above terminology will lead you to 
recognize how small the positive predictive value of a test can be if the prevalence 
of the targeted medical condition is low, even if the test is highly sensitive and 
specific. 

Another important context for binary hypothesis testing is in target detection, such 
as aircraft detection and tracking, in which a radar pulse is transmitted and the 
decision on the presence or absence of an aircraft is based on the presence or absence 
of reflected energy. 

13.2.5 Neyman-Pearson Detection and Receiver Operating Characteristics 

A difficulty with using the minimization of Pe as the decision criterion in many of 
these other contexts is that it relies heavily on knowing the a priori probabilities 
p0 and p1, and in many situations there is little basis for coming up with these 
numbers. One alternative that often makes sense is to maximize the probability 
of detection PD, while keeping PFA below some specified tolerable level. These 
conditional probabilities are determined by the measurement models under the 
different hypotheses, and by the decision rule, but not by the probabilities governing 
the selection of hypotheses. Such a formulation of the hypothesis testing problem 
again leads to a decision rule that involves comparing the likelihood ratio with a 
threshold; the only difference now is that the threshold is picked differently in this 
formulation. This approach is referred to as Neyman-Pearson detection, and is 
elaborated on below. 

Consider a context in which we want to maximize the probability of detection, 

PD = P (‘H1 ’|H1) = 
D1 

fR|H (r|H1)dr , (13.20) 

while keeping the probability of false alarm, 

PFA = P (‘H1 ’|H0) = 
D1 

fR|H (r|H0)dr , (13.21) 

below a pre-specified level. (Both integrals are over the decision region D1, and 
augmenting D1 by adding more of the real axis to it will not decrease either prob
ability.) As we show shortly, we can achieve our objective by picking the decision 
region D1 to comprise those values of r for which the likelihood ratio Λ(r) exceeds 
a certain threshold η, so 

‘H1 ’ 

Λ(r) = 
fR|H (r|H1) > 

η . (13.22) 
fR|H (r|H0)

‘H
< 

0 ’ 

The threshold η is picked to provide the largest possible PD while ensuring that 
PFA is not larger than the pre-specified level. The smaller the η, the larger the 
decision region D1 and the value of PD become, but the larger PFA grows as well, 
so one would pick the smallest η that is consistent with the given bound on PFA. 
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To understand why the decision rule in this setting takes the form of (13.22), note 
that our objective is to include in D1 values of r that contribute as much as possible 
to the integral that defines PD, and as little as possible to the integral that defines 
PFA. If we start with a high value of the threshold η, we will be including in 
D1 those r for which Λ(r) is large, and therefore where the contribution to PD is 
relatively large compared to the contribution to PFA. Moving η lower, we increase 
both PD and PFA, but the rate of increase of PD drops, while the rate of increase of 
PFA rises. These increases in PD and PFA may not be continuous in η. (Reducing η 
from infinitesimally above some value η to infinitesimally below this value will give 
rise to a finite upward jump in both PD and PFA if fR|H (r|H1) = η fR|H (r|H0) 
throughout some interval of r where both these PDFs are positive.) Typically, 
though, the variation of PD and PFA with η is indeed continuous, so as η is lowered 
we reach a point where the specified bound on PFA is attained, or PD = 1 is 
reached. This is the value of η used in the Neyman-Pearson test. (In the rare 
situation where PFA jumps discontinuously from a value below its tolerable level 
to one above its tolerable level as η is lowered through some value η, it turns out 
that a randomized decision rule allows one to come right up to the tolerable PFA 

level, and ! thereby maximize PD. A case like this is explored in a problem at the 
end of this chapter.) 

The following argument shows in a little more detail, though still informally, why 
the Neyman-Pearson criterion is equivalent to a likeliood ratio test. If the decision 
region D1 is optimal for the Neyman-Pearson criterion, then any change in D1 that 
keeps PFA the same cannot lead to an improvement in PD. So suppose we take a 
infinitesimal segment of width dr at a point r in the optimal D1 region and convert 
it to be part of D0. In order to keep PFA unchanged, we must correspondingly 
take an infinitesimal segment of width dr′ at an arbitrary point r′ in the optimal 
D0 region, and convert it to be a part of D1. 

D 

r 

f(r|H f(r|H 

1 

1) 0 ) 

dr dr’ 

FIGURE 13.4 Illustrating the construction used in deriving the likelihood ratio test 
for the Neyman-Pearson criterion. 

The requirement that PFA be unchanged then imposes the condition 

fR|H (r ′ |H0) dr′ = fR|H (r|H0) dr , (13.23) 
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236 Chapter 13 Hypothesis Testing 

while the requirement that the new PD not be larger than the old implies that 

fR|H (r ′ |H1) dr′ ≤ fR|H (r|H1) dr . (13.24) 

Combining (13.23) and (13.24), we find 

Λ(r ′) ≤ Λ(r) . (13.25) 

What (13.25) shows is that the likelihood ratio cannot be less inside D1 than it is in 
D0. We can therefore conclude that the optimum solution to the Neyman-Pearson 
formulation is in fact based on a threshold test on the likelihood ratio: 

‘H1 ’ 

Λ(r) = 
fR|H (r|H1) 

fR|H (r|H0) 
> 
< 

‘H0 ’ 

η , (13.26) 

where the threshold η is picked to obtain the largest possible PD while ensuring 
that PFA is not larger than the pre-specified bound. 

The above derivation has made various implicit assumptions. However, our purpose 
is only to convey the essence of how one arrives at a likelihood ratio test in this 
case. 

Receiver Operating Characteristic. In considering which value of PFA to 
choose as a bound in the Neyman-Pearson test, it is often useful to look at a curve 
of PD versus PFA as the parameter η is varied. This is referred to as the Receiver 
Operating Characteristic (ROC). More generally, such an ROC can be defined 
for any decision rule that causes PD to be uniquely fixed, once PFA is specified. 
The ROC can be used to identify whether, for instance, modifying the variable 
parameters in a given test to permit a slightly higher PFA results in a significantly 
higher PD. The ROC can also be used to compare different tests. 

EXAMPLE 13.1 Detection and ROC for Signal in Gaussian Noise 

Consider a scenario in which a radar pulse is emitted from a ground station. If 
an aircraft is located in the propagation path, a reflected pulse will travel back 
towards the radar station. We assume that the received signal will then consist of 
noise alone if no aircraft is present, and noise plus the reflected pulse if an aircraft 
is present. The processing of the received signal results in a number that we model 
as the realization of a random variable R. If an aircraft is not present, then R = W , 
where W is a random variable denoting the result of processing just the noise. If 
an aircraft is present, then R = s + W , where the constant s is due to processing 
of the reflected pulse, and is assumed here to be a known value. We thus have the 
following two hypotheses: 

H0 : R = W (13.27) 

H1 : R = s + W . (13.28) 
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Assume that the additive noise term W is Gaussian with zero mean and unit vari
ance, i.e., 

2

fW (w) = √1

2π
e−w /2 . (13.29) 

Consequently, 

1 
fR|H (r|H0) = √

2π
e−r 2/2 (13.30) 

fR|H (r|H1) = √1

2π
e−(r−s)2/2 . (13.31) 

The likelihood ratio as defined in (13.18) is then 

[ (r − s)2 r2 ]
Λ(r) = exp +− 

2 2 
[ s2 ]

= exp sr − . (13.32) 
2 

For detection with minimum probability of error, the decision rule corresponds to 
evaluating this likelihood ratio at the received value r, and comparing the result 
against the threshold p0/p1, as stated in (13.18): 

‘H1 ’ 
> 

exp sr −
[ s2 ] 

η = 
p0 

(13.33) 
2 < p1 

‘H0 ’ 

It is interesting and important to note that, for this case, the threshold test on 
the likelihood ratio can be rewritten as a threshold test on the received value r. 
Specifically, (13.33) can equivalently be expressed as 

‘H1 ’ 
>s2 ]

[sr − ln η , (13.34) 
2 < 

‘H0 ’ 

or, if s > 0, 
‘H1 ’ 
> 1[ s2 ] 

r + ln η = γ , (13.35) 
< s 2 

‘H0 ’ 

where γ denotes the threshold on r. (If s < 0, the inequalities in (13.35) are 
simply reversed.) For example, if both hypotheses are equally likely a priori, so 
that p0 = p1, then ln η = 0 and the decision rule for minimum probability of error 
when s > 0 is simply 

‘H1 ’ 
> s 

r = γ . (13.36) 
< 2 

‘H0 ’ 
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FIGURE 13.5 Threshold γ on measured value r. 

The situation is represented in Figure 13.5.


The receiver operating characteristic displays PD versus PFA as η is varied, and is

sketched in Figure 13.6.


r 
sγ 

f(r|H f(r|H0 ) 1) 

PD 1.0 

.5 

0.0 

0.0 .5 1.0 PFA 

FIGURE 13.6 Receiver operating characteristic. 

In a more general setting than the Gaussian case in Example 13.1, a threshold 
test on the likelihood ratio would not simply translate to a threshold test on the 
measurement r. Nevertheless, we could still decide to use a simple threshold test 
on r as our decision rule, and then generate and evaluate the associated receiver 
operating characteristic. 

13.3 MINIMUM RISK DECISIONS 

This section briefly describes a decision criterion, called minimum risk, that includes 
minimum probability of error as a special case, and that in the binary case again 
leads to a likelihood ratio test. We describe it for the general case of M hypotheses. 

Let the available measurement be the value r of the random variable R (the same 
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development holds if we have measurements of several random variables). Suppose 
we associate a cost cij with each combination of model Hj and decision ‘Hi ’ for 
0 ≤ i, j ≤ M − 1, reflecting the costs of actions and consequences that follow from 
this combination of model and decision. Our objective now is to pick whichever 
decision has minimum expected cost, or minimum “risk”, given the measurement. 

The expected cost of deciding ‘Hi’, conditioned on R = r, is given by 

M−1 M−1

E[Cost R = r, ‘Hi’] = 
∑ 

cij P (Hj R = r, ‘Hi’) = 
∑ 

cij P (Hj R = r) , (13.37) |
j=0 

|
j=0 

|

where the last equality is a consequence of the fact that, given the received mea
surement R = r, the output of the decision rule conveys no additional information 
about which hypothesis actually holds. The next step is to compare these condi
tional expected costs for all i, and decide in favor of the hypothesis with minimum 
conditional expected cost. Specifying our decision for each possible r, we obtain 
the decision rule that minimizes the overall expected cost or risk. 

[It is in this setting that hypothesis testing comes closest to the estimation problems 
for continuous random variables that we considered in our chapter on minimum 
mean-square-error estimation. We noted there that a variety of such estimation 
problems can be formulated in terms of minimizing an expected cost function. 
Establishing an estimate for a random variable is like carrying out a hypothesis test 
for a continuum of numerically specified hypotheses (rather than just M general 
hypotheses), with a cost function that penalizes some measure of the numerical 
distance between the actual hypothesis and the one we decide on.] 

Note that if cii = 0 for all i and if cij = 1 for j = i, so we penalize all errors equally, 
then the conditional expected cost in (13.37) becomes 

E[Cost R = r, ‘Hi’] = 
∑ 

P (Hj r) = 1 − P (Hi r) . (13.38) |
j=i 

| |

This conditional expected cost is thus precisely the conditional probability of error 
associated with deciding ‘Hi’, conditioned on R = r. The right side of the equation 
then shows that to minimize this conditional probability of error we should decide 
in favor of the hypothesis with largest conditional probability. In other words, 
with this choice of costs, the risk (when the expectation is taken over all possible 
values of r) is exactly the probability of error Pe, and the optimum decision rule 
for minimizing this criterion is again seen to be the MAP rule. 

Using Bayes’ rule in (13.37) and noting that fR(r) — assumed positive — is common 
to all the quantities involved in our comparison, we see that an equivalent but more 
directly implementable procedure is to pick the hypothesis for which 

M−1∑ 
cij f(r|Hj )P (Hj ) (13.39) 

j=0 

is minimum. In the case of two hypotheses, and assuming c01 > c11, it is easy to 

©Alan V. Oppenheim and George C. Verghese, 2010 c



6

240 Chapter 13 Hypothesis Testing 

see that the decision rule based on (13.39) can be rewritten as 

‘H1 ’ 

Λ(r) = 
f(r|H1) > P (H0)(c10 − c00)

= η , (13.40) 
f(r|H0)

‘H
< 

0 ’ 
P (H1)(c01 − c11) 

where Λ(r) denotes the likelihood ratio, and η is the threshold. We have therefore 
again arrived at a decision rule that involves comparing a likelihood ratio with a 
threshold. If cii = 0 for i = 0, 1 and if cij = 1 for j = i, then we obtain the 
threshold associated with the MAP decision rule for minimum Pe, as expected. 

The trouble with the above minimum risk approach to classification, and with the 
minimum error probability formulation that we have examined a few times already, 
is the requirement that the prior probabilities P (Hi) be known. 

It is often unrealistic to assume that prior probabilities are known, so we are led 
to consider alternative criteria. Most important among these alternatives is the 
Neyman-Pearson approach treated earlier, where the decision is based on the con
ditional probabilities PD and PFA, thereby avoiding the need for prior probabilities 
on the hypotheses. 

13.4 HYPOTHESIS TESTING IN CODED DIGITAL COMMUNICATION 

In our discussion of PAM earlier in this chapter, we considered binary hypothesis 
testing on a single received pulse. In modern communication systems, an alphabet 
of symbols may be transmitted, with each symbol encoded into a binary sequence 
of “ones” and “zeroes”. Consequently, in addition to making a binary decision on 
each received pulse, we may need to further decode a string of bits to make our best 
judgement of the transmitted symbol, and perhaps yet further processing to decide 
on the sequence of symbols that constitutes the entire message. It would in principle 
be better to take all the raw measurements and then make optimal decisions about 
the entire sequence of symbols that was transmitted, but this would be a hugely 
more complex task. In practice, therefore, the task is commonly broken down into 
three stages, as here, with locally optimal decisions made at the single-pulse level 
to decode sequences of “ones” and “zeros”, then further decisions made to decode 
at the symbol level, and still further decisions made at the symbol sequence level. 
In this section we illustrate the second of these decoding stages. 

For concreteness, we center our discussion on the system in Figure 13.7. Suppose 
the transmitter randomly selects for transmission one of four possible symbols, 
which we label A, B, C and D. The probabilities with which these are selected 
will be denoted by P (A), P (B), P (C) and P (D) respectively. Whatever symbol 
the transmitter selects is now coded appropriately for transmission over the binary 
channel. The coding adds some redundancy to provide a basis for error correction 
at the receiver, in order to combat errors introduced by channel noise that may 
corrupt the individual bits. The resulting signal is then sent to the receiver. After 
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FIGURE 13.7 Communication over a binary channel.


the receiver decodes the received pulses, attempting to correct for channel noise in 
the process, it has to arrive at a decision as to which symbol was transmitted. 

A natural criterion for measuring the performance of the receiver, with whatever 
decision process or decision rule it applies, is again the probability of error, Pe. It 
is natural, in a communications setting, to want minimum probability of error, and 
this is the criterion we adopt. 

In the development below, rather than simply invoking the MAP rule we derived 
earlier, we repeat in this higher-level setting the line of reasoning that led to the 
MAP rule. We do this partly because there are some differences from what we 
considered earlier: we now have multiple hypotheses (four in our example), not just 
a pair of hypotheses; and the measured quantity is a discrete random symbol (more 
exactly, the received and possibly noise corrupted binary code for a transmitted 
symbol), rather than a continuous random variable. However, it will be clear that 
the problem here is not fundamentally different or harder. 

13.4.1 Optimal a priori Decision 

Consider, first of all, what the minimum-probability-of-error decision rule would be 
for the receiver if the channel was down, i.e., if the receiver had to decide on the 
transmitted signal without the benefit of any received signal, using only on a priori 
information. If the receiver guesses that the transmitter selected the symbol A, then 
the receiver is correct if A was indeed the transmitted symbol, and the receiver has 
made an error if A was not the transmitted symbol. Hence the receiver’s probability 
of error with this choice is 1−P (A). Similar reasoning applies for the other symbols. 
So the minimum-probability-of-error decision rule for the receiver is to decide in 
favor of whichever symbol has maximum probability. This seems quite obvious for 
this simple case, and the general case (i.e., with the channel functioning) is not 
really any harder. We turn now to this general case, where the receiver actually 
receives the result of sending the transmitted signal through the noisy channel. 
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13.4.2 The Transmission Model 

Let us model the channel as a binary channel, which accepts 1’s and 0’s from the 
transmitter, and delivers 1’s and 0’s to the receiver. Suppose that because of the 
noise in the channel there is a probability p > 0 that a transmitted 1 is received as 
a 0, and that a transmitted 0 is received as a 1. Because the probability is the same 
for both types of errors, this binary channel is called symmetric (we could treat 
the non-symmetric case as easily, apart from some increased notational burden). 
Implicit in our definition of this channel is the assumption that it is memoryless, 
i.e., its characteristics during any particular transmission slot are independent of 
what has been transmitted in other time slots. The channel is also assumed time-
invariant, i.e., its characteristics do not vary with time. 

Given such a channel, the transmitter needs to code the selected symbol into binary 
form. Suppose the transmitter uses 3 bits to code each symbol, as follows: 

A : 000 , B : 011 , C : 101 , D : 110 . (13.41) 

Because of the finite probability of bit-errors introduced by the channel, the received 
sequence for any of these transmissions could be any 3-bit binary number: 

R0 = 000 , R1 = 001 , R2 = 010 , R3 = 011 , 

R4 = 100 , R5 = 101 , R6 = 110 , R7 = 111 . (13.42) 

The redundancy introduced by using 3 bits — rather than the 2 bits that would 
suffice to communicate our set of four symbols — is intended to provide some 
protection against channel noise. Notice that with our particular 3-bits/symbol 
code, a single bit-error would be recognized at the receiver as an error, because it 
would result in an invalid codeword. It takes two bit-errors (which are rarer than 
single bit-errors) to convert any valid codeword into another valid one, and thereby 
elude recognition of the error by the receiver. 

There are now various probabilities that it might potentially be of interest to eval
uate, such as: 

•	 P (R1 | D), the probability that R1 is received, given that D was sent; 

•	 P (D | R1), the probability that D was sent, given that R1 was received — 
this is the a posteriori probability of D, in contrast to P (D), which is the a 
priori probability of D; 

•	 P (D,R1), the probability that D is sent and R1 is received; 

•	 P (R1), the probability that R1 is received. 

The sample space of our probabilistic experiment can be described by Table 13.1, 
which contains an entry corresponding to every possible combination of transmit
ted symbol and received sequence. In the jth row of column A, we enter the 
probability P (A,Rj ) that A was transmitted and Rj received, and similarly for 
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columns B, C, and D. The simplest way to actually compute this probability is 
by recognizing that P (A,Rj ) = P (Rj A)P (A); the characterization of the chan|
nel permits computation of P (Rj A), while the characterization of the information |
source at the transmitter yields the prior probability P (A). Note that we can also 
write P (A,Rj ) = P (A Rj )P (Rj ). Examples of these three ways of writing the |
probabilities of the outcomes of our experiment are shown in the table. 

13.4.3 Optimal a posteriori Decision 

We now want to design the decision rule for the receiver, i.e., the rule by which 
it decides or hypothesizes what symbol was transmitted, after the reception of a 
particular sequence. We would like to do this in such a way that the probability of 
error, Pe, is minimized. 

Since a decision rule in our example selects one of the four possible symbols (or 
hypotheses), namely A, B, C, or D, for each possible Rj , it can be represented 
in Table 13.1 by selecting one (and only one) entry in each row; we shall mark 
the selected entry by a box. For instance, a particular decision rule may declare 
D to be the transmitted signal whenever it receives R4; this is indicated on the 
table by putting a box around the entry in row R4, column D, as shown. Each 
possible decision rule is therefore associated with a table of the preceding form, 
with precisely one entry boxed in each row. 

Now, for a given decision rule, the probability of being correct is the sum of the 
probabilities in all the boxed entries, because this sum gives the total probability 
that the decision rule declares in favor of the same symbol that was transmitted. 
The probability of error, Pe, is therefore 1 minus the probability of being correct. 

It follows that to specify the decision rule for minimum probability of error or 
maximum probability of being correct, we must pick in each row the box that has 
the maximum entry. (If more than one entry has the maximum value, we are free 
to pick one of these arbitrarily — Pe is not affected by which of these we pick.) For 
row Rj in Table 13.1, we should pick for the optimum decision rule the symbol for 
which we maximize 

P (symbol, Rj ) = P (Rj symbol)P (symbol) | 
= P (symbol Rj )P (Rj ) . (13.43) |

Table 13.2 displays some examples of the required computation in a particular nu
merical case. The computation in this example is carried out according to the 
prescription on the right side in the first of the above pair of equations. As noted 
earlier, this is generally the form that yields the most direct computation in prac
tice, because the characterization of the channel usually permits direct computation 
of P (Rj symbol), while the characterization of the information source at the trans|
mitter yields the prior probabilities P (symbol). 

The right side of the second equation in (13.43) permits a nice, intuitive interpre
tation of what the optimum decision rule does. Since our comparison is being done 
across the row, for a given Rj the term P (Rj ) in the second equation stays the 
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A : 000 B : 011 C : 101 D : 110 

P (A, R0) P (B, R0) P (C, R0) P (D, R0) 
R0 = 000 = P (R0|B)P (B) = P (C|R0)P (R0) 

= p2(1 − p)P (B) 

R1 = 001 

R2 = 010 

R3 = 011 

R4 = 100 P (A, R4) P (B, R4) P (C, R4) P (D, R4) 

R5 = 101 

R6 = 110 

R7 = 111 

TABLE 13.1 Each entry corresponds to a transmitted symbol and a received 
sequence. 
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same, so actually all that we need to compare are the a posteriori probabilities, 
P (symbol Rj ), i.e. the probabilities of the various symbols, given the data. The |
optimum decision rule therefore picks the symbol with the maximum a posteriori 
probability. This is again the MAP decision rule that we derived previously in the 
binary hypothesis case. To summarize the important result we have arrived at here, 
and which we shall encounter again in more elaborate hypothesis testing contexts: 

For minimum error probability Pe, decide in favor of the choice that has maximum a 
posteriori probability, i.e., the choice whose probability, conditioned on the available 
data, is maximum. 

Note that the only difference from the minimum-Pe a priori decision rule we arrived 
at earlier, for the case where the channel was down, is the computation now has 
to involve conditional or a posteriori probabilities — conditioned on the received 
information — rather than the a priori probabilities. The receiver still decides in 
favor of the most probable choice, but now incorporating (i.e., conditioning on) the 
received information. 
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TABLE 13.2 Designing the optimal decision rule, with P (A) = 2
1 , P (B) = 4

1 , 
P (C) = 8

1 
8
1 , p = 4

1 , P (D) = . The MAP rule chooses the symbol that maximizes 
the a posteriori probability, P (symbol data). | 
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