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C H A P T E R 2 

Signals and Systems 

This text assumes a basic background in the representation of linear, time-invariant 
systems and the associated continuous-time and discrete-time signals, through con
volution, Fourier analysis, Laplace transforms and Z-transforms. In this chapter 
we briefly summarize and review this assumed background, in part to establish no
tation that we will be using throughout the text, and also as a convenient reference 
for the topics in the later chapters. We follow closely the notation, style and presen
tation in Signals and Systems, Oppenheim and Willsky with Nawab, 2nd Edition, 
Prentice Hall, 1997. 

2.1 SIGNALS, SYSTEMS, MODELS, PROPERTIES 

Throughout this text we will be considering various classes of signals and systems, 
developing models for them and studying their properties. 

Signals for us will generally be real or complex functions of some independent 
variables (almost always time and/or a variable denoting the outcome of a proba
bilistic experiment, for the situations we shall be studying). Signals can be: 

1-dimensional or multi-dimensional • 

• continuous-time (CT) or discrete-time (DT) 

• deterministic or stochastic (random, probabilistic) 

Thus, a DT deterministic time-signal may be denoted by a function x[n] of the 
integer time (or clock or counting) variable n. 

Systems are collections of software or hardware elements, components, subsys
tems. A system can be viewed as mapping a set of input signals to a set of output 
or response signals. A more general view is that a system is an entity imposing 
constraints on a designated set of signals, where the signals are not necessarily la
beled as inputs or outputs. Any specific set of signals that satisfies the constraints 
is termed a behavior of the system. 

Models are (usually approximate) mathematical or software or hardware or lin
guistic or other representations of the constraints imposed on a designated set of 
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22 Chapter 2 Signals and Systems 

signals by a system. A model is itself a system, because it imposes constraints on 
the set of signals represented in the model, so we often use the words “system” and 
“model” interchangeably, although it can sometimes be important to preserve the 
distinction between something truly physical and our representations of it mathe
matically or in a computer simulation. We can thus talk of the behavior of a model. 

A mapping model of a system comprises the following: a set of input signals {xi(t)}, 
each of which can vary within some specified range of possibilities; similarly, a set 
of output signals {yj (t)}, each of which can vary; and a description of the mapping 
that uniquely defines the output signals as a function of the input signals. As an 
example, consider the following single-input, single-output system: 

�x(t) � y(t) = x(t − t0)T { · } 

FIGURE 2.1 Name-Mapping Model 

Given the input x(t) and the mapping T { · }, the output y(t) is unique, and in this 
example equals the input delayed by t0. 

A behavioral model for a set of signals {wi(t)} comprises a listing of the constraints 
that the wi(t) must satisfy. The constraints on the voltages across and currents 
through the components in an electrical circuit, for example, are specified by Kirch
hoff’s laws, and the defining equations of the components. There can be infinitely 
many combinations of voltages and currents that will satisfy these constraints. 

2.1.1 System/Model Properties 

For a system or model specified as a mapping, we have the following definitions 
of various properties, all of which we assume are familiar. They are stated here 
for the DT case but easily modified for the CT case. (We also assume a single 
input signal and a single output signal in our mathematical representation of the 
definitions below, for notational convenience.) 

Memoryless or Algebraic or Non-Dynamic: The outputs at any instant • 
do not depend on values of the inputs at any other instant: y[n0] = T {x[n0]}
for all n0. 

Linear: The response to an arbitrary linear combination (or “superposition”) • 
of inputs signals is always the same linear combination of the individual re
sponses to these signals: T {axA[n] + bxB [n]} = aT {xA[n]} + bT {xB [n]}, for 
all xA, xB , a and b. 
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x(t) 
+ 

− 

�y(t) 

FIGURE 2.2 RLC Circuit 

•	 Time-Invariant: The response to an arbitrarily translated set of inputs is 
always the response to the original set, but translated by the same amount: 
If x[n] y[n] then x[n − n0] y[n − n0] for all x and n0.→	 → 

•	 Linear and Time-Invariant (LTI): The system, model or mapping is both 
linear and time-invariant. 

•	 Causal: The output at any instant does not depend on future inputs: for all 
n0, y[n0] does not depend on x[n] for n > n0. Said another way, if x̂[n], ŷ[n] 
denotes another input-output pair of the system, with x̂[n] = x[n] for n ≤ n0, 
then it must be also true that ŷ[n] = y[n] for n ≤ n0. (Here n0 is arbitrary 
but fixed.) 

•	 BIBO Stable: The response to a bounded input is always bounded: |x[n]| ≤
Mx < ∞ for all n implies that |y[n]| ≤ My < ∞ for all n. 

EXAMPLE 2.1 System Properties 

Consider the system with input x[n] and output y[n] defined by the relationship 

y[n] = x[4n + 1]	 (2.1) 

We would like to determine whether or not the system has each of the following 
properties: memoryless, linear, time-invariant, causal, and BIBO stable. 

memoryless: a simple counter example suffices. For example, y[0] = x[1], i.e. the 
output at n = 0 depends on input values at times other than at n = 0. Therefore 
it is not memoryless. 

linear: To check for linearity, we consider two different inputs, xA[n] and xB [n], 
and compare the output of their linear combination to the linear combination of 
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24 Chapter 2 Signals and Systems 

their outputs. 

xA[n] xA[4n + 1] = yA[n]→ 

xB [n] xB [4n + 1] = yB [n]→ 

xC [n] = (axA[n] + bxB [n]) (axA[4n + 1] + bxB [4n + 1]) = yC [n]→ 

If yC [n] = ayA[n] + byB [n], then the system is linear. This clearly happens in this 
case. 

time-invariant: To check for time-invariance, we need to compare the output due 
to a time-shifted version of x[n] to the time-shifted version of the output due to 
x[n]. 

x[n] x[4n + 1] = y[n]→ 

xB [n] = x[n + n0] x[4n + n0 + 1] = yB [n]→ 

We now need to compare y[n] time-shifted by n0 (i.e. y[n + n0]) to yB [n]. If they’re 
not equal, then the system is not time-invariant. 

y[n + n0] = x[4n + 4n0 + 1] 

but yB [n] = x[4n + n0 + 1] 

Consequently, the system is not time-invariant. To illustrate with a specific counter
example, suppose that x[n] is an impulse, δ[n], at n = 0. In this case, the output, 
yδ[n], would be δ[4n + 1], which is zero for all values of n, and y[n + n0] would 
likewise always be zero. However, if we consider x[n + n0] = δ[n + n0], the output 
will be δ[4n + 1 + n0], which for n0 = 3 will be one at n = −4 and zero otherwise. 

causal: Since the output at n = 0 is the input value at n = 1, the system is not 
causal. 

BIBO stable: Since y[n] = x[4n + 1] and the maximum value for all n of x[n] and | | | |
x[4n + 1] is the same, the system is BIBO stable. 

2.2 LINEAR, TIME-INVARIANT SYSTEMS 

2.2.1 Impulse-Response Representation of LTI Systems 

Linear, time-invariant (LTI) systems form the basis for engineering design in many 
situations. They have the advantage that there is a rich and well-established theory 
for analysis and design of this class of systems. Furthermore, in many systems that 
are nonlinear, small deviations from some nominal steady operation are approxi
mately governed by LTI models, so the tools of LTI system analysis and design can 
be applied incrementally around a nominal operating condition. 

A very general way of representing an LTI mapping from an input signal x to 
an output signal y is through convolution of the input with the system impulse 
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Section 2.2 Linear, Time-Invariant Systems 25 

response. In CT the relationship is 
∫ ∞ 

y(t) = x(τ )h(t − τ)dτ (2.2) 
−∞ 

where h(t) is the unit impulse response of the system. In DT, we have 

∞
y[n] = 

∑ 
x[k] h[n − k] (2.3) 

k=−∞ 

where h[n] is the unit sample (or unit “impulse”) response of the system. 

A common notation for the convolution integral in (2.2) or the convolution sum in 
(2.3) is as 

y(t) = x(t) ∗ h(t) (2.4) 

y[n] = x[n] ∗ h[n] (2.5) 

While this notation can be convenient, it can also easily lead to misinterpretation 
if not well understood. 

The characterization of LTI systems through the convolution is obtained by repre
senting the input signal as a superposition of weighted impulses. In the DT case, 
suppose we are given an LTI mapping whose impulse response is h[n], i.e., when 
its input is the unit sample or unit “impulse” function δ[n], its output is h[n]. Now 
a general input x[n] can be assembled as a sum of scaled and shifted impulses, as 
follows: ∞

x[n] = 
∑ 

x[k] δ[n − k] (2.6) 
k=−∞ 

The response y[n] to this input, by linearity and time-invariance, is the sum of 
the similarly scaled and shifted impulse responses, and is therefore given by (2.3). 
What linearity and time-invariance have allowed us to do is write the response to 
a general input in terms of the response to a special input. A similar derivation 
holds for the CT case. 

It may seem that the preceding derivation shows all LTI mappings from an in
put signal to an output signal can be represented via a convolution relationship. 
However, the use of infinite integrals or sums like those in (2.2), (2.3) and (2.6) 
actually involves some assumptions about the corresponding mapping. We make 
no attempt here to elaborate on these assumptions. Nevertheless, it is not hard 
to find “pathological” examples of LTI mappings — not significant for us in this 
course, or indeed in most engineering models — where the convolution relationship 
does not hold because these assumptions are violated. 

It follows from (2.2) and (2.3) that a necessary and sufficient condition for an LTI 
system to be BIBO stable is that the impulse response be absolutely integrable 
(CT) or absolutely summable (DT), i.e., 

∫ ∞ 

BIBO stable (CT) ⇐⇒ 
−∞ 

|h(t)|dt < ∞ 
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26 Chapter 2 Signals and Systems 

∞
BIBO stable (DT) 

∑ 
h[n]⇐⇒ | | < ∞ 

n=−∞ 

It also follows from (2.2) and (2.3) that a necessary and sufficient condition for an 
LTI system to be causal is that the impulse response be zero for t < 0 (CT) or for 
n < 0 (DT) 

2.2.2 Eigenfunction and Transform Representation of LTI Systems 

Exponentials are eigenfunctions of LTI mappings, i.e., when the input is an expo
nential for all time, which we refer to as an “everlasting” exponential, the output is 
simply a scaled version of the input, so computing the response to an exponential 
reduces to just multiplying by the appropriate scale factor. Specifically, in the CT 
case, suppose 

x(t) = e s0t (2.7) 

for some possibly complex value s0 (termed the complex frequency). Then from 
(2.2) 

y(t) = h(t) ∗ x(t) 
∫ ∞ 

= h(τ )x(t − τ )dτ 
−∞∫ ∞ 

= h(τ )e s0(t−τ )dτ 
−∞ 

= H(s0)e s0t (2.8) 

where ∫ ∞ 

H(s) = h(τ)e−sτ dτ (2.9) 
−∞ 

provided the above integral has a finite value for s = s0 (otherwise the response to 
the exponential is not well defined). Note that this integral is precisely the bilateral 
Laplace transform of the impulse response, or the transfer function of the system, 
and the (interior of the) set of values of s for which the above integral takes a finite 
value constitutes the region of convergence (ROC) of the transform. 

From the preceding discussion, one can recognize what special property of the 
everlasting exponential causes it to be an eigenfunction of an LTI system: it is 
the fact that time-shifting an everlasting exponential produces the same result as 
scaling it by a constant factor. In contrast, the one-sided exponential es0 tu(t) — 
where u(t) denotes the unit step — is in general not an eigenfunction of an LTI 
mapping: time-shifting a one-sided exponential does not produce the same result 
as scaling this exponential. 

When x(t) = ejωt, corresponding to having s0 take the purely imaginary value jω in 
(2.7), the input is bounded for all positive and negative time, and the corresponding 
output is 

y(t) = H(jω)ejωt (2.10) 
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Section 2.2 Linear, Time-Invariant Systems 27 

where ∫ ∞ 

h(t)e−jωt dt H(jω) = (2.11) 
−∞ 

EXAMPLE 2.2 Eigenfunctions of LTI Systems 

While as demonstrated above, the everlasting complex exponential, ejωt, is an 
eigenfunction of any stable LTI system, it is important to recognize that ejωtu(t) 
is not. Consider, as a simple example, a time delay, i.e. 

y(t) = x(t − t0) (2.12) 

The output due to the input ejωtu(t) is 

e−jωt0 +jωtu(t − t0)e 

This is not a simple scaling of the input, so ejωtu(t) is not in general an eigenfunction 
of LTI systems. 

The function H(jω) in (2.10) is the system frequency response, and is also the 
continuous-time Fourier transform (CTFT) of the impulse response. The integral 
that defines the CTFT has a finite value (and can be shown to be a continuous 
function of ω) if h(t) is absolutely integrable, i.e. provided 

∫ +∞ 

|h(t)| dt < ∞
−∞ 

We have noted that this condition is equivalent to the system being bounded-input, 
bounded-output (BIBO) stable. The CTFT can also be defined for signals that are 
not absolutely integrable, e.g., for h(t) = (sin t)/t whose CTFT is a rectangle in 
the frequency domain, but we defer examination of conditions for existence of the 
CTFT. 

We can similarly examine the eigenfunction property in the DT case. A DT ever
lasting “exponential” is a geometric sequence or signal of the form 

x[n] = z0 
n (2.13) 

for some possibly complex z0 (termed the complex frequency). With this DT ex
ponential input, the output of a convolution mapping is (by a simple computation 
that is analogous to what we showed above for the CT case) 

y[n] = h[n] ∗ x[n] = H(z0)z0 
n (2.14) 

where ∞
H(z) = 

∑ 
h[k]z−k (2.15) 

k=−∞ 
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provided the above sum has a finite value when z = z0. Note that this sum is 
precisely the bilateral Z-transform of the impulse response, and the (interior of 
the) set of values of z for which the sum takes a finite value constitutes the ROC 
of the Z-transform. As in the CT case, the one-sided exponential z0 

nu[n] is not in 
general an eigenfunction. 

Again, an important case is when x[n] = (ejΩ)n = ejΩn, corresponding to z0 in 
(2.13) having unit magnitude and taking the value ejΩ , where Ω — the (real) 
“frequency” — denotes the angular position (in radians) around the unit circle in 
the z-plane. Such an x[n] is bounded for all positive and negative time. Although 
we use a different symbol, Ω, for frequency in the DT case, to distinguish it from 
the frequency ω in the CT case, it is not unusual in the literature to find ω used in 
both CT and DT cases for notational convenience. The corresponding output is 

y[n] = H(ejΩ)ejΩn (2.16) 

where ∞
H(ejΩ) = 

∑ 
h[n]e−jΩn (2.17) 

n=−∞ 

The function H(ejΩ) in (2.17) is the frequency response of the DT system, and is 
also the discrete-time Fourier transform (DTFT) of the impulse response. The sum 
that defines the DTFT has a finite value (and can be shown to be a continuous 
function of Ω) if h[n] is absolutely summable, i.e., provided 

∞∑ 
| h[n] | < ∞ (2.18) 

n=−∞ 

We noted that this condition is equivalent to the system being BIBO stable. As with 
the CTFT, the DTFT can be defined for signals that are not absolutely summable; 
we will elaborate on this later. 

Note from (2.17) that the frequency response for DT systems is always periodic, 
with period 2π. The “high-frequency” response is found in the vicinity of Ω = ±π, 
which is consistent with the fact that the input signal e±jπn = (−1)n is the most 
rapidly varying DT signal that one can have. 

When the input of an LTI system can be expressed as a linear combination of 
bounded eigenfunctions, for instance (in the CT case), 

jωℓt x(t) = 
∑ 

aℓe (2.19) 
ℓ 

then, by linearity, the output is the same linear combination of the responses to 
the individual exponentials. By the eigenfunction property of exponentials in LTI 
systems, the response to each exponential involves only scaling by the system’s 
frequency response. Thus 

jωℓt y(t) = 
∑ 

aℓH(jωℓ)e (2.20) 
ℓ 

Similar expressions can be written for the DT case. 
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2.2.3 Fourier Transforms 

A broad class of input signals can be represented as linear combinations of bounded 
exponentials, through the Fourier transform. The synthesis/analysis formulas for 
the CTFT are 

1 
∫ ∞ 

jωtdω x(t) = X(jω) e (synthesis) (2.21) 
2π −∞∫ ∞ 

x(t) e−jωtdt X(jω) = (analysis) (2.22) 
−∞ 

Note that (2.21) expresses x(t) as a linear combination of exponentials — but this 
weighted combination involves a continuum of exponentials, rather than a finite or 
countable number. If this signal x(t) is the input to an LTI system with frequency 
response H(jω), then by linearity and the eigenfunction property of exponentials 
the output is the same weighted combination of the responses to these exponentials, 
so 

1 
∫ ∞ 

jωtdω y(t) = H(jω)X(jω) e (2.23) 
2π −∞ 

By viewing this equation as a CTFT synthesis equation, it follows that the CTFT 
of y(t) is 

Y (jω) = H(jω)X(jω) (2.24) 

Correspondingly, the convolution relationship (2.2) in the time domain becomes 
multiplication in the transform domain. Thus, to find the response Y at a particular 
frequency point, we only need to know the input X at that single frequency, and 
the frequency response of the system at that frequency. This simple fact serves, in 
large measure, to explain why the frequency domain is virtually indispensable in 
the analysis of LTI systems. 

The corresponding DTFT synthesis/analysis pair is defined by 

1 
∫ 

x[n] = X(ejΩ) ejΩndΩ (synthesis) (2.25) 
2π <2π> 

∞
X(ejΩ) = 

∑ 
x[n] e−jΩn (analysis) (2.26) 

n=−∞ 

where the notation < 2π > on the integral in the synthesis formula denotes integra
tion over any contiguous interval of length 2π, since the DTFT is always periodic in 
Ω with period 2π, a simple consequence of the fact that ejΩ is periodic with period 
2π. Note that (2.25) expresses x[n] as a weighted combination of a continuum of 
exponentials. 

As in the CT case, it is straightforward to show that if x[n] is the input to an LTI 
mapping, then the output y[n] has DTFT 

Y (ejΩ) = H(ejΩ)X(ejΩ) (2.27) 
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30 Chapter 2 Signals and Systems 

2.3 DETERMINISTIC SIGNALS AND THEIR FOURIER TRANSFORMS 

In this section we review the DTFT of deterministic DT signals in more detail, and 
highlight the classes of signals that can be guaranteed to have well-defined DTFTs. 
We shall also devote some attention to the energy density spectrum of signals that 
have DTFTs. The section will bring out aspects of the DTFT that may not have 
been emphasized in your earlier signals and systems course. A similar development 
can be carried out for CTFTs. 

2.3.1 Signal Classes and their Fourier Transforms 

The DTFT synthesis and analysis pair in (2.25) and (2.26) hold for at least the 
three large classes of DT signals described below. 

Finite-Action Signals. Finite-action signals, which are also called absolutely 
summable signals or ℓ1 (“ell-one”) signals, are defined by the condition 

∞∑ ∣∣∣x[k]
∣∣∣ < ∞ (2.28) 

k=−∞ 

The sum on the left is called the ‘action’ of the signal. For these ℓ1 signals, the 
infinite sum that defines the DTFT is well behaved and the DTFT can be shown 
to be a continuous function for all Ω (so, in particular, the values at Ω = +π and 
Ω = −π are well-defined and equal to each other — which is often not the case 
when signals are not ℓ1). 

Finite-Energy Signals. Finite-energy signals, which are also called square summable 
or ℓ2 (“ell-two”) signals, are defined by the condition 

2∞∑ ∣∣∣x[k]
∣∣∣ < ∞ (2.29) 

k=−∞ 

The sum on the left is called the ‘energy’ of the signal. 

In discrete-time, an absolutely summable (i.e., ℓ1) signal is always square summable 
(i.e., ℓ2). (In continuous-time, the story is more complicated: an absolutely inte
grable signal need not be square integrable, e.g., consider x(t) = 1/

√
t for 0 < t ≤ 1 

and x(t) = 0 elsewhere; the source of the problem here is that the signal is not 
bounded.) However, the reverse is not true. For example, consider the signal 
(sin Ωcn)/πn for 0 < Ωc < π, with the value at n = 0 taken to be Ωc/π, or consider 
the signal (1/n)u[n − 1], both of which are ℓ2 but not ℓ1. If x[n] is such a signal, 
its DTFT X(ejΩ) can be thought of as the limit for N → ∞ of the quantity 

N

XN (e
jΩ) = 

∑ 
x[k]e−jΩk (2.30) 

k=−N 

and the resulting limit will typically have discontinuities at some values of Ω. For 
instance, the transform of (sin Ωcn)/πn has discontinuities at Ω = ±Ωc. 
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Signals of Slow Growth. Signals of ‘slow’ growth are signals whose magnitude 
grows no faster than polynomially with the time index, e.g., x[n] = n for all n. In 
this case XN (e

jΩ) in (2.30) does not converge in the usual sense, but the DTFT 
still exists as a generalized (or singularity) function; e.g., if x[n] = 1 for all n, then 
X(ejΩ) = 2πδ(Ω) for |Ω| ≤ π. 

Within the class of signals of slow growth, those of most interest to us are bounded 
(or ℓ ) signals: ∞

∣∣∣x[k]
∣∣∣ ≤ M < ∞ (2.31) 

i.e., signals whose amplitude has a fixed and finite bound for all time. Bounded 
everlasting exponentials of the form ejΩ0 n, for instance, play a key role in Fourier 
transform theory. Such signals need not have finite energy, but will have finite 
average power over any time interval, where average power is defined as total energy 
over total time. 

Similar classes of signals are defined in continuous-time. Specifically, finite-action 
(or L1) signals comprise those that are absolutely integrable, i.e., 

∫ ∞ ∣∣∣x(t)
∣∣∣dt < ∞ (2.32) 

−∞ 

Finite-energy (or L2) signals comprise those that are square summable, i.e., 

2
∫ ∞ ∣∣∣x(t)

∣∣∣ < ∞ (2.33) 
−∞ 

And signals of slow growth are ones for which the magnitude grows no faster than 
polynomially with time. Bounded (or L ) continuous-time signals are those for ∞
which the magnitude never exceeds a finite bound M (so these are slow-growth 
signals as well). These may again not have finite energy, but will have finite average 
power over any time interval. 

In both continuous-time and discrete-time there are many important Fourier trans
form pairs and Fourier transform properties developed and tabulated in basic texts 
on signals and systems (see, for example, Chapters 4 and 5 of Oppenheim and Will-
sky). For convenience, we include here a brief table of DTFT pairs. Other pairs 
are easily derived from these by applying various DTFT properties. (Note that the 
δ’s in the left column denote unit samples, while those in the right column are unit 
impulses!) 
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DT Signal DTFT for − π < Ω ≤ π←→ 

δ[n] 1←→ 

δ[n − n0] ←→ e−jΩn0 

1 (for all n) 2πδ(Ω) ←→ 

ejΩ0n (−π < Ω0 ≤ π) 2πδ(Ω − Ω0)←→ 

1 
a n u[n] , a < 1| | ←→ 

1 − ae−jΩ 

1 
u[n] + πδ(Ω) 

sinΩcn 

←→ 
{ 1 −

1,

e−j

−
Ω 

Ωc < Ω < Ωc 

πn 
←→ 

0, otherwise 

1, −M ≤ n ≤ M 
} 

sin[Ω(2M + 1)/2] 
0, otherwise 

←→ 
sin(Ω/2) 

In general it is important and useful to be fluent in deriving and utilizing the 
main transform pairs and properties. In the following subsection we discuss a 
particular property, Parseval’s identity, which is of particular significance in our 
later discussion. 

There are, of course, other classes of signals that are of interest to us in applications, 
for instance growing one-sided exponentials. To deal with such signals, we utilize 
Z-transforms in discrete-time and Laplace transforms in continuous-time. 

2.3.2 Parseval’s Identity, Energy Spectral Density, Deterministic Autocorrelation 

An important property of the Fourier transform is Parseval’s identity for ℓ2 signals. 
For discrete time, this identity takes the general form 

∞
1 

∫∑ 
x[n]y∗[n] = X(ejΩ)Y ∗(ejΩ) dΩ (2.34) 

2π <2π> n=−∞ 

and for continuous time, 
∫ ∞ 1 

∫ ∞ 

x(t)y∗(t)dt = X(jω)Y ∗(jω) dω (2.35) 
2π−∞ −∞ 

where the ∗ denotes the complex conjugate. Specializing to the case where y[n] = 
x[n] or y(t) = x(t), we obtain 

∞
2 1 

∫∑ 
|x[n]| =

2π <2π> 
|X(ejΩ)| 2 dΩ (2.36) 

n=−∞ 
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� y[n]x[n] � H(ejΩ) 

� 

� 

ΩΩ0−Ω0 

H(ejΩ) 
1 

�Δ ��Δ� 

FIGURE 2.3 Ideal bandpass filter. 

∫ ∞ 1 
∫ ∞ 

|x(t)|2 =
2π 

|X(jω)|2 dω (2.37) 
−∞ −∞ 

Parseval’s identity allows us to evaluate the energy of a signal by integrating the 
squared magnitude of its transform. What the identity tells us, in effect, is that 
the energy of a signal equals the energy of its transform (scaled by 1/2π). 

The real, even, nonnegative function of Ω defined by 

Sxx(ejΩ) = |X(ejΩ)|2 (2.38) 

or 
Sxx(jω) = |X(jω)| 2 (2.39) 

is referred to as the energy spectral density (ESD), because it describes how the 
energy of the signal is distributed over frequency. To appreciate this claim more 
concretely, for discrete-time, consider applying x[n] to the input of an ideal bandpass 
filter of frequency response H(ejΩ) that has narrow passbands of unit gain and 
width Δ centered at ±Ω0 as indicated in Figure 2.3. The energy of the output 
signal must then be the energy of x[n] that is contained in the passbands of the 
filter. To calculate the energy of the output signal, note that this output y[n] has 
the transform 

Y (ejΩ) = H(ejΩ)X(ejΩ) (2.40) 

Consequently the output energy, by Parseval’s identity, is given by 

jΩ)

∞
| |2 

2

1 
π 

∫ 

<2π> 
|Y (e |2 dΩ

∑ 
y[n] = 

n=−∞ 

1 
∫ 

= Sxx(ejΩ) dΩ (2.41) 
2π passband 

Thus the energy of x[n] in any frequency band is given by integrating Sxx(ejΩ) over 
that band (and scaling by 1/2π). In other words, the energy density of x[n] as a 
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function of Ω is Sxx(Ω)/(2π) per radian. An exactly analogous discussion can be 
carried out for continuous-time signals. 

Since the ESD Sxx(ejΩ) is a real function of Ω, an alternate notation for it could 
perhaps be Exx(Ω), for instance. However, we use the notation Sxx(ejΩ) in order 
to make explicit that it is the squared magnitude of X(ejΩ) and also the fact that 
the ESD for a DT signal is periodic with period 2π. 

Given the role of the magnitude squared of the Fourier transform in Parseval’s 
identity, it is interesting to consider what signal it is the Fourier transform of. The 
answer for DT follows on recognizing that with x[n] real-valued 

|X(ejΩ)|2 = X(ejΩ)X(e−jΩ) (2.42) 

and that X(e−jΩ) is the transform of the time-reversed signal, x[−k]. Thus, since 
multiplication of transforms in the frequency domain corresponds to convolution of 
signals in the time domain, we have 

∞
Sxx(ejΩ) = |X(ejΩ)|2 ⇐⇒ x[k] ∗ x[−k] = 

∑ 
x[n + k]x[n] = Rxx[k] (2.43) 

n=−∞ 

The function Rxx[k] = x[k]∗x[−k] is referred to as the deterministic autocorrelation 
function of the signal x[n], and we have just established that the transform of the 
deterministic autocorrelation function is the energy spectral density Sxx(ejΩ). A 
basic Fourier transform property tells us that Rxx[0] — which is the signal energy ∑∞ 

x2[n] — is the area under the Fourier transform of Rxx[k], scaled by 1/(2π), n=−∞
namely the scaled area under Sxx(ejΩ) = |X(ejΩ)|2; this is just Parseval’s identity, 
of course. 

The deterministic autocorrelation function measures how alike a signal and its time-
shifted version are, in a total-squared-error sense. More specifically, in discrete-time 
the total squared error between the signal and its time-shifted version is given by 

∞ ∞
2

∑ 
(x[n + k] − x[n])2 = 

∑ 
|x[n + k]|

n=−∞ n=−∞ 

∞
2 

∞
+ 

∑ 
|x[n]| − 2 

∑ 
x[n + k]x[n] 

n=−∞ n=−∞ 

= 2(Rxx[0] − Rxx[k]) (2.44) 

Since the total squared error is always nonnegative, it follows that Rxx[k] ≤ Rxx[0], 
and that the larger the deterministic autocorrelation Rxx[k] is, the closer the signal 
x[n] and its time-shifted version x[n + k] are. 

Corresponding results hold in continuous time, and in particular 
∫ ∞ 

Sxx(jω) = |X(jω)| 2 ⇐⇒ x(τ) ∗ x(−τ ) = 
−∞ 

x(t + τ )x(t)dt = Rxx(τ) (2.45) 

where Rxx(t) is the deterministic autocorrelation function of x(t). 

©Alan V. Oppenheim and George C. Verghese, 2010 c



Section 2.4 The Bilateral Laplace and Z-Transforms 35 

2.4 THE BILATERAL LAPLACE AND Z-TRANSFORMS 

The Laplace and Z-transforms can be thought of as extensions of Fourier transforms 
and are useful for a variety of reasons. They permit a transform treatment of certain 
classes of signals for which the Fourier transform does not converge. They also 
augment our understanding of Fourier transforms by moving us into the complex 
plane, where the theory of complex functions can be applied. We begin in Section 
2.4.1 with a detailed review of the bilateral Z-transform. In Section 2.4.3 we give 
a briefer review of the bilateral Laplace transform, paralleling the discussion in 
Section 2.4.1. 

2.4.1 The Bilateral Z-Transform 

The bilateral Z-transform is defined as: 

∞
X(z) = Z{x[n]} = 

∑ 
x[n]z−n (2.46) 

n=−∞ 

Here z is a complex variable, which we can also represent in polar form as 

z = rejΩ , r ≥ 0 , −π < Ω ≤ π (2.47) 

so 
∞

X(z) = 
∑ 

x[n]r−n e−jΩn (2.48) 
n=−∞ 

The DTFT corresponds to fixing r = 1, in which case z takes values on the unit 
circle. However there are many useful signals for which the infinite sum does not 
converge (even in the sense of generalized functions) for z confined to the unit 
circle. The term z−n in the definition of the Z-transform introduces a factor r−n 

into the infinite sum, which permits the sum to converge (provided r is appropriately 
restricted) for interesting classes of signals, many of which do not have discrete-time 
Fourier transforms. 

More specifically, note from (2.48) that X(z) can be viewed as the DTFT of x[n]r−n . 
If r > 1, then r−n decays geometrically for positive n and grows geometrically for 
negative n. For 0 < r < 1, the opposite happens. Consequently, there are many 
sequences for which x[n] is not absolutely summable but x[n]r−n is, for some range 
of values of r. 

For example, consider x1[n] = anu[n]. If a > 1, this sequence does not have a | |
DTFT. However, for any a, x[n]r−n is absolutely summable provided r > a . In | |
particular, for example, 

X1(z) = 1 + az−1 + a 2 z−2 + (2.49) · · · 
1 

= , z = r > a (2.50) 
1 − az−1 

| | | | 
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As a second example, consider x2[n] = −anu[−n − 1]. This signal does not have a 
DTFT if a < 1. However, provided r < a ,| | | |

X2(z) = −a−1 z − a−2 z 2 − · · · (2.51) 

= , z = r < a (2.52) 
1 
−
− 
a

a

−

−

1z 
1z 

| | | | 
1 

= , z = r < a (2.53) 
1 − az−1 

| | | | 

The Z-transforms of the two distinct signals x1[n] and x2[n] above get condensed 
to the same rational expressions, but for different regions of convergence. Hence 
the ROC is a critical part of the specification of the transform. 

When x[n] is a sum of left-sided and/or right-sided DT exponentials, with each 
term of the form illustrated in the examples above, then X(z) will be rational in z 
(or equivalently, in z−1): 

Q(z)
X(z) = (2.54) 

P (z) 

with Q(z) and P (z) being polynomials in z. 

Rational Z-transforms are typically depicted by a pole-zero plot in the z-plane, with 
the ROC appropriately indicated. This information uniquely specifies the signal, 
apart from a constant amplitude scaling. Note that there can be no poles in the 
ROC, since the transform is required to be finite in the ROC. Z-transforms are 
often written as ratios of polynomials in z−1 . However, the pole-zero plot in the 
z-plane refers to the polynomials in z. Also note that if poles or zeros at z = ∞
are counted, then any ratio of polynomials always has exactly the same number of 
poles as zeros. 

Region of Convergence. To understand the complex-function properties of the 
Z-transform, we split the infinite sum that defines it into non-negative-time and 
negative-time portions: The non-negative-time or one-sided Z-transform is defined 
by 

∞∑ 
x[n]z−n (2.55) 

n=0 

and is a power series in z−1 . The convergence of the finite sum 
∑N

n=0 x[n]z−n as 
N → ∞ is governed by the radius of convergence R1 ≥ 0, of the power series, i.e. 
the series converges for each z such that z > R1. The resulting function of z is | |
an analytic function in this region, i.e., has a well-defined derivative with respect 
to the complex variable z at each point in this region, which is what gives the 
function its nice properties. The infinite sum diverges for z < R1. The behavior | |
of the sum on the circle z = R1 requires closer examination, and depends on the | |
particular series; the series may converge (but may not converge absolutely) at all 
points, some points, or no points on this circle. The region z > R1 is referred to | |
as the region of convergence (ROC) of the power series. 

c©Alan V. Oppenheim and George C. Verghese, 2010 



Section 2.4 The Bilateral Laplace and Z-Transforms 37 

Next consider the negative-time part: 

−1 ∞
m

∑ 
x[n]z−n = 

∑ 
x[−m]z (2.56) 

n=−∞ m=1 

which is a power series in z, and has a radius of convergence R2. The series 
converges (absolutely) for z < R2, which constitutes its ROC; the series is an | |
analytic function in this region. The sum diverges for z > R2; the behavior for | |
the circle z = R2 takes closer examination, and depends on the particular series; | |
the series may converge (but may not converge absolutely) at all points, some 
points, or no points on this circle. If R1 < R2 then the Z-transform converges 
(absolutely) for R1 < z < R2; this annular region is its ROC, and is denoted by | |
RX . The transform is analytic in this region. The sum that defines the transform 
diverges for |z| < R1 and |z| > R2. If R1 > R2, then the Z-transform does not 
exist (e.g., for x[n] = 0.5nu[−n − 1] + 2nu[n]). If R1 = R2, then the transform 
may exist in a technical sense, but is not useful as a Z-transform because it has no 
ROC. However, if R1 = R2 = 1, then we may still be able to compute and use a 
DTFT (e.g., for x[n] = 3, all n; or for x[n] = (sin ω0n)/(πn)). 

Relating the ROC to Signal Properties. For an absolutely summable signal 
(such as the impulse response of a BIBO-stable system), i.e., an ℓ1-signal, the unit 
circle must lie in the ROC or must be a boundary of the ROC. Conversely, we can 
conclude that a signal is ℓ1 if the ROC contains the unit circle because the transform 
converges absolutely in its ROC. If the unit circle constitutes a boundary of the 
ROC, then further analysis is generally needed to determine if the signal is ℓ1. 
Rational transforms always have a pole on the boundary of the ROC, as elaborated 
on below, so if the unit circle is on the boundary of the ROC of a rational transform, 
then there is a pole on the unit circle, and the signal cannot be ℓ1. 

For a right-sided signal it is the case that R2 = ∞, i.e., the ROC extends everywhere 
in the complex plane outside the circle of radius R1, up to (and perhaps including) 
∞. The ROC includes ∞ if the signal is 0 for negative time. 

We can state a converse result if, for example, we know the signal comprises only 
sums of one-sided exponentials, of the form obtained when inverse transforming a 
rational transform. In this case, if R2 = ∞, then the signal must be right-sided; if 
the ROC includes ∞, then the signal must be causal, i.e., zero for n < 0. 

For a left-sided signal, one has R1 = 0, i.e., the ROC extends inwards from the 
circle of radius R2, up to (and perhaps including) 0. The ROC includes 0 if the 
signal is 0 for positive time. 

In the case of signals that are sums of one-sided exponentials, we have a converse: 
if R1 = 0, then the signal must be left-sided; if the ROC includes 0, then the signal 
must be anti-causal, i.e., zero for n > 0. 

It is also important to note that the ROC cannot contain poles of the Z-transform, 
because poles are values of z where the transform has infinite magnitude, while 
the ROC comprises values of z where the transform converges. For signals with 
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rational transforms, one can use the fact that such signals are sums of one-sided 
exponentials to show that the possible boundaries of the ROC are in fact precisely 
determined by the locations of the poles. Specifically: 

(a)	 the outer bounding circle of the ROC in the rational case contains a pole 
and/or has radius ∞. If the outer bounding circle is at infinity, then (as we 
have already noted) the signal is right-sided, and is in fact causal if there is 
no pole at ∞; 

(b)	 the inner bounding circle of the ROC in the rational case contains a pole 
and/or has radius 0. If the inner bounding circle reduces to the point 0, then 
(as we have already noted) the signal is left-sided, and is in fact anti-causal if 
there is no pole at 0. 

2.4.2 The Inverse Z-Transform 

One way to invert a rational Z-transform is through the use of a partial fraction 
expansion, then either directly “recognizeing” the inverse transform of each term 
in the partial fraction representation, or expanding the term in a power series that 
converges for z in the specified ROC. For example, a term of the form 

1 
1 − az−1	

(2.57) 

can be expanded in a power series in az−1 if |a| < |z| for z in the ROC, and 
expanded in a power series in a−1z if |a| > |z| for z in the ROC. Carrying out this 
procedure for each term in a partial fraction expansion, we find that the signal x[n] 
is a sum of left-sided and/or right-sided exponentials. For non-rational transforms, 
where there may not be a partial fraction expansion to simplify the process, it is 
still reasonable to attempt the inverse transformation by expansion into a power 
series consistent with the given ROC. 

Although we will generally use partial fraction or power series methods to invert Z-
transforms, there is an explicit formula that is similar to that of the inverse DTFT, 
specifically, 

x[n] = X(z)z n dω (2.58) 
jω 2

1 
π 

∫ 

−

π

π 

∣∣∣
z=re

where the constant r is chosen to place z in the ROC, RX . This is not the most 
general inversion formula, but is sufficient for us, and shows that x[n] is expressed 
as a weighted combination of discrete-time exponentials. 

As is the case for Fourier transforms, there are many useful Z-transform pairs and 
properties developed and tabulated in basic texts on signals and systems. Appro
priate use of transform pairs and properties is often the basis for obtaining the 
Z-transform or the inverse Z-transform of many other signals. 
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2.4.3 The Bilateral Laplace Transform 

As with the Z-transform, the Laplace transform is introduced in part to handle 
important classes of signals that don’t have CTFT’s, but also enhances our under
standing of the CTFT. The definition of the Laplace transform is 

∫ ∞ 

X(s) = x(t) e−st dt (2.59) 
−∞ 

where s is a complex variable, s = σ + jω. The Laplace transform can thus be 
thought of as the CTFT of x(t) e−σt . With σ appropriately chosen, the integral 
(2.59) can exist even for signals that have no CTFT. 

The development of the Laplace transform parallels closely that of the Z-transform 
in the preceding section, but with eσ playing the role that r did in Section 2.4.1. 
The (interior of the) set of values of s for which the defining integral converges, 
as the limits on the integral approach ±∞, comprises the region of convergence 
(ROC) for the transform X(s). The ROC is now determined by the minimum and 
maximum allowable values of σ, say σ1 and σ2 respectively. We refer to σ1, σ2 as the 
abscissa of convergence. The corresponding ROC is a vertical strip between σ1 and 
σ2 in the complex plane, σ1 < Re(s) < σ2. Equation (2.59) converges absolutely 
within the ROC; convergence at the left and right bounding vertical lines of the 
strip has to be separately examined. Furthermore, the transform is analytic (i.e., 
differentiable as a complex function) throughout the ROC. The strip may extend 
to σ1 = −∞ on the left, and to σ2 = +∞ on the right. If the strip collapses to a 
line (so that the ROC vanishes), then the Laplace transform is not useful (except 
if the line happens to be the jω axis, in which case a CTFT analysis may perhaps 
be recovered). 

For example, consider x1(t) = eatu(t); the integral in (2.59) evaluates to X1(s) = 
1/(s − a) provided Re{s} > a. On the other hand, for x2(t) = −eatu(−t), the 
integral in (2.59) evaluates to X2(s) = 1/(s − a) provided Re{s} < a. As with the 
Z-transform, note that the expressions for the transforms above are identical; they 
are distinguished by their distinct regions of convergence. 

The ROC may be related to properties of the signal. For example, for absolutely 
integrable signals, also referred to as L1 signals, the integrand in the definition of 
the Laplace transform is absolutely integrable on the jω axis, so the jω axis is in 
the ROC or on its boundary. In the other direction, if the jω axis is strictly in 
the ROC, then the signal is L1, because the integral converges absolutely in the 
ROC. Recall that a system has an L1 impulse response if and only if the system is 
BIBO stable, so the result here is relevant to discussions of stability: if the jω axis 
is strictly in the ROC of the system function, then the system is BIBO stable. 

For right-sided signals, the ROC is some right-half-plane (i.e. all s such that 
Re{s} > σ1). Thus the system function of a causal system will have an ROC 
that is some right-half-plane. For left-sided signals, the ROC is some left-half
plane. For signals with rational transforms, the ROC contains no poles, and the 
boundaries of the ROC will have poles. Since the location of the ROC of a transfer 
function relative to the imaginary axis relates to BIBO stability, and since the poles 
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identify the boundaries of the ROC, the poles relate to stability. In particular, a 
system with a right-sided impulse response (e.g., a causal system) will be stable 
if and only if all its poles are in the left-half-plane, because this is precisely the 
condition that allows the ROC to contain the imaginary axis. Also note that a 
signal with a rational transform is causal if and only if it is right-sided. 

A further property worth recalling is connected to the fact that exponentials are 
eigenfunctions of LTI systems. If we denote the Laplace transform of the impulse 
response h(t) of an LTI system by H(s), referred to as the system function or 
transfer function, then es0t at the input of the system yields H(s0) es0t at the 
output, provided s0 is in the ROC of the transfer function. 

2.5 DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS 

Many modern systems for applications such as communication, entertainment, nav
igation and control are a combination of continuous-time and discrete-time subsys
tems, exploiting the inherent properties and advantages of each. In particular, the 
discrete-time processing of continuous-time signals is common in such applications, 
and we describe the essential ideas behind such processing here. As with the earlier 
sections, we assume that this discussion is primarily a review of familiar material, 
included here to establish notation and for convenient reference from later chapters 
in this text. In this section, and throughout this text, we will often be relating the 
CTFT of a continuous-time signal and the DTFT of a discrete-time signal obtained 
from samples of the continuous-time signal. We will use the subscripts c and d 
when necessary to help keep clear which signals are CT and which are DT. 

2.5.1 Basic Structure for DT Processing of CT Signals 

The basic structure is shown in Figure 2.4. As indicated, the processing involves 
continuous-to-discrete or C/D conversion to obtain a sequence of samples of the CT 
signal, then DT filtering to produce a sequence of samples of the desired CT output, 
then discrete-to-continuous or D/C conversion to reconstruct this desired CT signal 
from the sequence of samples. We will often restrict ourselves to conditions such 
that the overall system in Figure 2.4 is equivalent to an LTI continuous-time system. 
The necessary conditions for this typically include restricting the DT filtering to 
be LTI processing by a system with frequency response Hd(e

jΩ), and also requiring 
that the input xc(t) be appropriately bandlimited. To satisfy the latter requirement, 
it is typical to precede the structure in the figure by a filter whose purpose is to 
ensure that xc(t) is essentially bandlimited. While this filter is often referred to as 
an anti-aliasing filter, we can often allow some aliasing in the C/D conversion if the 
discrete-time system removes the aliased components; the overall system can then 
still be a CT LTI system. 

The ideal C/D converter in Figure 2.4 has as its output a sequence of samples of 
xc(t) with a specified sampling interval T1, so that the DT signal is xd[n] = xc(nT1). 
Conceptually, therefore, the ideal C/D converter is straightforward. A practical 
analog-to-digital (or A/D) converter also quantizes the signal to one of a finite set 
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of output levels. However, in this text we do not consider the additional effects of 
quantization. 

Hc(jω) 

xc(t)� C/D 

� 

�x[n] 
Hd(e

jΩ) �y[n] 
D/C 

� 

�yc(t) 

T1 T2 

FIGURE 2.4 DT processing of CT signals. 

In the frequency domain, the CTFT of xc(t) and the DTFT of xd[n] are related by 

Xd 
(
ejΩ

) 
=

1 ∑ 
Xc 

( 

jω − jk 
2π 

) 

. (2.60) 
T1 T1 

∣∣∣∣∣
Ω=ωT1 k 

When xc(t) is sufficiently bandlimited so that 

π 
Xc(jω) = 0 , ω| | ≥ 

T1 
(2.61) 

then (2.60) can be rewritten as 

1 
Xd 

(
ejΩ

)
∣∣∣∣∣
Ω=ωT1 

= 
T1 

Xc(jω) |ω| < π/T1 (2.62a) 

or equivalently 

Xd 
(
ejΩ

) 
= 

T

1 

1 
Xc 

( 

j
T

Ω 

1 

) 

|Ω| < π . (2.62b) 

Note that Xd(e
jΩ) is extended periodically outside the interval |Ω| < π. The fact 

that the above equalities hold under the condition (2.61) is the content of the 
sampling theorem. 

The ideal D/C converter in Figure 2.4 is defined through the interpolation relation 

yc(t) = 
∑ 

yd[n]
sin (π (t − nT2) /T2) 

(2.63) 
π(t − nT2)/T2 n 

which shows that yc(nT2) = yd[n]. Since each term in the above sum is bandlimited 
to ω < π/T2, the CT signal yc(t) is also bandlimited to this frequency range, so this | |
D/C converter is more completely referred to as the ideal bandlimited interpolating 
converter. (The C/D converter in Figure 2.4, under the assumption (2.61), is 
similarly characterized by the fact that the CT signal xc(t) is the ideal bandlimited 
interpolation of the DT sequence xd[n].) 
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Because yc(t) is bandlimited and yc(nT2) = yd[n], analogous relations to (2.62) hold 
between the DTFT of yd[n] and the CTFT of yc(t): 

Yd 
(
ejΩ

) 
= 

T

1 

2 
Yc(jω) |ω| < π/T2 (2.64a) 

∣∣∣∣∣
Ω=ωT2 

or equivalently 

Yd 
(
ejΩ

) 
=

1 
( 

Ω 
) 

T2 
Yc j

T2 
|Ω| < π (2.64b) 

One conceptual representation of the ideal D/C converter is given in Figure 2.5. 
This figure interprets (2.63) to be the result of evenly spacing a sequence of impulses 
at intervals of T2 — the reconstruction interval — with impulse strengths given by 
the yd[n], then filtering the result by an ideal low-pass filter L(jω) of amplitude T2 

in the passband ω < π/T2. This operation produces the bandlimited continuous| |
time signal yc(t) that interpolates the specified sequence values yd[n] at the instants 
t = nT2, i.e., yc(nT2) = yd[n]. 

D/C 

�yd[n] δ[n − k] → 
δ(t − kT2) 

�yp(t) 
L(jω) �yc(t) 

FIGURE 2.5 Conceptual representation of processes that yield ideal D/C conversion, 
interpolating a DT sequence into a bandlimited CT signal using reconstruction 
interval T2. 

2.5.2 DT Filtering, and Overall CT Response 

Suppose from now on, unless stated otherwise, that T1 = T2 = T . If in Figure 2.4 
the bandlimiting constraint of (2.61) is satisfied, and if we set yd[n] = xd[n], then 
yc(t) = xc(t). More generally, when the DT system in Figure 2.4 is an LTI DT 
filter with frequency response Hd 

(
ejΩ

)
, so 

Yd(e
jΩ) = Hd(e

jΩ)Xd(e
jΩ) (2.65) 

and provided any aliased components of xc(t) are eliminated by Hd(e
jΩ), then 

assembling (2.62), (2.64) and (2.65) yields: 

Yc(jω) = Hd 
(
ejΩ

)
Xc(jω) |ω| < π/T (2.66) 

∣∣∣∣∣
Ω=ωT 
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The action of the overall system is thus equivalent to that of a CT filter whose 
frequency response is 

Hc(jω) = Hd 
(
ejΩ

) 
|ω| < π/T . (2.67) 

∣∣∣∣∣
Ω=ωT 

In other words, under the bandlimiting and sampling rate constraints mentioned 
above, the overall system behaves as an LTI CT filter, and the response of this filter 
is related to that of the embedded DT filter through a simple frequency scaling. 
The sampling rate can be lower than the Nyquist rate, provided that the DT filter 
eliminates any aliased components. 

If we wish to use the system in Figure 2.4 to implement a CT LTI filter with 
frequency response Hc(jω), we choose Hd 

(
ejΩ

) 
according to (2.67), provided that 

xc(t) is appropriately bandlimited. 

If Hc(jω) = 0 for |ω| ≥ π/T , then (2.67) also corresponds to the following relation 
between the DT and CT impulse responses: 

hd[n] = T hc(nT ) (2.68) 

The DT filter is therefore termed an impulse-invariant version of the CT filter. 
When xc(t) and Hd(e

jΩ) are not sufficiently bandlimited to avoid aliased compo
nents in yd[n], then the overall system in Figure 2.4 is no longer time invariant. It 
is, however, still linear since it is a cascade of linear subsystems. 

The following two important examples illustrate the use of (2.67) as well as Figure 
2.4, both for DT processing of CT signals and for interpretation of an important DT 
system, whether or not this system is explicitly used in the context of processing 
CT signals. 

EXAMPLE 2.3 Digital Differentiator 

In this example we wish to implement a CT differentiator using a DT system in 
dxc(t)the configuration of Figure 2.4 . We need to choose Hd 

(
ejΩ

) 
so that yc(t) = dt , 

assuming that xc(t) is bandlimited to π/T . The desired overall CT frequency 
response is therefore 

Yc(jω)
Hc(jω) = = jω (2.69) 

Xc(jω) 

Consequently, using (2.67) we choose Hd(e
jΩ) such that 

Hd 
(
ejΩ

)
∣∣∣∣∣
Ω=ωT 

= jω |ω| < 
T

π 
(2.70a) 

or equivalently 

Hd 
(
ejΩ

) 
= jΩ/T |Ω| < π (2.70b) 

A discrete-time system with the frequency response in (2.70b) is commonly referred 
to as a digital differentiator. To understand the relation between the input xd[n] 
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and output yd[n] of the digital differentiator, note that yc(t) — which is the ban
dlimited interpolation of yd[n] — is the derivative of xc(t), and xc(t) in turn is the 
bandlimited interpolation of xd[n]. It follows that yd[n] can, in effect, be thought 
of as the result of sampling the derivative of the bandlimited interpolation of xd[n]. 

EXAMPLE 2.4 Half-Sample Delay 

It often arises in designing discrete-time systems that a phase factor of the form 
e−jαΩ , |Ω| < π, is included or required. When α is an integer, this has a straight
forward interpretation, since it corresponds simply to an integer shift by α of the 
time sequence. 

When α is not an integer, the interpretation is not as straightforward, since a 
DT sequence can only be directly shifted by integer amounts. In this example we 
consider the case of α = 1/2, referred to as a half-sample delay. To provide an 
interpretation, we consider the implications of choosing the DT system in Figure 
2.4 to have frequency response 

Hd(e
jΩ) = e−jΩ/2 |Ω| < π (2.71) 

Whether or not xd[n] explicitly arose by sampling a CT signal, we can associate with 
xd[n] its bandlimited interpolation xc(t) for any specified sampling or reconstruction 
interval T . Similarly, we can associate with yd[n] its bandlimited interpolation yc(t) 
using the reconstruction interval T . With Hd 

(
ejΩ

) 
given by (2.71), the equivalent 

CT frequency response relating yc(t) to xc(t) is 

Hc(jω) = e−jωT/2 (2.72) 

representing a time delay of T/2, which is half the sample spacing; consequently, 
yc(t) = xc(t − T/2). We therefore conclude that for a DT system with frequency 
response given by (2.71), the DT output yd[n] corresponds to samples of the half-
sample delay of the bandlimited interpolation of the input sequence xd[n]. Note 
that in this interpretation the choice for the value of T is immaterial. (Even if 
xd[n] had been the result of regular sampling of a CT signal, that specific sampling 
period is not required in the interpretation above.) 

The preceding interpretation allows us to find the unit-sample (or impulse) response 
of the half-sample delay system through a simple argument. If xd[n] = δ[n], then 
xc(t) must be the bandlimited interpolation of this (with some T that we could 
have specified to take any particular value), so 

sin(πt/T ) 
xc(t) = (2.73) 

πt/T 

and therefore 
sin

(
π(t − (T/2))/T 

) 

yc(t) = (2.74) 
π(t − (T/2))/T 
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which shows that the desired unit-sample response is 

sin
(
π(n − (1/2))

) 

yd[n] = hd[n] = (2.75) 
π(n − (1/2)) 

This discussion of a half-sample delay also generalizes in a straightforward way to 
any integer or non-integer choice for the value of α. 

2.5.3 Non-Ideal D/C converters 

In Section 2.5.1 we defined the ideal D/C converter through the bandlimited in
terpolation formula (2.63); see also Figure 2.5, which corresponds to processing a 
train of impulses with strengths equal to the sequence values yd[n] through an ideal 
low-pass filter. A more general class of D/C converters, which includes the ideal 
converter as a particular case, creates a CT signal yc(t) from a DT signal yd[n] 
according to the following: 

∞
yc(t) = 

∑ 
yd[n] p(t − nT ) (2.76) 

n=−∞ 

where p(t) is some selected basic pulse shape and T is the reconstruction interval or 
pulse repetition interval. This too can be seen as the result of processing an impulse 
train of sequence values through a filter, but a filter that has impulse response p(t) 
rather than that of the ideal low-pass filter. The CT signal yc(t) is thus constructed 
by adding together shifted and scaled versions of the basic pulse shape; the number 
yd[n] scales p(t − nT ), which is the basic pulse delayed by nT . Note that the ideal 
bandlimited interpolating converter of (2.63) is obtained by choosing 

sin(πt/T ) 
p(t) = (2.77) 

(πt/T ) 

We shall be talking in more detail in Chapter 12 about the interpretation of (2.76) 
as pulse amplitude modulation (PAM) for communicating DT information over a 
CT channel. 

The relationship (2.76) can also be described quite simply in the frequency domain. 
Taking the CTFT of both sides, denoting the CTFT of p(t) by P (jω), and using the 
fact that delaying a signal by t0 in the time domain corresponds to multiplication 
by e−jωt0 in the frequency domain, we get 

∞
Yc(jω) = 

( ∑ 
yd[n] e−jnωT 

) 
P (jω) 

n=−∞ 

= Yd(e
jΩ) P (jω) (2.78) 

∣∣∣∣∣
Ω=ωT 
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FIGURE 2.6 A centered zero-order hold (ZOH) 

In the particular case where p(t) is the sinc pulse in (2.77), with transform P (jω) 
corresponding to an ideal low-pass filter of amplitude T for ω < π/T and 0 outside | |
this band, we recover the relation (2.64). 

In practice an ideal low-pass filter can only be approximated, with the accuracy 
of the approximation closely related to cost of implementation. A commonly used 
simple approximation is the (centered) zero-order hold (ZOH), specified by the 
choice 

p(t) = 

{ 
1 for |t| < (T/2) 

(2.79) 
0 elsewhere 

This D/C converter holds the value of the DT signal at time n, namely the value 
yd[n], for an interval of length T centered at nT in the CT domain, as illustrated 
in Figure 2.6. Such ZOH converters are very commonly used. Another common 
choice is a centered first-order hold (FOH), for which p(t) is triangular as shown in 
Figure 2.7. Use of the FOH represents linear interpolation between the sequence 
values. 

FIGURE 2.7 A centered first order hold (FOH) 
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C H A P T E R 3 

Transform Representation of Signals 
and LTI Systems 

As you have seen in your prior studies of signals and systems, and as emphasized 
in the review in Chapter 2, transforms play a central role in characterizing and 
representing signals and LTI systems in both continuous and discrete time. In 
this chapter we discuss some specific aspects of transform representations that will 
play an important role in later chapters. These aspects include the interpreta
tion of Fourier transform phase through the concept of group delay, and methods 
— referred to as spectral factorization — for obtaining a Fourier representation 
(magnitude and phase) when only the Fourier transform magnitude is known. 

3.1 FOURIER TRANSFORM MAGNITUDE AND PHASE 

The Fourier transform of a signal or the frequency response of an LTI system is in 
general a complex-valued function. A magnitude-phase representation of a Fourier 
transform X(jω) takes the form 

X(jω) = |X(jω)|ej∠X(jω) . (3.1) 

In eq. (3.1), X(jω) denotes the (non-negative) magnitude and ∠X(jω) denotes | |
the (real-valued) phase. For example, if X(jω) is the sinc function, sin(ω)/ω, then 
|X(jω)| is the absolute value of this function, while ∠X(jω) is 0 in frequency ranges 
where the sinc is positive, and π in frequency ranges where the sinc is negative. An 
alternative representation is an amplitude-phase representation 

A(ω)ej∠AX(jω) (3.2) 

in which A(ω) = ±|X(jω)| is real but can be positive for some frequencies and 
negative for others. Correspondingly, ∠AX(jω) = ∠X(jω) when A(ω) = + X(jω) , 
and ∠AX(jω) = ∠X(jω) ± π when A(ω) = −|X(jω)|. 

| |
This representation is often 

preferred when its use can eliminate discontinuities of π radians in the phase as 
A(ω) changes sign. In the case of the sinc function above, for instance, we can pick 
A(ω) = sin(ω)/ω and ∠A = 0. It is generally convenient in the following discussion 
for us to assume that the transform under discussion has no zeros on the jω-axis, 
so that we can take A(ω) = |X(jω)| for all ω (or, if we wish, A(ω) = −|X(jω)| for 
all ω). A similar discussion applies also, of course, in discrete-time. 

In either a magnitude-phase representation or an amplitude-phase representation, 
the phase is ambiguous, as any integer multiple of 2π can be added at any frequency 
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without changing X(jω) in (3.1) or (3.2). A typical phase computation resolves 
this ambiguity by generating the phase modulo 2π, i.e., as the phase passes through 
+π it “wraps around” to −π (or from −π wraps around to +π). In Section 3.2 
we will find it convenient to resolve this ambiguity by choosing the phase to be 
a continuous function of frequency. This is referred to as the unwrapped phase, 
since the discontinuities at ±π are unwrapped to obtain a continuous phase curve. 
The unwrapped phase is obtained from ∠X(jω) by adding steps of height equal to 
±π or ±2π wherever needed, in order to produce a continuous function of ω. The 
steps of height ±π are added at points where X(jω) passes through 0, to absorb 
sign changes as needed; the steps of height ±2π are added wherever else is needed, 
invoking the fact that such steps make no difference to X(jω), as is evident from 
(3.1). We shall proceed as though ∠X(jω) is indeed continuous (and differentiable) 
at the points of interest, understanding that continuity can indeed be obtained in 
all cases of interest to us by adding in the appropriate steps of height ±π or ±2π. 

Typically, our intuition for the time-domain effects of frequency response magnitude 
or amplitude on a signal is rather well-developed. For example, if the Fourier 
transform magnitude is significantly attenuated at high frequencies, then we expect 
the signal to vary slowly and without sharp discontinuities. On the other hand, a 
signal in which the low frequencies are attenuated will tend to vary rapidly and 
without slowly varying trends. 

In contrast, visualizing the effect on a signal of the phase of the frequency response 
of a system is more subtle, but equally important. We begin the discussion by first 
considering several specific examples which are helpful in then considering the more 
general case. Throughout this discussion we will consider the system to be an all-
pass system with unity gain, i.e. the amplitude of the frequency response A(jω) = 1 
(continuous time) or A(ejΩ) = 1 (discrete time) so that we can focus entirely on the 
effect of the phase. The unwrapped phase associated with the frequency response 
will be denoted as ∠AH(jω) (continuous time) and ∠AH(ejΩ) (discrete time). 

EXAMPLE 3.1 Linear Phase 

Consider an all-pass system with frequency response 

H(jω) = e−jαω (3.3) 

i.e. in an amplitude/phase representation A(jω) = 1 and ∠AH(jω) = −αω. The 
unwrapped phase for this example is linear with respect to ω, with slope of −α. 
For input x(t) with Fourier transform X(jω), the Fourier transform of the output 
is Y (jω) = X(jω)e−jαω and correspondingly the output y(t) is x(t − α). In words, 
linear phase with a slope of −α corresponds to a time delay of α (or a time advance 
if α is negative). 

For a discrete time system with 

H(ejΩ) = e−jαΩ |Ω| < π (3.4) 

the phase is again linear with slope −α. When α is an integer, the time domain 
interpretation of the effect on an input sequence x[n] is again straightforward and is 
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a simple delay (α positive) or advance (α negative) of α . When α is not an integer, | |
the effect is still commonly referred to as “a delay of α”, but the interpretation is 
more subtle. If we think of x[n] as being the result of sampling a band-limited, 
continuous-time signal x(t) with sampling period T , the output y[n] will be the 
result of sampling the signal y(t) = x(t − αT ) with sampling period T . In fact we 
saw this result in Example 2.4 of chapter 2 for the specific case of a half-sample 
delay, i.e. α = 2

1 . 

EXAMPLE 3.2 Constant Phase Shift 

As a second example, we again consider an all-pass system with A(jω) = 1 and 
unwrapped phase 

for ω > 0
{ 

−φ0
∠AH(jω) = 

+φ0 for ω < 0 

as indicated in Figure 3.1 

+φ 
0 

ω 

-φ 
0 

FIGURE 3.1 Phase plot of all-pass system with constant phase shift, φ0. 

Note that the phase is required to be an odd function of ω if we assume that the 
system impulse response is real valued. In this example, we consider x(t) to be of 
the form 

x(t) = s(t) cos(ω0t + θ) (3.5) 

i.e. an amplitude-modulated signal at a carrier frequency of ω0. Consequently, 
X(jω) can be expressed as 

X(jω) = 
1 
S(jω − jω0)e

jθ +
1 
S(jω + jω0)e

−jθ (3.6) 
2 2 

where S(jω) denotes the Fourier transform of s(t). 

For this example, we also assume that S(jω) is bandlimited to ω < Δ, with Δ | |
sufficiently small so that the term S(jω − jω0)e

jθ is zero for ω < 0 and the term 
S(jω + jω0)e

−jθ is zero for ω > 0, i.e. that (ω0 − Δ) > 0. The associated spectrum 
of x(t) is depicted in Figure 3.2. 
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X(jω) 

ω
0

-ω 
0 

0

0 

½S(jω+jω )e-jθ ½S(jω-jω
0
)e+jθ 

ω 

ω -Δ ω +Δ
0 0

FIGURE 3.2 Spectrum of x(t) with s(t) narrowband 

With these assumptions on x(t), it is relatively straightforward to determine the 
output y(t). Specifically, the system frequency response H(jω) is 

e−jφ0
{ 

ω > 0 
H(jω) = +jφ0 

(3.7) 
e ω < 0 

Since the term S(jω − jω0)e
jθ in eq. (3.6) is non-zero only for ω > 0, it is simply 

multiplied by e−jφ, and similarly the term S(jω + jω0)e
−jθ is multiplied only by 

e+jφ. Consequently, the output frequency response, Y (jω), is given by 

Y (jω) = X(jω)H(jω) 

= 
1 
S(jω − jω0)e +jθe−jφ0 +

1 
S(jω + jω0)e

−jθe +jφ0 (3.8) 
2 2 

which we recognize as a simple phase shift by φ0 of the carrier in eq. (3.5), i.e. 
replacing θ in eq. (3.6) by θ − φ0. Consequently, 

y(t) = s(t) cos(ω0t + θ − φ0) (3.9) 

This change in phase of the carrier can also be expressed in terms of a time delay 
for the carrier by rewriting eq. (3.9) as 

[ ( 
φ0 

) ] 

y(t) = s(t) cos ω0 t − 
ω0 

+ θ (3.10) 

3.2 GROUP DELAY AND THE EFFECT OF NONLINEAR PHASE 

In Example 3.1, we saw that a phase characteristic that is linear with frequency 
corresponds in the time domain to a time shift. In this section we consider the 
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effect of a nonlinear phase characteristic. We again assume the system is an all-
pass system with frequency response 

H(jω) = A(jω)ej∠A[H(jω)] (3.11) 

with A(jω) = 1. A general nonlinear unwrapped phase characteristic is depicted in 
Figure 3.3 

∠ 
A 

ω 

+φ 
1 

-φ 
1 

-ω 
0 

+ω 
0 

FIGURE 3.3 Nonlinear Unwrapped Phase Characteristic 

As we did in Example 3.2, we again assume that x(t) is narrowband of the form of 
equation (3.5) and as depicted in Figure 3.2. We next assume that Δ in Figure 3.2 
is sufficiently small so that in the vicinity of ±ω0, ∠AH(jω) can be approximated 
sufficiently well by the zeroth and first order terms of a Taylor’s series expansion, 
i.e. [ 

d 
] 

∠AH(jω) ≈ ∠AH(jω0) + (ω − ω0) ∠AH(jω) (3.12) 
dω ω=ω0 

Defining τg(ω) as 
d 

τg(ω) = − ∠AH(jω) (3.13) 
dω 

our approximation to ∠AH(jω) in a small region around ω = ω0 is expressed as 

∠AH(jω) ≈ ∠AH(jω0) − (ω − ω0)τg (ω0) (3.14) 

Similarly in a small region around ω = −ω0, we make the approximation 

∠AH(jω) ≈ ∠AH(jω0) − (ω + ω0)τg(−ω0) (3.15) 

As we will see shortly, the quantity τg(ω) plays a key role in our interpretation of 
the effect on a signal of a nonlinear phase characteristic. 

With the Taylor’s series approximation of eqs. (3.14) and (3.15) and for input 
signals with frequency content for which the approximation is valid, we can replace 
Figure 3.3 with Figure 3.4. 
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0

slope = -τ
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+φ 
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g
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FIGURE 3.4 Taylor’s series approximation of nonlinear phase in the vicinity of ±ω0 

where 

−φ1 = ∠AH(jω0) 

and 

−φ0 = ∠AH(jω0) + ω0τg(ω0) 

Since for LTI systems in cascade, the frequency responses multiply and correspond
ingly the phases add, we can represent the all-pass frequency response H(jω) as 
the cascade of two all-pass systems, HI (jω) and HII (jω), with unwrapped phase 
as depicted in Figure 3.5. 

∠ 
A 
H 

I
(jω) 

H 
I
(jω) H (jω) 

II

x 
I
(t) x(t) x 

II
(t) 

+φ 
0 

ω 

-φ 
0 

ω 

slope = -τ
g
(ω

0
) 

∠ 
A 
H 

II
(jω) 

FIGURE 3.5 An all-pass system frequency response, H(jω), represented as the cas
cade of two all-pass systems, HI (jω) and HII (jω). 
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We recognize HI (jω) as corresponding to Example 3.2. Consequently, with x(t) 
narrowband, we have 

x(t) = s(t) cos(ω0t + θ) [ ( 
φ0 

) ] 

xI (t) = s(t) cos ω0 t − 
ω0 

+ θ (3.16) 

Next we recognize HII (jω) as corresponding to Example 3.1 with α = τg(ω0). 
Consequently, 

xII (t) = xI (t − τg (ω0)) (3.17) 

or equivalently 
[ ( 

φ0 + ω0τg(ω0) 
) ] 

xII (t) = s(t − τg (ω0)) cos ω0 t − 
ω0 

+ θ (3.18) 

Since, from Figure 3.4, we see that 

φ1 = φ0 + ω0τg(ω0) 

equation (3.18) can be rewritten as 
[ ( 

φ1 
) ] 

xII (t) = s(t − τg(ω0)) cos ω0 t − 
ω0 

+ θ (3.19a) 

or 

xII (t) = s(t − τg(ω0)) cos [ω0 (t − τp(ω0)) + θ] (3.19b) 

where τp, referred to as the phase delay, is defined as τp = ω
φ1

0 
. 

In summary, according to eqs. (3.18) and (3.19a), the time-domain effect of the 
nonlinear phase for the narrowband group of frequencies around the frequency ω0 is 
to delay the narrowband signal by the group delay, τg (ω0), and apply an additional 
phase shift of ω

φ1

0 
to the carrier. An equivalent, alternate interpretation is that the 

time-domain envelope of the frequency group is delayed by the group delay and the 
carrier is delayed by the phase delay. 

The discussion has been carried out thus far for narrowband signals. To extend the 
discussion to broadband signals, we need only recognize that any broadband signal 
can be viewed as a superposition of narrowband signals. This representation can 
in fact be developed formally by recognizing that the system in Figure 3.6 is an 
identity system, i.e. r(t) = x(t) as long as 

∞∑ 
Hi(jω) = 1 (3.20) 

i=0 

By choosing the filters Hi(jω) to satisfy eq. (3.20) and to be narrowband around 
center frequencies ωi, each of the output signals, yi(t), is a narrowband signal. 
Consequently the time-domain effect of the phase of G(jω) is to apply the group 
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G(jω) x(t) r(t) 

x(t) 

r(t) 

H 
0
(jω) G(jω) 

H 
i
(jω) G(jω) 

r 
i
(t) 

r 
0
(t) 

g
i
(t) 

g
0
(t) 

FIGURE 3.6 Continuous-time all-pass system with frequency response amplitude, 
phase and group delay as shown in Figure 3.7 

FIGURE 3.7 Magnitude, (nonlinear) phase, and group delay of an all-pass filter. 

delay and phase delay to each of the narrowband components (i.e. frequency groups) 
yi(t). If the group delay is different at the different center (i.e. carrier) frequencies 
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FIGURE 3.8 Impulse response for all-pass filter shown in Figure 3.7 

ωi, then the time domain effect is for different frequency groups to arrive at the 
output at different times. 

As an illustration of this effect, consider G(jω) in Figure 3.6 to be the continuous 
time all-pass system with frequency response amplitude, phase and group delay as 
shown in Figure 3.7. The corresponding impulse response is shown in Figure 3.8. 

If the phase of G(jω) were linear with frequency, the impulse response would simply 
be a delayed impulse, i.e. all the narrowband components would be delayed by the 
same amount and correspondingly would add up to a delayed impulse. However, as 
we see in Figure 3.7, the group delay is not constant since the phase is nonlinear. In 
particular, frequencies around 1200 Hz are delayed significantly more than around 
other frequencies. Correspondingly, in Figure 3.8 we see that frequency group 
appearing late in the impulse response. 

A second example is shown in Figure 3.9, in which G(jω) is again an all-pass 
system with nonlinear phase and consequently non-constant group delay. With this 
example, we would expect to see different delays in the frequency groups around 
ω = 2π 50, ω = 2π 100, and ω = 2π 300 with the group at ω = 2π 50 having · · · · 
the maximum delay and therefore appearing last in the impulse response. 

In both of these examples, the input is highly concentrated in time (i.e. an impulse) 
and the response is dispersed in time because of the non-constant group delay, i.e. 
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FIGURE 3.9 Phase, group delay, and impulse response for an all-pass system: (a) 
principal phase; (b) unwrapped phase; (c) group delay; (d) impulse response. (From 
Oppenheim and Willsky, Signals and Systems, Prentice Hall, 1997, Figure 6.5.) 
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the nonlinear phase. In general, the effect of nonlinear phase is referred to as disper
sion. In communication systems and many other application contexts even when 
a channel has a relatively constant frequency response magnitude characteristic, 
nonlinear phase can result in significant distortion and other negative consequences 
because of the resulting time dispersion. For this reason, it is often essential to 
incorporate phase equalization to compensate for non-constant group-delay. 

As a third example, we consider an all-pass system with phase and group delay as 
shown in Figure 3.101 . The input for this example is the touch-tone digit “five” 
which consists of two very narrowband tones at center frequencies 770 and 1336 
Hz. The time-domain signal and its two narrowband component signals are shown 
in Figure 3.11. 

FIGURE 3.10 Phase and group delay for all-pass filter for touch-tone signal example. 

The touch-tone signal is processed with multiple passes through the all-pass system 
of Figure 3.10. From the group delay plot, we expect that, in a single pass through 
the all-pass filter, the tone at 1336 Hz would be delayed by about 2.5 milliseconds 
relative to the tone at 770 Hz. After 200 passes, this would accumulate to a relative 
delay of about 0.5 seconds. 

In Figure 3.12, we show the result of multiple passes through filters and the accu
mulation of the delays. 

3.3 ALL-PASS AND MINIMUM-PHASE SYSTEMS 

Two particularly interesting classes of stable LTI systems are all-pass systems and 
minimum-phase systems. We define and discuss them in this section. 

1This example was developed by Prof. Bernard Lesieutre of the University of Wisconsin, 
Madison, when he taught the course with us at MIT 
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FIGURE 3.11 Touch-tone signal with its two narrowband component signals. 

3.3.1 All-Pass Systems 

An all-pass system is a stable system for which the magnitude of the frequency 
response is a constant, independent of frequency. The frequency response in the 
case of a continuous-time all-pass system is thus of the form 

Hap(jω) = Aej∠Hap(jω) , (3.21) 

where A is a constant, not varying with ω. Assuming the associated transfer func
tion H(s) is rational in s, it will correspondingly have the form 

M
s + a∗ 

kHap(s) = A . (3.22) 
s − ak

k=1 

Note that for each pole at s = +ak this has a zero at the mirror image across the 
∗imaginary axis, namely at s ; and if ak is complex and the system impulse = −a

response is real-valued, every complex pole and zero will occur in a conjugate pair, 
k

∗ and a zero at s = −ak. An example of a 
pole-zero diagram (in the s-plane) for a continuous-time all-pass system is shown 
so there will also be a pole at s +a= k 

in Figure (3.13). It is straightforward to verify that each of the M factors in (3.22) 
has unit magnitude for s = jω. 
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200 
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FIGURE 3.12 Effect of passing touchtone signal (Figure 3.11) through multiple passes 
of an all-pass filter and the accumulation of delays 

. 

For a discrete-time all-pass system, the frequency response is of the form 

Hap(e
jΩ) = Aej∠Hap(ejΩ ) .	 (3.23) 

If the associated transfer function H(z) is rational in z, it will have the form 

M

Hap(z) = A 
∏	 z−1 − b∗ 

k . (3.24) 
1 − bkz−1 

k=1 

The poles and zeros in this case occur at conjugate reciprocal locations: for each 
pole at z = bk there is a zero at z = 1/b∗k. A zero at z = 0 (and associated pole at ∞) 
is obtained by setting bk = ∞ in the corresponding factor above, after first dividing 
both the numerator and denominator by bk; this results in the corresponding factor 
in (3.24) being just z. Again, if the impulse response is real-valued then every 
complex pole and zeros will occur in a conjugate pair, so there will be a pole at 
z = b∗ 

k and a zero at z = 1/bk. An example of a pole-zero diagram (in the z 
plane) for a discrete-time all-pass system is shown in Figure (3.14). It is once more 
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Im 

1 

1 2 Re−2 −1 

−1 

FIGURE 3.13 Typical pole-zero plot for a continuous-time all-pass system. 

straightforward to verify that each of the M factors in (3.24) has unit magnitude 
for z = ejΩ . 

The phase of a continuous-time all-pass system will be the sum of the phases as
sociated with each of the M factors in (3.22). Assuming the system is causal (in 
addition to being stable), then for each of these factors Re{ak} < 0. With some 

∗ s+a
algebra it can be shown that each factor of the form k now has positive group s−ak 

delay at all frequencies, a property that we will make reference to shortly. Similarly, 
assuming causality (in addition to stability) for the discrete-time all-pass system 

z −1 −b ∗ 

in (3.24), each factor of the form k with bk < 1 contributes positive group 1−bk z−1 | |
delay at all frequencies (or zero group delay in the special case of bk = 0). Thus, 
in both continuous- and discrete-time, the frequency response of a causal all-pass 
system has constant magnitude and positive group delay at all frequencies. 

3.3.2 Minimum-Phase Systems 

In discrete-time, a stable system with a rational transfer function is called minimum-
phase if its poles and zeros are all inside the unit circle, i.e., have magnitude less 
than unity. This is equivalent in the DT case to the statement that the system is 
stable and causal, and has a stable and causal inverse. 

A similar definition applies in the case of a stable continuous-time system with a 
rational transfer function. Such a system is called minimum-phase if its poles and 
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FIGURE 3.14 Typical pole-zero plot for a discrete-time all-pass system. 

finite zeros are in the left-half-plane, i.e., have real parts that are negative. The 
system is therefore necessarily causal. If there are as many finite zeros as there are 
poles, then a CT minimum-phase system can equivalently be characterized by the 
statement that both the system and its inverse are stable and causal, just as we 
had in the DT case. However, it is quite possible — and indeed common — for 
a CT minimum-phase system to have fewer finite zeros than poles. (Note that a 
stable CT system must have all its poles at finite locations in the s-plane, since 
poles at infinity would imply that the output of the system involves derivatives of 
the input, which is incompatible with stability. Also, whereas in the DT case a zero 
at infinity is clearly outside the unit circle, in the CT case there is no way to tell 
if a zero at infinity is in the left half plane or not, so it should be no surprise that 
the CT definition involves only the finite zeros.) 

The use of the term ‘minimum phase’ is historical, and the property should perhaps 
more appropriately be termed ‘minimum group delay’, for reasons that we will bring 
out next. To do this, we need a fact that we shall shortly establish: that any causal 
and stable CT system with a rational transfer function Hcs(s) and no zeros on the 
imaginary axis can be represented as the cascade of a minimum-phase system and 
an all-pass system, 

Hcs(s) = Hmin(s)Hap(s) . (3.25) 

Similarly, in the DT case, provided the transfer function Hcs(z) has no zeros on 
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the unit circle, it can be written as 

Hcs(z) = Hmin(z)Hap(z) . (3.26) 

The frequency response magnitude of the all-pass factor is constant, independent 
of frequency, and for convenience let us set this constant to unity. Then from (3.25) 

|Hcs(jω)| =|Hmin(jω)| , and (3.27a) 

grpdelay[Hcs(jω)] =grpdelay[Hmin(jω)] + grpdelay[Hap(jω)] (3.27b) 

and similar equations hold in the DT case. 

We will see in the next section that the minimum-phase term in (3.25) or (3.26) 
can be uniquely determined from the magnitude of Hcs(jω), respectively Hcs(e

jΩ). 
Consequently all causal, stable systems with the same frequency response magni
tude differ only in the choice of the all-pass factor in (3.25) or (3.26). However, we 
have shown previously that all-pass factors must contribute positive group delay. 
Therefore we conclude from (3.27b) that among all causal, stable systems with the 
same CT frequency response magnitude, the one with no all-pass factors in (3.25) 
will have the minimum group delay. The same result holds in the DT case. 

We shall now demonstrate the validity of (3.25); the corresponding result in (3.26) 
for discrete time follows in a very similar manner. Consider a causal, stable transfer 
function Hcs(s) expressed in the form 

∏M1 (s − lk) 
∏M2 (s − ri)

Hcs(s) = A k=1 i=1 (3.28) ∏N 
)n=1(s − dn

where the dn’s are the poles of the system, the lk’s are the zeros in the left-half 
plane and the ri’s are the zeros in the right-half plane. Since Hcs(s) is stable and 
causal, all of the poles are in the left-half plane and would be associated with the 
factor Hmin(s) in (3.25), as would be all of the zeros lk. We next represent the 
right-half-plane zeros as 

M2 M2 M2∏ ∏ ∏ (s − ri)
(s − ri) = (s + ri)

(s + ri) 
(3.29) 

i=1 i=1 i=1 

Since Re{ri} is positive, the first factor in (3.29) represents left-half-plane zeros. 
The second factor corresponds to all-pass terms with left-half-plane poles, and with 
zeros at mirror image locations to the poles. Thus, combining (3.28) and (3.29), 
Hcs(s) has been decomposed according to (3.25) where 

∏M1 (s − lk) 
∏M2 (s + ri)

Hmin(s) = A k=1 i=1 (3.30a) ∏N 
(s − dn)n=1

M2

Hap(s) = 
∏ (s − ri) 

(3.30b) 
(s + ri)i=1 
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EXAMPLE 3.3 Causal, stable system as cascade of minimum-phase and all-pass 

Consider a causal, stable system with transfer function 

Hcs =
(s − 1) 

(3.31) 
(s + 2)(s + 3) 

The corresponding minimum-phase and all-pass factors are 

(s + 1) 
Hmin(s) = (3.32) 

(s + 2)(s + 3) 

Hap(s) = 
s − 1 

(3.33) 
s + 1 

3.4 SPECTRAL FACTORIZATION 

The minimum-phase/all-pass decomposition developed above is useful in a variety 
of contexts. One that is of particular interest to us in later chapters arises when we 
we are given or have measured the magnitude of the frequency response of a stable 
system with a rational transfer function H(s) (and real-valued impulse response), 
and our objective is to recover H(s) from this information. A similar task may be 
posed in the DT case, but we focus on the CT version here. We are thus given 

|H(jω)|2 = H(jω)H∗(jω) (3.34) 

or, since H∗(jω) = H(−jω), 

|H(jω)|2 = H(jω)H(−jω) . (3.35) 

Now H(jω) is H(s) for s = jω, and therefore 

H(jω) 2 = H(s)H(−s) (3.36) | |
∣∣∣
s=jω 

For any numerator or denominator factor (s − a) in H(s), there will be a corre
sponding factor (−s − a) in H(s)H(−s). Thus H(s)H(−s) will consist of factors 
in the numerator or denominator of the form (s − a)(−s − a) = −s2 + a2, and will 
therefore be a rational function of s2 . Consequently H(jω) 2 will be a rational | |
function of ω2 . Thus, if we are given or can express H(jω) 2 as a rational function | |

2of ω2, we can obtain the product H(s)H(−s) by making the substitution ω2 = −s . 

The product H(s)H(−s) will always have its zeros in pairs that are mirrored across 
the imaginary axis of the s-plane, and similarly for its poles. For any pole or zero of 
H(s)H(−s) at the real value a, there will be another at the mirror image −a, while 
for any pole or zero at the complex value q, there will be others at q∗, −q and −q∗, 
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forming a complex conjugate pair (q, q∗) and its mirror image (−q∗, −q). We then 
need to assign one of each mirrored real pole and zero and one of each mirrored 
conjugate pair of poles and zeros to H(s), and the mirror image to H(−s). 

If we assume (or know) that H(s) is causal, in addition to being stable, then 
we would assign the left-half plane poles of each pair to H(s). With no further 
knowledge or assumption we have no guidance on the assignment of the zeros other 
than the requirement of assigning one of each mirror image pair to H(s) and the 
other to H(−s). If we further know or assume that the system is minimum-phase, 
then the left-half-plane zeros from each mirrored pair are assigned to H(s), and the 
right-half-plane zeros to H(−s). This process of factoring H(s)H(−s) to obtain 
H(s) is referred to as spectral factorization. 

EXAMPLE 3.4 Spectral factorization 

Consider a frequency response magnitude that has been measured or approximated 
as 

ω2 + 1 ω2 + 1 |H(jω)|2 = 
ω4 + 13ω2 + 36 

= 
(ω2 + 4)(ω2 + 9) 

(3.37) 

Making the substitution ω2 = −s2, we obtain 

−s2 + 1 
H(s)H(−s) = 

(−s2 + 4)(−s2 + 9) 
(3.38) 

which we further factor as 

H(s)H(−s) = 
(s + 1)(−s + 1) 

(3.39) 
(s + 2)(−s + 2)(s + 3)(−s + 3) 

It now remains to associate appropriate factors with H(s) and H(−s). Assuming 
the system is causal in addition to being stable, the two left-half plane poles at 
s = −2 and s = −3 must be associated with H(s). With no further assumptions, 
either one of the numerator factors can be associated with H(s) and the other with 
H(−s). However, if we know or assume that H(s) is minimum phase, then we 
would assign the left-half plane zero to H(s), resulting in the choice 

(s + 1) 
H(s) = (3.40) 

(s + 2)(s + 3) 

In the discrete-time case, a similar development leads to an expression for H(z)H(1/z) 
from knowledge of |H(ejΩ)|2 . The zeros of H(z)H(1/z) occur in conjugate recipro
cal pairs, and similarly for the poles. We again have to split such conjugate recip
rocal pairs, assigning one of each to H(z), the other to H(1/z), based on whatever 
additional knowledge we have. For instance, if H(z) is known to be causal in ad
dition to being stable, then all the poles of H(z)H(1/z) that are in the unit circle 
are assigned to H(z); and if H(z) is known to be minimum phase as well, then all 
the zeros of H(z)H(1/z) that are in the unit circle are assigned to H(z). 
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C H A P T E R 4 

State-Space Models 

4.1 INTRODUCTION 

In our discussion of system descriptions up to this point, we have emphasized 
and utilized system models that represent the transformation of input signals into 
output signals. In the case of linear and time-invariant (LTI) models, our focus 
has been on the impulse response, frequency response and transfer function. Such 
input-output models do not directly consider the internal behavior of the systems 
they model. 

In this chapter we begin a discussion of system models that considers the internal 
dynamical behavior of the system as well as the input-output characteristics. Inter
nal behavior can be important for a variety of reasons. For example, in examining 
issues of stability, a system can be stable from an input-output perspective but 
hidden internal variables may be unstable, yielding what we would want to think 
of as unstable system behavior. 

We introduce in this chapter an important model description that highlights internal 
behavior of the system and is specially suited to representing causal systems for real-
time applications such as control. Specifically, we introduce state-space models for 
finite-memory (or lumped) causal systems. These models exist for both continuous-
time (CT) and discrete-time (DT) systems, and for nonlinear, time-varying systems 
— although our focus will be on the LTI case. 

Having a state-space model for a causal DT system (similar considerations apply 
in the CT case) allows us to answer a question that gets asked about such systems 
in many settings: Given the input value x[n] at some arbitrary time n, how much 
information do we really need about past inputs, i.e., about x[k] for k < n, in 
order to determine the present output y[n] ? As the system is causal, we know that 
having all past x[k] (in addition to x[n]) will suffice, but do we actually need this 
much information? This question addresses the issue of memory in the system, and 
is a worthwhile question for a variety of reasons. 

For example, the answer gives us an idea of the complexity, or number of degrees of 
freedom, associated with the dynamic behavior of the system. The more informa
tion we need about past inputs in order to determine the present output, the richer 
the variety of possible output behaviors, i.e., the more ways we can be surprised in 
the absence of information about the past. 

Furthermore, in a control application, the answer to the above question suggests 
the required degree of complexity of the controller, because the controller has to 
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FIGURE 4.1 RLC circuit. 

remember enough about the past to determine the effects of present control actions 
on the response of the system. In addition, for a computer algorithm that acts 
causally on a data stream, the answer to the above question suggests how much 
memory will be needed to run the algorithm. 

With a state-space description, everything about the past that is relevant to the 
present and future is summarized in the present state, i.e., in the present values of 
a set of state variables. The number of state variables, which we refer to as the 
order of the model, thus indicates the amount of memory or degree of complexity 
associated with the system or model. 

4.2 INPUT-OUTPUT AND INTERNAL DESCRIPTIONS 

As a prelude to developing the general form of a state-space model for an LTI 
system, we present two examples, one in CT and the other in DT. 

4.2.1 An RLC circuit 

Consider the RLC circuit shown in Figure 4.1. We have labeled all the component 
voltages and currents in the figure. 

The defining equations for the components are: 

diL(t)
L = vL(t)

dt

dvC (t)


C = iC (t)
dt 

vR1(t) = R1iR1(t) 

vR2(t) = R2iR2(t) , (4.1) 
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while the voltage source is defined by the condition that its voltage is v(t) regardless 
of its current i(t). Kirchhoff’s voltage and current laws yield 

v(t) = vL(t) + vR2(t) 

vR2(t) = vR1(t) + vC (t) 

i(t) = iL(t) 

iL(t) = iR1(t) + iR2(t) 

iR1(t) = iC (t) . (4.2) 

All these equations together constitute a detailed and explicit representation of the 
circuit. 

Let us take the voltage source v(t) as the input to the circuit; we shall also denote 
this by x(t), our standard symbol for inputs. Choose any of the circuit voltages 
or currents as the output — let us choose vR2 (t) for this example, and also denote 
it by y(t), our standard symbol for outputs. We can then combine (4.1) and (4.2) 
using, for example, Laplace transforms, in order to obtain a transfer function or 
a linear constant-coefficient differential equation relating the input and output. 
The coefficients in the transfer function or differential equation will, of course be 
functions of the values of the components in the circuit. The resulting transfer 
function H(s) from input to output is 

( 
R1 1 

) 

Y (s) α L s + LC 
H(s) = 

X(s)
= ( 

1 R1 

)
1 

(4.3) 
s2 + α + s + αR2C L LC 

where α denotes the ratio R2/(R1 + R2). The corresponding input-output differ
ential equation is 

d2y(t) ( 1 R1 
) dy(t) ( 1 ) ( R1 

) dx(t) ( 1 )
+α + +α y(t) = α + α x(t) . (4.4) 

dt2 R2C L dt LC L dt LC 

An important characteristic of a circuit such as in Figure 4.1 is that the behavior 
for a time interval beginning at some t is completely determined by the input 
trajectory in that interval as well as the inductor currents and capacitor voltages 
at time t. Thus, for the specific circuit in Figure 4.1, in determining the response 
for times ≥ t, the relevant past history of the system is summarized in iL(t) and 
vC (t). The inductor currents and capacitor voltages in such a circuit at any time 
t are commonly referred to as state variables, and the particular set of values they 
take constitutes the state of the system at time t. This state, together with the 
input from t onwards, are sufficient to completely determine the response at and 
beyond t. 

The concept of state for dynamical systems is an extremely powerful one. For the 
RLC circuit of Figure 4.1 it motivates us to reduce the full set of equations (4.1) and 
(4.2) into a set of equations involving just the input, output, and internal variables 
iL(t) and vC (t). Specifically, a description of the desired form can be found by 
appropriately eliminating the other variables from (4.1) and (4.2), although some 
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attention is required in order to carry out the elimination efficiently. With this, 
we arrive at a condensed description, written here using matrix notation, and in a 
format that we shall encounter frequently in this chapter and the next two: 
(	

diL(t)/dt 
) ( 

−αR1/L −α/L 
) ( 

iL(t) 
) ( 

1/L 
) 

dvC (t)/dt 
= 

α/C −1/(R1 + R2)C vC (t)
+ 

0 
v(t) . 

(4.5) 

The use of matrix notation is a convenience; we could of course have simply written 
the above description as two separate but coupled first-order differential equations 
with constant coefficients. 

We shall come to appreciate the properties and advantages of a description in the 
form of (4.5), referred to as a CT (and, in this case, LTI) state-space form. Its key 
feature is that it expresses the rates of change of the state variables at any time t 
as functions (in this case, LTI functions) of their values and those of the input at 
that same time t. 

As we shall see later, the state-space description can be used to solve for the state 
variables iL(t) and vC (t), given the input v(t) and appropriate auxiliary information 
(specifically, initial conditions on the state variables). Furthermore, knowledge of 
iL(t), vC (t) and v(t) suffices to reconstruct all the other voltages and currents in 
the circuit at time t. In particular, any output variable can be written in terms of 
the retained variables. For instance, if the output of interest for this circuit is the 
voltage vR2(t) across R2, we can write (again in matrix notation) 

vR2(t) = 
( 

αR1 α 
) ( 

iL(t) 
) 

+ ( 0 ) v(t) . (4.6) 
vC (t) 

For this particular example, the output does not involve the input v(t) directly — 
hence the term ( 0 ) v(t) in the above output equation — but in the general case 
the output equation will involve present values of any inputs in addition to present 
values of the state variables. 

4.2.2 A delay-adder-gain system 

For DT systems, the role of state variables is similar to the role discussed in the 
preceding subsection for CT systems. We illustrate this with the system described 
by the delay-adder-gain block diagram shown in Figure 4.2.2. The corresponding 
detailed equations relating the indicated signals are 

q1[n + 1] = q2[n] 

q2[n + 1] = p[n] 

p[n] = x[n] − (1/2)q1[n] + (3/2)q2[n] 

y[n] = q2[n] + p[n] . (4.7) 

The equations in (4.7) can be combined together using, for example, z-transform 
methods, to obtain the transfer function or linear constant-coefficient difference 
equation relating input and output: 
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FIGURE 4.2 Delay-adder-gain block diagram. 

Y (z) 1 + z−1 

H(z) = = (4.8) 
X(z) 1 − 32 z

−1 + 12 z
−2 

and 
3 1 
y[n − 1] + y[n − 2] = x[n] + x[n − 1] . (4.9) y[n] − 

2 2 

The response of the system in an interval of time ≥ n is completely determined by 
the input for times ≥ n and the values q1[n] and q2[n] that are stored at the outputs 
of the delay elements at time n. Thus, as with the energy storage elements in the 
circuit of Figure 4.1, the delay elements in the delay-adder-gain system capture the 
state of the system at any time, i.e., summarize all the past history with respect 
to how it affects the present and future response of the system. Consequently, we 
condense (4.7) in terms of only the input, output and state variables to obtain the 
following matrix equations: 

( 
q1[n + 1] 

) ( 
0 1 

)( 
q1[n] 

) ( 
0 

) 

q2[n + 1] 
= −1/2 3/2 q2[n]

+
1 

x[n] (4.10) 

( 
q1[n] 

) 

y[n] = ( −1/2 5/2 ) 
q2[n] 

+ (1)x[n] . (4.11) 

In this case it is quite easy to see that, if we are given the values q1[n] and q2[n] of 
the state variables at some time n, and also the input trajectory from n onwards, 
i.e., x[n] for times ≥ n, then we can compute the values of the state variables for 
all times > n, and the output for all times ≥ n. All that is needed is to iteratively 
apply (4.10) to find q1[n + 1] and q2[n + 1], then q1[n + 2] and q2[n + 2], and so on 
for increasing time arguments, and to use (4.11) at each time to find the output. 
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4.3 STATE-SPACE MODELS 

As illustrated in Sections 4.2.1 and 4.2.2, it is often natural and convenient, when 
studying or modeling physical systems, to focus not just on the input and output 
signals but rather to describe the interaction and time-evolution of several key vari
ables or signals that are associated with the various component processes internal 
to the system. Assembling the descriptions of these components and their intercon
nections leads to a description that is richer than an input–output description. In 
particular, in Sections 4.2.1 and 4.2.2 the description is in terms of the time evolu
tion of variables referred to as the state variables, which completely capture at any 
time the past history of the system as it affects the present and future response. 
We turn now to a more formal definition of state-space models in the DT and CT 
cases, followed by a discussion of two defining characteristics of such models. 

4.3.1 DT State-Space Models 

A state-space model is built around a set of state variables; the number of state 
variables in a model or system is referred to as its order. Although we shall later 
cite examples of distributed or infinite-order systems, we shall only deal with state-
space models of finite order, which are also referred to as lumped systems. For an 
Lth-order model in the DT case, we shall generically denote the values of the L 
state variables at time n by q1[n], q2[n], , qL[n]. It is convenient to gather these · · · 
variables into a state vector:


 
q1[n] 




 

q[n] = 

q2

.
[n] 

. (4.12) 
. 

 .  

qL[n] 

The value of this vector constitutes the state of the model or system at time n. 

A DT LTI state-space model with single (i.e., scalar) input x[n] and single output 
y[n] takes the following form, written in compact matrix notation: 

q[n + 1] = Aq[n] + bx[n] , (4.13) 

y[n] = c T q[n] + dx[n] . (4.14) 

In (4.13), A is an L × L matrix, b is an L × 1 matrix or column-vector, and cT is 
a 1 × L matrix or row-vector, with the superscript T denoting transposition of the 
column vector c into the desired row vector. The quantity d is a 1 × 1 matrix, i.e., 
a scalar. The entries of all these matrices in the case of an LTI model are numbers 
or constants or parameters, so they do not vary with n. Note that the model we 
arrived at in (4.10) and (4.11) of Section 4.2.2 has precisely the above form. We 
refer to (4.13) as the state evolution equation, and to (4.14) as the output equation. 
These equations respectively express the next state and the current output at any 
time as an LTI combination of the current state variables and current input. 

Generalizations of the DT LTI State-Space Model. There are various nat
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ural generalizations of the above DT LTI single-input, single-output state-space 
model. A multi-input DT LTI state-space model replaces the single term bx[n] in 
(4.13) by a sum of terms, b1x1[n] + + bM xM [n], where M is the number of · · · 
inputs. This corresponds to replacing the scalar input x[n] by an M -component 
vector x[n] of inputs, with a corresponding change of b to a matrix B of dimension 
L × M . Similarly, for a multi-output DT LTI state-space model, the single output 
equation (4.14) is replaced by a collection of such output equations, one for each of 
the P outputs. Equivalently, the scalar output y[n] is replaced by a P -component 
vector y[n] of outputs, with a corresponding change of cT and d to matrices CT 

and D of dimension P × L and P × M respectively. 

A linear but time-varying DT state-space model takes the same form as in (4.13) 
and (4.14) above, except that some or all of the matrix entries are time-varying. A 
linear but periodically varying model is a special case of this, with matrix entries 
that all vary periodically with a common period. A nonlinear, time-invariant model 
expresses q[n + 1] and y[n] as nonlinear but time-invariant functions of q[n] and 
x[n], rather than as the LTI functions embodied by the matrix expressions on the 
right-hand-sides of (4.13) and (4.14). A nonlinear, time-varying model expresses 
q[n + 1] and y[n] as nonlinear, time-varying functions of q[n] and x[n], and one can 
also define nonlinear, periodically varying models as a particular case in which the 
time-variations are periodic with a common period. 

4.3.2 CT State-Space Models 

Continuous-time state-space descriptions take a very similar form to the DT case. 
We denote the state variables as qi(t), i = 1, 2, ..., L, and the state vector as 

 
q1(t) 

 

 
q(t) = 

q2

.
(t) 

. (4.15) 
. 

 .  

qL(t) 

Whereas in the DT case the state evolution equation expresses the state vector at 
the next time step in terms of the current state vector and input values, in CT 
the state evolution equation expresses the rates of change (i.e., derivatives) of each 
of the state variables as functions of the present state and inputs. The general 
Lth-order CT LTI state-space representation thus takes the form 

dq(t) 
= q̇(t) = Aq(t) + bx(t) , (4.16) 

dt 
y(t) = c T q(t) + dx(t) , (4.17) 

where dq(t)/dt = q̇(t) denotes the vector whose entries are the derivatives, dqi(t)/dt, 
of the corresponding entries, qi(t), of q(t). Note that the model in (4.5) and (4.6) 
of Section 4.2.1 is precisely of the above form. 
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Generalizations to multi-input and multi-output models, and to linear and nonlinear 
time-varying or periodic models, can be described just as in the case of DT systems, 
by appropriately relaxing the restrictions on the form of the right-hand sides of 
(4.16), (4.17). We shall see an example of a nonlinear time-invariant state-space 
model in Section 1. 

4.3.3 Characteristics of State-Space Models 

The designations of “state” for q[n] or q(t), and of “state-space description” for 
(4.13), (4.14) and (4.16), (4.17) — or for the various generalizations of these equa
tions — follow from the following two key properties of such models. 

State Evolution Property: The state at any initial time, along with the inputs 
over any interval from that initial time onwards, determine the state over that 
entire interval. Everything about the past that is relevant to the future state 
is embodied in the present state. 

Instantaneous Output Property: The outputs at any instant can be written in 
terms of the state and inputs at that same instant. 

The state evolution property is what makes state-space models particularly well 
suited to describing causal systems. In the DT case, the validity of this state 
evolution property is evident from the state evolution equation (4.13), which allows 
us to update q[n] iteratively, going from time n to time n + 1 using only knowledge 
of the present state and input. The same argument can also be applied to the 
generalizations of DT LTI models that we outlined earlier. 

The state evolution property should seem intuitively reasonable in the CT case as 
well. Specifically, knowledge of both the state and the rate of change of the state at 
any instant allows us to compute the state after a small increment in time. Taking 
this small step forward, we can re-evaluate the rate of change of the state, and 
step forward again. A more detailed proof of this property in the general nonlin
ear and/or time-varying CT case essentially proceeds this way, and is treated in 
texts that deal with the existence and uniqueness of solutions of differential equa
tions. These more careful treatments also make clear what additional conditions 
are needed for the state evolution property to hold in the general case. However, 
the CT LTI case is much simpler, and we shall demonstrate the state evolution 
property for this class of state-space models in the next chapter, when we show 
how to explicitly solve for the behavior of such systems. 

The instantaneous output property is immediately evident from the output equa
tions (4.14), (4.17). It also holds for the various generalizations of basic single-input, 
single-output LTI models that we listed earlier. 

The two properties above may be considered the defining characteristics of a state-
space model. In effect, what we do in setting up a state-space model is to introduce 
the additional vector of state variables q[n] or q(t), to supplement the input vari
ables x[n] or x(t) and output variables y[n] or y(t). This supplementation is done 
precisely in order to obtain a description that satisfies the two properties above. 
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Often there are natural choices of state variables suggested directly by the particular 
context or application. In both DT and CT cases, state variables are related to the 
“memory” of the system. In many physical situations involving CT models, the 
state variables are associated with energy storage, because this is what is carried 
over from the past to the future. Natural state variables for electrical circuits are 
thus the inductor currents and capacitor voltages, as turned out to be the case in 
Section 4.2.1. For mechanical systems, natural state variables are the positions and 
velocities of all the masses in the system (corresponding respectively to potential 
energy and kinetic energy variables), as we will see in later examples. In the case of 
a CT integrator-adder-gain block diagram, the natural state variables are associated 
with the outputs of the integrators, just as in the DT case the natural state variables 
of a delay-adder-gain model are the outputs of the delay elements, as was the case 
in the example of Section 4.2.2. 

In any of the above contexts, one can choose any alternative set of state variables 
that together contain exactly the same information. There are also situations in 
which there is no particularly natural or compelling choice of state variables, but 
in which it is still possible to define supplementary variables that enable a valid 
state-space description to be obtained. 

Our discussion of the two key properties above — and particularly of the role of 
the state vector in separating past and future — suggests that state-space models 
are particularly suited to describing causal systems. In fact, state-space models are 
almost never used to describe non-causal systems. We shall always assume here, 
when dealing with state-space models, that they represent causal systems. Al
though causality is not a central issue in analyzing many aspects of communication 
or signal processing systems, particularly in non-real-time contexts, it is generally 
central to simulation and control design for dynamic systems. It is accordingly in 
such dynamics and control settings that state-space descriptions find their greatest 
value and use. 

4.4	 EQUILIBRIA AND LINEARIZATION OF 
NONLINEAR STATE-SPACE MODELS 

An LTI state-space model most commonly arises as an approximate description of 
the local (or “small-signal”) behavior of a nonlinear time-invariant model, for small 
deviations of its state variables and inputs from a set of constant equilibrium values. 
In this section we present the conditions that define equilibrium, and describe the 
role of linearization in obtaining the small-signal model at this equilibrium. 
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74 Chapter 4 State-Space Models 

4.4.1 Equilibrium 

To make things concrete, consider a DT 3rd-order nonlinear time-invariant state-
space system, of the form 

q1[n + 1] = f1 q1[n], q2[n], q3[n], x[n]

q2[n + 1] = f2 q1[n], q2[n], q3[n], x[n]

q3[n + 1] = f3 q1[n], q2[n], q3[n], x[n] , (4.18) 

with the output y[n] defined by the equation 

y[n] = g q1[n], q2[n], q3[n], x[n] . (4.19) 

The state evolution functions fi( ), for i = 1, 2, 3, and the output function g( )· · 
are all time-invariant nonlinear functions of the three state variables qi[n] and the 
input x[n]. (Time-invariance of the functions simply means that they combine their 
arguments in the same way, regardless of the time index n.) The generalization to 
an Lth-order description should be clear. In vector notation, we can simply write 

q[n + 1] = f q[n], x[n] , y[n] = g q[n], x[n] , (4.20) 

where for our 3rd-order case 
 

f1( ) 
 

· 
f( ) =  f2( )  . (4.21) · · 

f3( )· 

Suppose now that the input x[n] is constant at the value x for all n. The corre
sponding state equilibrium is a state value q with the property that if q[n] = q 
with x[n] = x, then q[n + 1] = q. Equivalently, the point q in the state space is an 
equilibrium (or equilibrium point) if, with x[n] ≡ x for all n and with the system 
initialized at q, the system subsequently remains fixed at q. From (4.20), this is 
equivalent to requiring 

q = f(q, x) . (4.22) 

The corresponding equilibrium output is 

y = g(q, x) . (4.23) 

In defining an equilibrium, no consideration is given to what the system behavior 
is in the vicinity of the equilibrium point, i.e., of how the system will behave if 
initialized close to — rather than exactly at — the point q. That issue is picked 
up when one discusses local behavior, and in particular local stability, around the 
equilibrium. 
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In the 3rd-order case above, and given x, we would find the equilibrium by solving 
the following system of three simultaneous nonlinear equations in three unknowns: 

q1 = f1(q1, q2, q3, x) 

q2 = f2(q1, q2, q3, x) 

q3 = f3(q1, q2, q3, x) . (4.24) 

There is no guarantee in general that an equilibrium exists for the specified constant 
input x, and there is no guarantee of a unique equilibrium when an equilibrium does 
exist. 

We can apply the same idea to CT nonlinear time-invariant state-space systems. 
Again consider the concrete case of a 3rd-order system: 

q̇1(t) = f1 q1(t), q2(t), q3(t), x(t)

q̇2(t) = f1 q1(t), q2(t), q3(t), x(t)

q̇3(t) = f1 q1(t), q2(t), q3(t), x(t) , (4.25) 

with 
y(t) = g q1(t), q2(t), q3(t), x(t) , (4.26) 

or in vector notation, 

q̇(t) = f q(t), x(t) , y(t) = g q(t), x(t) . (4.27) 

Define the equilibrium q again as a state value that the system does not move from 
when initialized there, and when the input is fixed at x(t) = x. In the CT case, 
what this requires is that the rate of change of the state, namely q̇(t), is zero at 
the equilibrium, which yields the condition 

0 = f(q, x) . (4.28) 

For the 3rd-order case, this condition takes the form 

0 = f1(q1, q2, q3, x) 

0 = f2(q1, q2, q3, x) 

0 = f3(q1, q2, q3, x) , (4.29) 

which is again a set of three simultaneous nonlinear equations in three unknowns, 
with possibly no solution for a specified x, or one solution, or many. 

4.4.2 Linearization 

We now examine system behavior in the vicinity of an equilibrium. Consider once 
more the 3rd-order DT nonlinear system (4.18), and suppose that instead of x[n] ≡ 
x, we have x[n] perturbed or deviating from this by a value x̃[n], so 

x̃[n] = x[n] − x . (4.30) 
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The state variables will correspondingly be perturbed from their respective equi
librium values by amounts denoted by 

q̃i[n] = qi[n] − qi (4.31) 

for i = 1, 2, 3 (or more generally i = 1, , L), and the output will be perturbed by · · · 

ỹ[n] = y[n] − y . (4.32) 

Our objective is to find a model that describes the behavior of these various per
turbations from equilibrium. 

The key to finding a tractable description of the perturbations or deviations from 
equilibrium is to assume they are small, thereby permitting the use of truncated 
Taylor series to provide good approximations to the various nonlinear functions. 
Truncating the Taylor series to first order, i.e., to terms that are linear in the 
deviations, is referred to as linearization, and produces LTI state-space models in 
our setting. 

To linearize the original DT 3rd-order nonlinear model (4.18), we rewrite the vari
ables appearing in that model in terms of the perturbations, using the quantities 
defined in (4.30), (4.31), and then expand in Taylor series to first order around the 
equilibrium values: 

qi + q̃i[n + 1] = fi q1 + q̃1[n], q2 + q̃2[n], q3 + q̃3[n], x + x̃[n] for i = 1, 2, 4 

∂fi ∂fi ∂fi ∂fi ≈ fi(q1, q2, q3, x) + 
∂q1 

q̃1[n] + 
∂q2 

q̃2[n] + 
∂q3 

q̃3[n] + 
∂x 

x̃[n] . 

(4.33) 

All the partial derivatives above are evaluated at the equilibrium values, and are 
therefore constants, not dependent on the time index n. (Also note that the partial 
derivatives above are with respect to the continuously variable state and input 
arguments; there are no “derivatives” taken with respect to n, the discretely varying 
time index!) The definition of the equilibrium values in (4.24) shows that the term 
qi on the left of the above set of expressions exactly equals the term fi(q1, q2, q3, x) 
on the right, so what remains is the approximate relation 

∂fi ∂fi ∂fi ∂fi 
q̃i[n + 1] ≈ 

∂q1 
q̃1[n] + 

∂q2 
q̃2[n] + 

∂q3 
q̃3[n] + 

∂x 
x̃[n] (4.34) 

for i = 1, 2, 3. Replacing the approximate equality sign (≈) by the equality sign (=) 
in this set of expressions produces what is termed the linearized model at the equi
librium point. This linearized model approximately describes small perturbations 
away from the equilibrium point. 

We may write the linearized model in matrix form: 

∂f1 ∂f1 ∂f1
 
q1[n + 1] 

  
∂q1 ∂q2 ∂q3 q1[n] ∂x


   ∂f1 


˜
∂f2 ∂f2 ∂f2 q

˜
2[n] + ∂f2q2[n + 1] =˜  

∂f3 ∂f3 ∂f3 

 ˜
∂f3 

x̃[n] . (4.35)   
∂q1 ∂q2 ∂q3 

   
∂x 




q3[n + 1] 
∂q1 ∂q2 ∂q3 

q̃3[n]

∂x ︸ ︷︷ ︸ ︸ ︷︷ ︸︸ 

q[n

︷︷ 
+1] 

︸ ︸ ︷︷ ︸
q̃[n] b˜ A 
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We have therefore arrived at a standard DT LTI state-space description of the 
state evolution of our linearized model, with state and input variables that are 
the respective deviations from equilibrium of the underlying nonlinear model. The 
corresponding output equation is derived similarly, and takes the form 

[ 
∂g ∂g ∂g 

] 
q[n] + 

∂g 
y[n] = ∂q1 ∂q2 ∂q3 

˜
∂x 

x̃[n] . (4.36) 
︸ ︷︷ ︸ ︸︷︷︸

cT d 

The matrix of partial derivatives denoted by A in (4.35) is also called a Jacobian 
matrix, and denoted in matrix-vector notation by 

[ ∂f ]
A = .	 (4.37) 

∂q q,x 

The entry in its ith row and jth column is the partial derivative ∂fi( )/∂qj , eval· 
uated at the equilibrium values of the state and input variables. Similarly, 

[ ∂f ] 
T 

[ ∂g ] [ ∂g ]
b = , c = , d = . (4.38) 

∂x q,x ∂q q,x ∂x q,x 

The derivation of linearized state-space models in CT follows exactly the same 
route, except that the CT equilibrium condition is specified by the condition (4.28) 
rather than (4.22). 

EXAMPLE 4.1 A Hoop-and-Beam System 

As an example to illustrate the determination of equilibria and linearizations, we 
consider in this section a nonlinear state-space model for a particular hoop-and
beam system. 

The system in Figure 4.3 comprises a beam pivoted at its midpoint, with a hoop 
that is constrained to maintain contact with the beam but free to roll along it, 
without slipping. A torque can be applied to the beam, and acts as the control 
input. Our eventual objective might be to vary the torque in order to bring the 
hoop to — and maintain it at — a desired position on the beam. We assume that 
the only measured output that is available for feedback to the controller is the 
position of the hoop along the beam. 

Natural state variables for such a mechanical system are the position and velocity 
variables associated with each of its degrees of freedom, namely: 

•	 the position q1(t) of the point of contact of the hoop relative to the center of 
the beam; 

•	 the angular position q2(t) of the beam relative to horizontal; 

•	 the translational velocity q3(t) = q̇1(t) of the hoop along the beam; 

•	 the angular velocity q4(t) = q̇2(t) of the beam. 
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FIGURE 4.3 A hoop rolling on a beam that is free to pivot on its support. The 
variable q1(t) is the position of the point of contact of the hoop relative to the center 
of the beam. The variable q2(t) is the angle of the beam relative to horizontal. 

The measured output is 

y(t) = q1(t) . (4.39) 

To specify a state-space model for the system, we express the rate of change of 
each of these state variables at time t as a function of these variables at t, and as 
a function of the torque input x(t). We arbitrarily choose the direction of positive 
torque to be that which would tend to increase the angle q2(t). The required 
expressions, which we do not derive here, are most easily obtained using Lagrange’s 
equations of motion, but can also be found by applying the standard and rotational 
forms of Newton’s second law to the system, taking account of the constraint that 
the hoop rolls without slipping. The resulting nonlinear time-invariant state-space 
model for the system, with the time argument dropped from the state variables qi 

and input x to avoid notational clutter, are: 

dq1 
= q3

dt

dq2


= q4
dt

dq3 1 2
= 

(
q1q4 − g sin(q2)

) 

dt 2 
dq4 

= 
mgr sin(q2) − mgq1 cos(q

2
2) − 2mq1q3q4 + x

. (4.40) 
dt J + mq1 

Here g represents the acceleration due to gravity, m is the mass of the hoop, r is 
its radius, and J is the moment of inertia of the beam. 

Equilibrium values of the model. An equilibrium state of a system is one that 
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can (ideally) be maintained indefinitely without the action of a control input, or 
more generally with only constant control action. Our control objective might be 
to design a feedback control system that regulates the hoop-and-beam system to its 
equilibrium state, with the beam horizontal and the hoop at the center, i.e., with 
q1(t) ≡ 0 and q2(t) ≡ 0. The possible zero-control equilibrium positions for any CT 
system described in state-space form can be found by setting the control input and 
the state derivatives to 0, and then solving for the state variable values. 

For the model above, we see that the only zero-control equilibrium position (with 
the realistic constraint that −π π< q2 < ) corresponds to a horizontal beam with 2 2 
the hoop at the center, i.e., q1 = q2 = q3 = q4 = 0. If we allow a constant but 
nonzero control input, it is straightforward to see from (4.40) that it is possible to 
have an equilibrium state (i.e., unchanging state variables) with a nonzero q1, but 
still with q2, q3 and q4 equal to 0. 

Linearization for small perturbations. It is generally quite difficult to elu
cidate in any detail the global or large-signal behavior of a nonlinear model such 
as (4.40). However, small deviations of the system around an equilibrium, such as 
might occur in response to small perturbations of the control input from 0, are quite 
well modeled by a linearized version of the nonlinear model above. As already de
scribed in the previous subsection, a linearized model is obtained by approximating 
all nonlinear terms using first-order Taylor series expansions around the equilib
rium. Linearization of a time-invariant model around an equilibrium point always 
yields a model that is time invariant, as well as being linear. Thus, even though the 
original nonlinear model may be difficult to work with, the linearized model around 
an equilibrium point can be analyzed in great detail, using all the methods available 
to us for LTI systems. Note also that if the original model is in state-space form, 
the linearization will be in state-space form too, except that its state variables will 
be the deviations from equilibrium of the original state variables. 

Since the equilibrium of interest to us in the hoop-and-beam example corresponds 
to all state variables being 0, small deviations from this equilibrium correspond to 
all state variables being small. The linearization is thus easy to obtain without 
formal expansion into Taylor series. Specifically, as we discard from the nonlinear 
model (4.40) all terms of higher order than first in any nonlinear combinations of 
terms, sin(q2) gets replaced by q2, cos(q2) gets replaced by 1, and the terms q1q4

2 

and q1q3q4 and q1
2 are eliminated. The result is the following linearized model in 

state-space form: 

©Alan V. Oppenheim and George C. Verghese, 2010 c



80 Chapter 4 State-Space Models 

dq1 
= q3

dt 
dq2 

= q4
dt 
dq3 g 

q2 = −
dt 2 
dq4 

= 
mg(rq2 − q1) + x 

(4.41) 
dt J 

This model, along with the defining equation (4.39) for the output (which is already 
linear and therefore needs no linearization), can be written in the standard matrix 
form (4.16) and (4.17) for LTI state-space descriptions, with 

 
0 0 1 0 

  
0 

 

0 0 0 1 0 
A = 


0 −g/2 0 0 

 , b = 


0 

    

−mg/J mgr/J 0 0 1/J 
T c = 

[ 
1 0 0 0 

] 
(4.42) 

The LTI model is much more tractable than the original nonlinear time-invariant 
model, and consequently controllers can be designed more systematically and con
fidently. If the resulting controllers, when applied to the system, manage to ensure 
that deviations from equilibrium remain small, then our use of the linearized model 
for design will have been justified. 

4.5 STATE-SPACE MODELS FROM INPUT–OUTPUT MODELS 

State-space representations can be very naturally and directly generated during the 
modeling process in a variety of settings, as the examples in Sections 4.2.1 and 4.2.2 
suggest. Other — and perhaps more familiar — descriptions can then be derived 
from them; again, these previous examples showed how input–output descriptions 
could be obtained from state-space descriptions. 

It is also possible to proceed in the reverse direction, constructing state-space de
scriptions from impulse responses or transfer functions or input–output difference 
equations, for instance. This is often worthwhile as a prelude to simulation, or filter 
implementation, or in control design, or simply in order to understand the initial 
description from another point of view. The following two examples illustrate this 
reverse process, of synthesizing state-space descriptions from input–output descrip
tions. 

4.5.1 Determining a state-space model from an impulse response or transfer function 

Consider the impulse response h[n] of a causal DT LTI system. Causality requires 
of course that h[n] = 0 for n < 0. The output y[n] can be related to past and 
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present inputs x[k], k ≤ n, through the convolution sum 

n

y[n] = 
∑ 

h[n − k] x[k] (4.43) 
k=−∞ 

n−1

= h[n − k] x[k] + h[0]x[n] . (4.44) 
k=−∞ 

The first term above, namely 

n−1

q[n] = 
∑ 

h[n − k] x[k] , (4.45) 
k=−∞ 

represents the effect of the past on the present, at time n, and would therefore seem 
to have some relation to the notion of a state variable. Updating q[n] to the next 
time step, we obtain 

n

q[n + 1] = 
∑ 

h[n + 1 − k] x[k] . (4.46) 
k=−∞ 

In general, if the impulse response has no special form, the successive values of q[n] 
have to be recomputed from (4.46) for each n. When we move from n to n + 1, 
none of the past inputs x[k] for k ≤ n, can be discarded, because all of the past will 
again be needed to compute q[n + 1]. In other words, the memory of the system is 
infinite. 

However, consider the class of systems for which h[n] has the essentially exponential 
form 

h[n] = β λn−1 u[n − 1] + d δ[n] , (4.47) 

where β, λ and d are constants. The corresponding transfer function is 

β 
H(z) = + d (4.48) 

z − λ 

(with ROC z > λ ). What is important about this impulse response is that a | | | |
time-shifted version of it is simply related to a scaled version of it, because of its 
DT-exponential form. For this case, 

n−1

q[n] = β 
∑ 

λn−1−k x[k] (4.49) 
k=−∞ 

and 
n

q[n + 1] = β 
∑ 

λn−k x[k] (4.50) 
k=−∞ 

n−1

= λ
( 

β 
∑ 

λn−1−k x[k] 
) 

+ βx[n] 
k=−∞ 

= λq[n] + βx[n] . (4.51) 
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x[n] 
� 

� 

� 

� 

βL 

z − λL 

β1 

z − λ1 

d � 

� 

� 

� �� 

� . . . 

y[n] 

FIGURE 4.4 Decomposition of rational transfer function with distinct poles. 

Gathering (4.44) and (4.49) with (4.51) results in a pair of equations that together 
constitute a state-space description for this system: 

q[n + 1] = λq[n] + βx[n] (4.52) 

y[n] = q[n] + dx[n] . (4.53) 

Let us consider next a similar but higher order system with impulse response: 

h[n] = ( β1λ
n−1 + β2λ

n−1 + + βLλn−1 )u[n − 1] + d δ[n] (4.54) 1 2 L· · · 
with the βi and d being constants. The corresponding transfer function is 

( L
βi

H(z) = 
∑ ) 

+ d . (4.55) 
z − λii=1 

By using a partial fraction expansion, the transfer function H(z) of any causal 
LTI DT system with a rational transfer function can be written in this form, with 
appropriate choices of the βi, λi, d and L, provided H(z) has non-repeated — i.e., 
distinct — poles. Note that although we only treat rational transfer functions H(z) 
whose numerator and denominator polynomials have real coefficients, the poles of 
H(z) may include some complex λi (and associated βi), but in each such case its 
complex conjugate λ∗

i will also be a pole (with associated weighting factor βi
∗), and 

the sum 
βi(λi)

n + βi 
∗(λ∗ 

i )
n (4.56) 

will be real. 

The block diagram in Figure 4.5.1 shows that this system can be considered as 
being obtained through the parallel interconnection of subsystems corresponding 
to the simpler case of (4.47). Motivated by this structure and the treatment of the 
first-order example, we define a state variable for each of the L subsystems: 

n−1

qi[n] = βi 

∑ 
λi

n−1−k x[k] , i = 1, 2, . . . , L . (4.57) 
−∞ 
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With this, we obtain the following state-evolution equations for the subsystems: 

qi[n + 1] = λiqi[n] + βix[n] , i = 1, 2, . . . , L . (4.58) 

Also, combining (4.45), (4.53) and (4.54) with the definitions in (4.57), we obtain 
the output equation 

y[n] = q1[n] + q2[n] + + qL[n] + d x[n] . (4.59) · · · 

Equations (4.58) and (4.59) together comprise an Lth-order state-space description 
of the given system. We can write this state-space description in our standard 
matrix form (4.13) and (4.14), with 

 
λ1 0 0 0 0 

  
β1 

 · · · 
 0 λ2 0 0 0   β2 

A =  . . . . . . 


, b =  . 


(4.60) 
· · · 

 . . . . . .   . 
. . . . . . 

 
. 



0 0 0 0 λL βL· · · 
T c = 

( 
1 1 1 

) 
. (4.61) · · · · · · · · · 

The diagonal form of A in (4.60) reflects the fact that the state evolution equations 
in this example are decoupled, with each state variable being updated independently 
according to (4.58). We shall see later how a general description of the form (4.13), 
(4.14), with a distinct-eigenvalue condition that we shall impose, can actually be 
transformed to a completely equivalent description in which the new A matrix is 
diagonal, as in (4.60). (Note, however, that when there are complex eigenvalues, 
this diagonal state-space representation will have complex entries.) 

4.5.2 Determining a state-space model from an input–output difference equation 

Let us examine some ways of representing the following input-output difference 
equation in state-space form: 

y[n] + a1y[n − 1] + a2y[n − 2] = b1x[n − 1] + b2x[n − 2] . (4.62) 

One approach, building on the development in the preceding subsection, is to per
form a partial fraction expansion of the 2-pole transfer function associated with 
this system, and thereby obtain a 2nd-order realization in diagonal form. (If the 
real coefficients a1 and a2 are such that the roots of z2 + a1z + a2 are not real but 
form a complex conjugate pair, then this diagonal 2nd-order realization will have 
complex entries.) 

For a more direct attempt (and to guarantee a real-valued rather than complex-
valued state-space model), consider using as state vector the quantity 

 
y[n − 1] 

 

q[n] = 
 y[n − 2] 

. (4.63) 
x[n − 1] 

  

x[n − 2] 
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The corresponding 4th-order state-space model would take the form 
 



 



 



 



 



 



 



 


y[n] −a1 −a2 

1 0 
b1 b2 

0 0 
y[n − 1] 
y[n − 2] 

0 
0y[n − 1] 

x[n]
q[n + 1] = x[n]+=      0 0 0 0 x[n − 1] 

x[n − 2] 
1 

x[n − 1] 0 0 1 0 0 
 



 



y[n − 1] 

y[n] = 
( 
−a1 −a2 b1 b2

y[n − 2] 
x[n − 1] 
x[n − 2] 

(4.64)  

If we are somewhat more careful about our choice of state variables, it is possible 
to get more economical models. For a 3rd-order model, suppose we pick as state 
vector 

q[n] = 


 

y[n] 
y[n − 1] 
x[n − 1] 


 . (4.65) 

The corresponding 3rd-order state-space model takes the form 

q[n + 1] = 


 

y[n + 1] 
y[n] 


 = 




−a1 −a2 

1 0 
b2 

0 


 


 


 + 


 


 x[n] 

y[n] b1 

0 




y[n − 1] 
x[n − 1] x[n] 0 0 0 

y[n] = 
( 

1 0 0 
) 

 

y[n] 
y[n − 1] 
x[n − 1] 

1 

(4.66) 

A still more subtle choice of state variables yields a 2nd-order state-space model by 
picking 

y[n]
q[n] = . (4.67) −a2y[n − 1] + b2x[n − 1] 

The corresponding 2nd-order state-space model takes the form 
( 

−a1 1 
)( ( 

b1y[n + 1] y[n] 
x[n]+= −a2y[n] + b2x[n] 

y[n] = 
( 

1 0 
) ( 

−a2y[n − 1] + b2x[n − 1] 

y[n] 

0 b2−a2 

(4.68) −a2y[n − 1] + b2x[n − 1] 

It turns out to be impossible in general to get a state-space description of order lower 
than 2 in this case. This should not be surprising, in view of the fact that (4.63) 
is a 2nd-order difference equation, which we know requires two initial conditions in 
order to solve forwards in time. Notice how, in each of the above cases, we have 
incorporated the information contained in the original difference equation (4.63) 
that we started with. 
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C H A P T E R 5 

Properties of LTI State-Space 
Models 

5.1 INTRODUCTION 

In Chapter 4 we introduced state-space models for dynamical systems. In this 
chapter we study the structure and solutions of LTI state-space models. Throughout 
the discussion we restrict ourselves to the single-input, single-output Lth-order CT 
LTI state-space model 

q̇(t) = Aq(t) + bx(t) (5.1) 

y(t) = c T q(t) + dx(t) , (5.2) 

or the DT LTI state-space model 

q[n + 1] = Aq[n] + bx[n] (5.3) 

y[n] = c T q[n] + dx[n] . (5.4) 

Equation (5.1) constitutes a representation of CT LTI system dynamics in the form 
of a set of coupled, first-order, linear, constant-coefficient differential equations for 
the L variables in q(t), driven by the input x(t). Equation (5.3) gives a similar 
difference-equation representation of DT LTI system dynamics. 

The basic approach to analyzing LTI state-space models parallels what you should 
already be familiar with from solving linear constant-coefficient differential or dif
ference equations (of any order) in one variable. Specifically, we first consider the 
zero-input response to nonzero initial conditions at some starting time, and then 
augment that with the response due to the nonzero input when the initial condi
tions are zero. Understanding the full solution from the starting time onwards will 
give us insight into system stability, and into how the internal behavior relates to 
the input-output characteristics of the system. 

5.2 THE ZERO-INPUT RESPONSE AND MODAL REPRESENTATION 

We take our starting time to be 0, without loss of generality (since we are dealing 
with time-invariant models). Consider the response of the undriven system corre
sponding to (5.1), i.e., the response with x(t) ≡ 0 for t ≥ 0, but with some nonzero 
initial condition q(0). This is the zero-input-response (ZIR) of the system (5.1), 
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and is a solution of the undriven (or unforced or homogeneous) system 

q̇(t) = Aq(t) . (5.5) 

It is natural when analyzing an undriven LTI system to look for a solution in 
exponential form (essentially because exponentials have the unique property that 
shifting them is equivalent to scaling them, and undriven LTI systems are charac
terized by invariance to shifting and scaling of solutions). We accordingly look for 
a nonzero solution of the form 

q(t) = ve λt , v = 0 , (5.6) 

where each state variable is a scalar multiple of the same exponential eλt , with 
these scalar multiples assembled into the vector v. (The boldface 0 at the end of 
the preceding equation denotes an L-component column vector whose entries are 
all 0 — we shall use 0 for any vectors or matrices whose entries are all 0, with the 
correct dimensions being apparent from the context. Writing v = 0 signifies that 
at least one component of v is nonzero.) 

Substituting (5.6) into (5.5) results in the equation 

λve λt = Ave λt , (5.7) 

from which we can conclude that the vector v and scalar λ must satisfy 

λv = Av or equivalently (λI − A)v = 0 , v =6 0 , (5.8) 

where I denotes the identity matrix, in this case of dimension L × L. The above 
equation has a nonzero solution v if and only if the coefficient matrix (λI − A) is 
not invertible, i.e., if and only if its determinant is 0: 

det(λI − A) = 0 . (5.9) 

For an Lth-order system, it turns out that the above determinant is a monic poly
nomial of degree L, called the characteristic polynomial of the system or of the 
matrix A: 

det(λI − A) = a(λ) = λL + aL−1λ
L−1 + + a0 (5.10) · · · 

(The word “monic” simply means that the coefficient of the highest-degree term 
is 1.) It follows that (5.6) is a nonzero solution of (5.5) if and only if λ is one of 
the L roots {λi}L of the characteristic polynomial. These roots are referred to as i=1 
characteristic roots of the system, and as eigenvalues of the matrix A. 

The vector v in (5.6) is correspondingly a nonzero solution vi of the system of 
equations 

(λiI − A)vi = 0 , vi 6= 0 , (5.11) 

and is termed the characteristic vector or eigenvector associated with λi. Note from 
(5.11) that multiplying any eigenvector by a nonzero scalar again yields an eigen
vector, so eigenvectors are only defined up to a nonzero scaling. Any convenient 
scaling or normalization can be used. 
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In summary, the undriven system has a solution of the assumed exponential form 
in (5.6) if and only if λ equals some characteristic value or eigenvalue of A, and the 
nonzero vector v is an associated characteristic vector or eigenvector. 

We shall only be dealing with state-space models for which all the signals and the 
coefficient matrices A, b, cT and d are real-valued (though we may subsequently 
transform these models into the diagonal forms seen in the previous chapter, which 
may then have complex entries, but occurring in very structured ways). The coef
ficients ai defining the characteristic polynomial a(λ) in (5.10) are therefore real, 
and thus the complex roots of this polynomial occur in conjugate pairs. Also, it 
is straightforward to show that if vi is an eigenvector associated with a complex 
eigenvalue λi, then vi

∗ —i.e., the vector whose entries are the complex conjugates of 
the corresponding entries of vi — is an eigenvector associated with λ∗

i , the complex 
conjugate of λi. 

We refer to a nonzero solution of the form (5.6) for λ = λi and v = vi as the 
ith mode of the system (5.1) or (5.5); the associated λi is termed the ith modal 
frequency or characteristic frequency or natural frequency of the system, and vi is 
termed the ith mode shape. Note that if 

q(t) = vie λit (5.12) 

then the corresponding initial condition must have been q(0) = vi. It can be shown 
(though we don’t do so here) that the system (5.5) — and similarly the system (5.1) 
— can only have one solution for a given initial condition, so it follows that for the 
initial condition q(0) = vi, only the ith mode will be excited. 

It can also be shown that eigenvectors associated with distinct eigenvalues are 
linearly independent, i.e., none of them can be written as a weighted linear combi
nation of the remaining ones. For simplicity, we shall restrict ourselves throughout 
to the case where all L eigenvalues of A are distinct, which will guarantee that 
v1, v2, . . . , vL form an independent set. (In some cases in which A has repeated 
eigenvalues, it is possible to find a full set of L independent eigenvectors, but this 
is not generally true.) We shall repeatedly use the fact that any vector in an L-
dimensional space, such as our state vector q(t) at any specified time t = t0, can be 
written as a unique linear combination of any L independent vectors in that space, 
such as our L eigenvectors. 

5.2.1 Modal representation of the ZIR 

Because (5.5) is linear, a weighted linear combination of modal solutions of the 
form (5.12), one for each eigenvalue, will also satisfy (5.5). Consequently a more 
general solution for the zero-input response with distinct eigenvalues is 

L
λi t q(t) = 

∑ 
αivie (5.13) 

i=1 
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The expression in (5.13) can easily be verified to be a solution of (5.5) for arbitrary 
weights αi, with initial condition 

L

q(0) = 
∑ 

αivi . (5.14) 
i=1 

Since the L eigenvectors vi are independent under our assumption of L distinct 
eigenvalues, the right side of (5.14) can be made equal to any desired q(0) by 
proper choice of the coefficients αi, and these coefficients are unique. Hence spec
ifying the initial condition of the undriven system (5.5) specifies the αi via (5.14), 
and thus specifies the full response of (5.5) via (5.13). In other words, (5.13) is ac
tually a general expression for the ZIR of (5.1) — under our assumption of distinct 
eigenvalues. We refer to the expression on the right side of (5.13) as the modal 
decomposition of the ZIR. 

The contribution to the modal decomposition from a conjugate pair of eigenvalues 
λi = σi + jωi and λ∗ 

i 
vi = ui + jwi and vi 

∗ 

σi − jωi, with associated complex conjugate eigenvectors 
= ui − jwi respectively, will be a real term of the form 

i e 

= 

λ ∗ 
iλit t∗+ αi vαivie (5.15) . 

∗ 

With a little algebra, the real expression in (5.15) can be reduced to the form 

i e λ ∗ 
iαivie λit t = Kie σi t[ui cos(ωit + θi) − wi sin(ωit + θi)] 

∗+ αi v (5.16) 

for some constants Ki and θi that are determined by the initial conditions in the 
process of matching the two sides of (5.14). The above component of the modal 
solution therefore lies in the plane spanned by the real and imaginary parts, ui and 
wi respectively, of the eigenvector vi. The associated motion of the component 
of state trajectory in this plane involves an exponential spiral, with growth or 
decay of the spiral determined by whether σi Re{λi} is positive 
respectively (corresponding to the eigenvalue λi — and its conjugate λ

negative = or 
∗ 
i — lying in 

the open right- or left-half-plane respectively). If σi = 0, i.e., if the conjugate pair 
of eigenvalues lies on the imaginary axis, then the spiral degenerates to a closed 
loop. The rate of rotation of the spiral is determined by ωi = Im{λi}. 
A similar development can be carried out in the DT case for the ZIR of (5.3). In 
that case (5.6) is replaced by a solution of the form 

q[n] = vλn (5.17) 

and we find that when A has L distinct eigenvalues, the modal decomposition of 
the general ZIR solution takes the form 

L

q[n] = 
∑ 

αiviλ
n
i . (5.18) 

i=1 
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5.2.2 Asymptotic stability 

The stability of an LTI system is directly related to the behavior of the modes, and 
more specifically to the values of the λi, the roots of the characteristic polynomial. 
An LTI state-space system is termed asymptotically stable or internally stable if its 
ZIR decays to zero for all initial conditions. We see from (5.13) that the condition 
Re{λi} < 0 for all 1 ≤ i ≤ L is necessary and sufficient for asymptotic stability in 
the CT case. Thus, all eigenvalues of A in (5.1) — or natural frequencies of (5.1) 
— must be in the open left-half-plane. 

In the DT case, (5.18) shows that a necessary and sufficient condition for asymptotic 
stability is |λi| < 1 for all 1 ≤ i ≤ L, i.e., all eigenvalues of A in (5.3) — or natural 
frequencies of (5.3) — must be strictly within the unit circle. 

We used the modal decompositions (5.13) and (5.18) to make these claims regard
ing stability conditions, but these modal decompositions were obtained under the 
assumption of distinct eigenvalues. Nevertheless, it can be shown that the stability 
conditions in the general case are identical to those above. 

5.3 COORDINATE TRANSFORMATIONS 

We have so far only described the zero-input response of LTI state-space systems. 
Before presenting the general response, including the effects of inputs, it will be 
helpful to understand how a given state-space representation can be transformed 
to an equivalent representation that might be simpler to analyze. Our development 
is carried out for the CT case, but an entirely similar development can be done for 
DT. 

It is often useful to examine the behavior of a state-space system by rewriting 
the original description in terms of a transformed set of variables. A particularly 
important case involves the transformation of the state vector q(t) to a new state 
vector r(t) that decomposes the behavior of the system into its components along 
each of the eigenvectors vi: 

L

q(t) = 
∑ 

viri(t) = Vr(t) , (5.19) 
i=1 

where the ith column of the L × L matrix V is the ith eigenvector, vi: 

V = 
( 

v1 v2 vL 
) 

. (5.20) · · · 

We refer to V as the modal matrix. Under our assumption of distinct eigenvalues, 
the eigenvectors are independent, which guarantees that V is invertible, so 

r(t) = V−1 q(t) . (5.21) 

The transformation from the original system description involving q(t) to one writ
ten in terms of r(t) is called a modal transformation, and the new state variables 
ri(t) defined through (5.19) are termed modal variables or modal coordinates. 
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More generally, a coordinate transformation corresponds to choosing a new state 
vector z(t) related to the original state vector q(t) through the relationship 

q(t) = Mz(t) (5.22) 

where the constant matrix M is chosen to be invertible. (The ith column of M is 
the representation of the ith unit vector of the new z coordinates in terms of the 
old q coordinates.) Substituting (5.22) in (5.1) and (5.2), and solving for ż(t), we 
obtain 

ż(t) = (M−1AM)z(t) + (M−1b)x(t) (5.23) 

y(t) = (c T M)z(t) + dx(t) . (5.24) 

Equations (5.23) and (5.24) are still in state-space form, but with state vector z(t), 
and with modified coefficient matrices. This model is entirely equivalent to the 
original one, since (5.22) permits q(t) to be obtained from z(t), and the invertibility 
of M permits z(t) to be obtained from q(t). It is straightforward to verify that 
the eigenvalues of A are identical to those of M−1AM, and consequently that the 
natural frequencies of the transformed system are the same as those of the original 
system; only the eigenvectors change, with vi transforming to M−1vi. 

We refer to the transformation (5.22) as a similarity transformation, and say that 
the model (5.23), (5.24) is similar to the model (5.1), (5.2). 

Note that the input x(t) and output y(t) are unaffected by this state transformation. 
For a given input, and assuming an initial state z(0) in the transformed system that 
is related to q(0) via (5.22), we obtain the same output as we would have from (5.1), 
(5.2). In particular, the transfer function from input to output is unaffected by a 
similarity transformation. 

Similarity transformations can be defined in exactly the same way for the DT case 
in (5.3), (5.4). 

5.3.1 Transformation to Modal Coordinates 

What makes the modal similarity transformation (5.19) interesting and useful is 
the fact that the state evolution matrix A transforms to a diagonal matrix Λ: 

 
λ1 0 · · · 0 

 

V−1AV = diagonal {λ1, · · · , λL} = 
 

0 
. . . 

λ2 
. . . 

· · · 
. . . 

0 
. . . 

 
= Λ . (5.25) 

0 0 · · · λL 

The easiest way to verify this is to establish the equivalent fact that AV = VΛ, 
which in turn is simply the equation (5.11), written for i = 1, , L and stacked · · · 
up in matrix form. 

The diagonal form of Λ causes the corresponding state equations in the new co
ordinate system to be decoupled. Under this modal transformation, the undriven 
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system (5.5) is transformed into L decoupled, scalar equations: 

ṙi(t) = λiri(t) for i = 1, 2, . . . , L . (5.26) 

Each of these is easy to solve: 

ri(t) = e λit ri(0) . (5.27) 

Combining this with (5.19) yields (5.13) again, with αi = ri(0). 

5.4 THE COMPLETE RESPONSE 

Applying the modal transformation (5.19) to the full driven system (5.1), (5.2), we 
see that the transformed system (5.23), (5.24) takes the following form, which is 
decoupled into L parallel scalar subsystems: 

ṙi(t) = λiri(t) + βix(t) , i = 1, 2, . . . , L (5.28) 

y(t) = ξ1r1(t) + + ξLrL(t) + dx(t) , (5.29) · · · 

where the βi and ξi are defined via 
 

β1 
 

V−1b = 



β

.. 
2 

 = β , c T V = 
[ 

ξ1 ξ2 · · · ξL 
] 

= ξ . (5.30) 
.  

βL 

The second equation in (5.30) shows that 

ξi = c T vi . (5.31) 

To find an interpretation of the βi, note that the first equation in (5.30) can be 
rewritten as b = Vβ. Writing out the product Vβ in detail, we find 

b = v1β1 + v2β2 + + vLβL . (5.32) · · · 

In other words, the coefficients βi are the coefficients needed to express the input 
vector b as a linear combination of the eigenvectors vi. 

Each of the scalar equations in (5.28) is a first-order LTI differential equation, and 
can be solved explicitly for t ≥ 0, obtaining 

t 

ri(t) = e λit ri(0) + e λi(t−τ )βix(τ) dτ , t ≥ 0 , 1 ≤ i ≤ L . (5.33) 
0︸ ︷︷ ︸ ︸ ︷︷ ︸ZIR 

ZSR 

Expressed in this form, we easily recognize the separate contributions to the solution 
made by: (i) the response due to the initial state (the zero-input response or ZIR); 
and (ii) the response due to the system input (the zero-state response or ZSR). 
From the preceding expression and (5.29), one can obtain an expression for y(t). 
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Introducing the natural “matrix exponential” notation 

λ1t
 

e 0 0 
 

λ2t	
· · · 
· · · 

e Λt = diagonal {e λ1t , · · · , e λL t} = 
 

0
... 

e
... 

. . . 

0
... 

 
(5.34) 

0 0 eλLt · · · 
allows us to combine the L equations in (5.33) into the following single matrix 
equation: 

t 

r(t) = e Λt r(0) + e Λ(t−τ)βx(τ) dτ , t ≥ 0 (5.35) 
0 

(where the integral of a vector is interpreted as the component-wise integral). Com
bining this equation with the expression (5.19) that relates r(t) to q(t), we finally 
obtain 

t 

q(t) = 
(
Ve ΛtV−1

)
q(0) + 

∫ (
Ve Λ(t−τ )V−1

)
bx(τ ) dτ (5.36) 

0 
t 

= e At q(0) + e A(t−τ )bx(τ) dτ , t ≥ 0 ,	 (5.37) 
0 

where, by analogy with (5.25), we have defined the matrix exponential 

e At = Ve ΛtV−1 .	 (5.38) 

Equation (5.37) gives us, in compact matrix notation, the general solution of the 
CT LTI system (5.1). 

An entirely parallel development can be carried out for the DT LTI case. The 
corresponding expression for the solution of (5.3) is 

n−1

q[n] = 
(
VΛnV−1

)
q[0] + 

∑(
VΛn−k−1V−1

)
bx[k] (5.39) 

k=0 

n−1

= An q[0] + 
∑ 

An−k−1bx[k] , n ≥ 0 .	 (5.40) 
k=0 

Equation (5.40) is exactly the expression one would get by simply iterating (5.3) 
forward one step at a time, to get q[n] from q[0]. However, we get additional insight 
from writing the expression in the modally decomposed form (5.39), because it 
brings out the role of the eigenvalues of A, i.e., the natural frequencies of the DT 
system, in determining the behavior of the system, and in particular its stability 
properties. 

5.5	 TRANSFER FUNCTION, HIDDEN MODES, 
REACHABILITY, OBSERVABILITY 

The transfer function H(s) of the transformed model (5.28), (5.29) describes the 
zero-state input-output relationship in the Laplace transform domain, and is straight
forward to find because the equations are totally decoupled. Taking the Laplace 
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transforms of those equations, with zero initial conditions in (5.28), results in 

βi
Ri(s) = X(s) (5.41) 

s − λi 

( L

Y (s) = 
∑ 

ξiRi(s)
) 

+ dX(s) . (5.42) 
1 

Since Y (s) = H(s)X(s), we obtain 

( L
ξiβi

H(s) = 
∑ ) 

+ d (5.43) 
s − λi1 

which can be rewritten in matrix notation as 

H(s) = ξT (sI − Λ)−1β + d . (5.44) 

This is also the transfer function of the original model in (5.1), (5.2), as similarity 
transformations do not change transfer functions. An alternative expression for the 
transfer function of (5.1), (5.2) follows from examination of the Laplace transformed 
version of (5.1), (5.2). We omit the details, but the resulting expression is 

H(s) = c T (sI − A)−1b + d (5.45) 

We see from (5.43) that H(s) will have L poles in general. However, if βj = 0 for 
some j — i.e., if b can be expressed as a linear combination of the eigenvectors 
other than vj , see (5.32) — then λj fails to appear as a pole of the transfer function, 
even though it is still a natural frequency of the system and appears in the ZIR 
for almost all initial conditions. The underlying cause for this hidden mode — an 
internal mode that is hidden from the input/output transfer function — is evident 
from (5.28) or (5.41): with βj = 0, the input fails to excite the jth mode. We say 
that the mode associated with λj is an unreachable mode in this case. In contrast, 
if βk = 0, we refer to the kth mode as reachable. (The term controllable is also 
used for reachable — although strictly speaking there is a slight difference in the 
definitions of the two concepts in the DT case.) 

If all L modes of the system are reachable, then the system itself is termed reach
able, otherwise it is called unreachable. In a reachable system, the input can fully 
excite the state (and in fact can transfer the state vector from any specified initial 
condition to any desired target state in finite time). In an unreachable system, this 
is not possible. The notion of reachability arises in several places in systems and 
control theory. 

The dual situation happens when ξj = 0 for some j — i.e., if cT vj = 0, see (5.31). 
In this case again, (5.43) shows that λj fails to appear as a pole of the transfer 
function, even though it is still a natural frequency of the system. Once again, 
we have a hidden mode. This time, the cause is evident in (5.29) or (5.42): with 
ξj = 0, the jth mode fails to appear at the output, even when it is present in the 
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state response. We say that the mode associated with λj is unobservable in this 
case. In contrast, if ξk = 0, then we call the kth mode observable. 

If all L modes of the system are observable, the system itself is termed observable, 
otherwise it is called unobservable. In an observable system, the behavior of the 
state vector can be unambiguously inferred from measurements of the input and 
output over some interval of time, whereas this is not possible for an unobservable 
system. The concept of observability also arises repeatedly in systems and control 
theory. 

Hidden modes can cause difficulty, especially if they are unstable. However, if all we 
are concerned about is representing a transfer function, or equivalently the input– 
output relation of an LTI system, then hidden modes may be of no significance. We 
can obtain a reduced-order state-space model that has the same transfer function 
by simply discarding all the equations in (5.28) that correspond to unreachable or 
unobservable modes, and discarding the corresponding terms in (5.29). 

The converse also turns out to be true: if a state-space model is reachable and ob
servable, then there is no lower order state-space system that has the same transfer 
function; in other words, a state-space model that is reachable and observable is 
minimal. 

Again, an entirely parallel development can be carried out for the DT case, as the 
next example illustrates. 

EXAMPLE 5.1 A discrete-time non-minimal system 

In this example we consider the DT system represented by the state equations 
 

q1[n + 1] 
  

0 1 
  

q1[n] 
 ( 

0 
) 

  =  
5 

   +
1 

x[n] (5.46) 
q2[n + 1] −1 2 q2[n] 

b
︸ ︷︷ ︸ 

︸ ︷︷ ︸ 

A 

 
q1[n] 

 
1 ) 

y[n] = − 1   + x[n] (5.47) 
2
︸ ︷︷ ︸ q2[n]


Tc

A delay-adder-gain block diagram representing (5.46) and (5.47) is shown in Figure 
5.1 below. 

The modes of the system correspond to the roots of the characteristic polynomial 
given by 

det (λI − A) = λ2 − 
5

2 
λ + 1 . (5.48) 

These roots are therefore 

1 
λ1 = 2 , λ2 = . (5.49) 

2 
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+ 

+ 

� 

� 
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x[n] 

z−1 

+ 

− 

1 
2 

q2[n] 

y[n]− 

+ 

q1[n] 
z−1 

5
2 

FIGURE 5.1 Delay-adder-gain block diagram for the system in Example 5.1, equa
tions (5.46) and (5.47). 

Since it is not the case here that both eigenvalues have magnitude strictly less 
than 1, the system is not asymptotically stable. The corresponding eigenvectors 
are found by solving 

( 
λ 

)
−1 

λ −(λI − A)v = 
1 

1
2

5
2 

. 

v = 0 (5.50) 

This yields with λ = λ1 = 2, and then again with λ = λ2 =

( 
1 

) ( 
2 

) 

v1 = , v2 = . (5.51) 
2 1 

The input-output transfer function of the system is given by 

H(z) = c T (zI − A)−1b + d (5.52) 
 

1 


z − 5
21 

(zI − A)−1   (5.53) = 5
2z2 − z + 1 z−1 


 [ 

0 
]
]  

z − 5
2 1

1 1  H(z) = − 1 + 1 
15

2z2 2z + 1  − z−1 

1 
5
2

z − 2 

z + 1 2 
1 1 

+ 1 = + 1 = 1
2

2 z2 − z −
1 

(5.54) = 
1 − 1

2z−1 
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Since the transfer function has only one pole and this pole is inside the unit circle, 
the system is input-output stable. However, the system has two modes, so one of 
them is a hidden mode, i.e., does not appear in the input-output transfer function. 
Hidden modes are either unreachable from the input or unobservable in the output, 
or both. To explicitly check which is the case in this example, we change to modal 
coordinates, so the original description 

q[n + 1] = Aq[n] + bx[n] (5.55) 

y[n] = c T q[n] + dx[n] (5.56) 

gets transformed via 
q[n] = Vr[n] (5.57) 

to the form 
r[n + 1] = V−1AV r[n] + V−1b x[n] (5.58) ︸ ︷︷ ︸ ︸ ︷︷ ︸ 

A=Λ b=β 

y[n] = c T V r[n] + dx[n] (5.59) 

ĉ=ξ 

where  
| | 

 [ 
1 2 

] 

V =  v1 v2  =
2 1 

. (5.60) 
| | 

The new state evolution matrix Â will then be diagonal: 

 
2 0 

 

Â = Λ =   (5.61) 
0 1 

2 

and the modified b and c matrices will be 

2 
 

3 
b̂ = β =   , (5.62) 

1 
3− 

3 ]T 
[
0ĉ = ξ = − 

2 
, d = 1 , (5.63) 

from which it is clear that the system is reachable (because β has no entries that 
are 0), but that its eigenvalue λ1 = 2 is unobservable (because ξ has a 0 in the 
first position). Note that if we had mistakenly applied this test in the original 
coordinates rather than modal coordinates, we would have erroneously decided the 
first mode is not reachable because the first entry of b is 0, and that the system is 
observable because cT has no nonzero entries. 
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In the new coordinates the state equations are 

2 0


 





 





 




2 r1[n + 1] r1[n] 3 

r2[n + 1] 0 1
2 r2[n] − 

 x[n] (5.64) += 
1 
3 


 


 + x[n] (5.65) 

r1[n]
3 

y[n] = 0 − 
2 

r2[n] 

or equivalently 
2 

r1[n + 1] = 2r1[n] + 
3 
x[n] (5.66) 

1 1 
r2[n + 1] = 

2 
r2[n] − 

3 
x[n] (5.67) 

3 
y[n] = − 

2 
r2[n] + x[n] (5.68) 

The delay-adder-gain block diagram represented by (5.64) and (5.65) is shown in 
Figure 5.2. 
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FIGURE 5.2 Delay-adder-gain block diagram for Example 5.1 after a coordinate 
transformation to display the modes. 

r2[n] 
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98 Chapter 5 Properties of LTI State-Space Models 

In the block diagram of Figure 5.2 representing the state equations in modal co
ordinates, the modes are individually recognizable. This corresponds to the fact 
that the original A matrix has been diagonalized by the coordinate change. From 
this block diagram we can readily see by inspection that the unstable mode is not 
observable in the output, since the gain connecting that mode to the output is zero. 
However, it is reachable from the input. 

Note that the block diagram in Figure 5.3 has the same modes and input-output 
transfer function as that in Figure 5.2. However, in this case the unstable mode is 
observable but not reachable. 
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− 3 

2 
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r1[n] 
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1 
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y[n] 

r2[n] 

x[n] 

1 
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FIGURE 5.3 Delay-adder-gain block diagram for Example 5.1 realizing the same 
transfer function. In this case the unstable mode is observable but not reachable. 

EXAMPLE 5.2 Evaluating asymptotic stability of a linear, periodically varying sys
tem 

The stability of linear periodically varying systems can be analyzed by methods 
that are close to those used for LTI systems. Suppose, for instance, that 

q[n + 1] = A[n]q[n] , A[n] = A0 for even n, A[n] = A1 for odd n. 

Then 
q[n + 2] = A1A0q[n] 
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for even n, so the dynamics of the even samples is governed by an LTI model, and 
the stability of the even samples is accordingly determined by the eigenvalues of 
the constant matrix Aeven = A1A0. The stability of the odd samples is similarly 
governed by the eigenvalues of the matrix Aodd = A0A1; it turns out that the 
nonzero eigenvalues of this matrix are the same as those of Aeven, so either one can 
be used for a stability check. 

As an example, suppose 
( 

0 1 
) ( 

0 1 
) 

A0 = , A1 = , (5.69) 
0 3 4.25 −1.25 

whose respective eigenvalues are (0 , 3) and (1.53 , −2.78), so both matrices have 
eigenvalues of magnitude greater than 1. Now 

( 
0 3 

) 

Aeven = A1A0 = , (5.70) 
0 0.5 

and its eigenvalues are (0 , 0.5), which corresponds to a stable system! 
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C H A P T E R 6 

State Observers and State Feedback 

Our study of the modal solutions of LTI state-space models made clear in complete 
analytical detail that the state at any given time summarizes everything about the 
past that is relevant to future behavior of the model. More specifically, given the 
value of the state vector at some initial instant, and given the entire input trajectory 
over some interval of time extending from the initial instant into the future, one 
can determine the entire future state and output trajectories of the model over 
that interval. The same general conclusion holds for nonlinear and time-varying 
state-space models, although they are generally far less tractable analytically. Our 
focus will be on LTI models. 

It is typically the case that we do not have any direct measurement of the ini
tial state of a system, and will have to make some guess or estimate of it. This 
uncertainty about the initial state generates uncertainty about the future state tra
jectory, even if our model for the system is perfect, and even if we have accurate 
knowledge of the inputs to the system. 

The first part of this chapter is devoted to addressing the issue of state trajectory 
estimation, given uncertainty about the initial state of the system. We shall see that 
the state can actually be asymptotically determined under appropriate conditions, 
by means of a so-called state observer. The observer uses a model of the system 
along with past measurements of both the input and output trajectories of the 
system. 

The second part of the chapter examines how the input to the system should be 
controlled in order to yield desirable system behavior. We shall see that having 
knowledge of the present state of the system provides a powerful basis for designing 
feedback control to stabilize or otherwise improve the behavior of the resulting 
closed-loop system. When direct measurements of the state are not available, the 
asymptotic state estimate provided by an observer turns out to suffice. 

6.1 PLANT AND MODEL 

It is important now to make a distinction between the actual, physical (and causal) 
system we are interested in studying or working with or controlling — what is often 
termed the plant (as in “physical plant”) — and our idealized model for the plant. 
The plant is usually a complex, highly nonlinear and time-varying object, typically 
requiring an infinite number (or a continuum) of state variables and parameters to 
represent it with ultimate fidelity. Our model, on the other hand, is an idealized 
and simplified (and often LTI) representation, of relatively low order, that aims to 
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102 Chapter 6 State Observers and State Feedback 

capture the behavior of the plant in some limited regime of its operation, while 
remaining tractable for analysis, computation, simulation and design. 

The inputs to the model represent the inputs acting on or driving the actual plant, 
and the outputs of the model represent signals in the plant that are accessible for 
measurement. In practice we will typically not know all the driving inputs to the 
plant exactly. Apart from those driving inputs that we have access to, there will 
also generally be additional unmeasured disturbance inputs acting on the plant that 
we are only able to characterize in some general way, perhaps as random processes. 
Similarly, the measured outputs of the plant will differ from what we might predict 
on the basis of our limited model, partly because of measurement noise. 

6.2 STATE ESTIMATION BY REAL-TIME SIMULATION 

Suppose the plant of interest to us is correctly described by the following equations, 
which constitute an Lth-order LTI state-space representation of the plant: 

q[n + 1] = Aq[n] + bx[n] + w[n] , (6.1) 

y[n] = c T q[n] + dx[n] + ζ[n] . (6.2) 

Here x[n] denotes the known (scalar) control input, and w[n] denotes the vector 
of unknown disturbances that drive the plant, not necessarily through the same 
channels as the input x[n]. For example, we might have w[n] = f v[n], where v[n] is 
a scalar disturbance signal and f is a vector describing how this scalar disturbance 
drives the system (just as b describes how x[n] drives the system). The quantity 
y[n] denotes the known or measured (scalar) output, and ζ[n] denotes the unknown 
noise in this measured output. We refer to w[n] as plant disturbance or plant 
noise, and to ζ[n] as measurement noise. We focus mainly on the DT case now, but 
essentially everything carries over in a natural way to the CT case. 

With the above equations representing the true plant, what sort of model might 
we use to study or simulate the behavior of the plant, given that we know x[n] and 
y[n]? If nothing further was known about the disturbance variables in w[n] and 
the measurement noise ζ[n], or if we only knew that they could be represented as 
zero-mean random processes, for instance, then one strategy would be to simply 
ignore these variables when studying or simulating the plant. If everything else 
about the plant was known, our representation of the plant’s behavior would be 
embodied in an LTI state-space model of the form 

q̂[n + 1] = Aq̂[n] + bx[n] , (6.3) 

ŷ[n] = c T q̂[n] + dx[n] . (6.4) 

The x[n] that drives our model is the same known x[n] that is an input (along with 
possibly other inputs) to the plant. However, the state q̂[n] and output ŷ[n] of the 
model will generally differ from the corresponding state q[n] and output y[n] of the 
plant, because in our formulation the plant state and output are additionally per
turbed by w[n] and ζ[n] respectively. The assumption that our model has correctly 
captured the dynamics of the plant and the relationships among the variables is 
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what allows us to use the same A, b, cT and d in our model as occur in the “true” 
plant. 

It bears repeating that in reality there are several sources of uncertainty we are 
ignoring here. At the very least, there will be discrepancies between the actual and 
assumed parameter values — i.e., between the actual entries of A, b, cT and d in 
(6.1), (6.2) and the assumed entries of these matrices in (6.3), (6.4) respectively. 
Even more troublesome is the fact that the actual system is probably more accu
rately represented by a nonlinear, time-varying model of much higher order than 
that of our assumed LTI model, and with various other disturbance signals acting 
on it. We shall not examine the effects of all these additional sources of uncertainty. 

With a model in hand, it is natural to consider obtaining an estimate of the current 
plant state by running the model forward in real time, as a simulator. For this, we 
initialize the model (6.3) at some initial time (which we take to be n = 0 without 
loss of generality), picking its initial state q̂[0] to be some guess or estimate of the 
initial state of the plant. We then drive the model with the known input x[n] from 
time n = 0 onwards, generating an estimated or predicted state trajectory q̂[n] for 
n > 0. We could then also generate the predicted output ŷ[n] using the prescription 
in (6.4). 

In order to examine how well this real-time simulator performs as a state estimator, 
we examine the error vector 

q̃[n] = q[n] − q̂[n] . (6.5) 

Note that q̃[n] is the difference between the actual and estimated (or predicted) 
state trajectories. By subtracting (6.3) from (6.1), we see that this difference, the 
estimation error or prediction error q̃[n], is itself governed by an LTI state-space 
equation: 

q̃[n + 1] = Aq̃[n] + w[n] (6.6) 

with initial condition 
q̃[0] = q[0] − q̂[0] . (6.7) 

This initial condition is our uncertainty about the initial state of the plant. 

What (6.6) shows is that, if the original system (6.1) is unstable (i.e., if A has 
eigenvalues of magnitude greater than 1), or has otherwise undesirable dynamics, 
and if either q̃[0] or w[n] is nonzero, then the error q̃[n] between the actual and 
estimated state trajectories will grow exponentially, or will have otherwise undesir
able behavior, see Figure 6.1. Even if the plant is not unstable, we see from (6.6) 
that the error dynamics are driven by the disturbance process w[n], and we have no 
means to shape the effect of this disturbance on the estimation error. The real-time 
simulator is thus generally an inadequate way of reconstructing the state. 

6.3 THE STATE OBSERVER 

To do better than the real-time simulator (6.3), we must use not only the input x[n] 
but also the measured output y[n]. The key idea is to use the discrepancy between 
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q 

q ^ 

0 t 

FIGURE 6.1 Schematic representation of the effect of an erroneous initial condition 
on the state estimate produced by the real-time simulator for an unstable plant. 

actual and predicted outputs, y[n] in (6.2) and ŷ[n] in (6.4) respectively — i.e., to 
use the output prediction error — as a correction term for the real-time simulator. 
The resulting system is termed a state observer (or state estimator) for the plant, 
and in our setting takes the form 

q̂[n + 1] = Aq̂[n] + bx[n] 

− ℓ y[n] − ŷ[n] . (6.8) 

The observer equation above has been written in a way that displays its two con
stituent parts: a part that simulates as closely as possible the plant whose states 
we are trying to estimate, and a part that feeds the correction term y[n] − ŷ[n] into 
this simulation. This correction term is applied through the L-component vector 
ℓ, termed the observer gain vector, with ith component ℓi. (The negative sign in 
front of ℓ in (6.8) is used only to simplify the appearance of some later expressions). 
Figure 6.2 is a block-diagram representation of the resulting structure. 

Now subtracting (6.8) from (6.1), we find that the state estimation error or observer 
error satisfies 

(
T 

)
q̃[n + 1] = Aq̃[n] + w[n] + ℓ y[n] − c q̂[n] − dx[n]

= (A + ℓc T )q̃[n] + w[n] + ℓζ[n] . (6.9) 

If the observer gain ℓ is 0, then the error dynamics are evidently just the dynamics 
of the real-time simulator (6.6). More generally, the dynamics are governed by the 
system’s natural frequencies, namely the eigenvalues of A + ℓcT or the roots of the 
characteristic polynomial 

κ(λ) = det
(
λI − (A + ℓc T )

) 
(6.10) 

= λL + κL−1λ
L−1 + + κ0 . (6.11) · · · 

(This polynomial, like all the characteristic polynomials we deal with, has real 
coefficients and is monic, i.e., its highest-degree term is scaled by 1 rather than 
some non-unit scalar.) 

©Alan V. Oppenheim and George C. Verghese, 2010 c



Section 6.3 The State Observer 105 

cT 

l 

q̂[ n ] ŷ[n ] 
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FIGURE 6.2 An observer for the plant in the upper part of the diagram comprises 
a real-time simulation of the plant, driven by the same input, and corrected by a 
signal derived from the output prediction error. 

Two questions immediately arise: 

(i)	 How much freedom do we have in placing the observer eigenvalues, i.e., the 
eigenvalues of A + ℓcT or the roots of κ(λ), by appropriate choice of the 
observer gain ℓ ? 

(ii)	 How does the choice of ℓ shape the effects of the disturbance and noise terms 
w[n] and ζ[n] on the observer error? 

Brief answers to these questions are respectively as follows: 

(i)	 At ℓ = 0 the observer eigenvalues, namely the eigenvalues of A + ℓcT , are 
those of the real-time simulator, which are also those of the given system or 
plant. By varying the entries of ℓ away from 0, it turns out we can move all 
the eigenvalues that correspond to observable eigenvalues of the plant (which 
may number as many as L eigenvalues), and those are the only eigenvalues we 
can move. Moreover, appropriate choice of ℓ allows us, in principle, to move 
these observable eigenvalues to any arbitrary set of self-conjugate points in 
the complex plane. (A self-conjugate set is one that remains unchanged by 
taking the complex conjugate of the set. This is equivalent to requiring that 
if a complex point is in such a set, then its complex conjugate is as well.) 
The self-conjugacy restriction is necessary because we are working with real 
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parameters and gains. 

The unobservable eigenvalues of the plant remain eigenvalues of the observer, 
and cannot be moved. (This claim can be explicitly demonstrated by trans
formation to modal coordinates, but we omit the details.) The reason for this 
is that information about these unobservable modes does not make its way 
into the output prediction error that is used in the observer to correct the 
real-time simulator. 

It follows from the preceding statements that a stable observer can be designed 
if and only if all unobservable modes of the plant are stable (a property that is 
termed detectability). Also, the observer can be designed to have an arbitrary 
characteristic polynomial κ(λ) if and only if the plant is observable. 

We shall not prove the various claims above. Instead, we limit ourselves to 
proving, later in this chapter, a closely analogous set of results for the case of 
state feedback control. 

In designing observers analytically for low-order systems, one way to proceed 
is by specifying a desired set of observer eigenvalues ǫ1, ǫL, thus specifying · · · 
the observer characteristic polynomial κ(λ) as 

L

κ(λ) = 
∏

(λ − ǫi) .	 (6.12) 
i=1 

Expanding this out and equating it to det
(
λI − (A + ℓc T )

) 
, as in (6.10), 

yields L simultaneous linear equations in the unknown gains ℓ1, , ℓL. These · · · 
equations will be consistent and solvable for the observer gains if and only if 
all the unobservable eigenvalues of the plant are included among the specified 
observer eigenvalues {ǫi}. 
The preceding results also suggest an alternative way to determine the un-

Tobservable eigenvalues of the plant: the roots of det
(
λI − (A + ℓc )

) 
that 

cannot be moved, no matter how ℓ is chosen, are precisely the unobservable 
eigenvalues of the plant. This approach to exposing unobservable modes can 
be easier in some problems than the approach used in the previous chapter, 
which required first computing the eigenvectors {vi} of the system, and then 
checking for which i we had cT vi = 0. 

(ii)	 We now address how the choice of ℓ shapes the effects of the disturbance and 
noise terms w[n] and ζ[n] on the observer error. The first point to note is 
that if the error system (6.9) is made asymptotically stable by appropriate 
choice of observer gain ℓ, then bounded plant disturbance w[n] and bounded 
measurement noise ζ[n] will result in the observer error being bounded. This 
is most easily proved by transforming to modal coordinates, but we omit the 
details. 

The observer error equation (6.9) shows that the observer gain ℓ enters in 
two places, first in causing the error dynamics to be governed by the state 
evolution matrix A + ℓcT rather than A, and again as the input vector for 
the measurement noise ζ[n]. This highlights a basic tradeoff between error 
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decay and noise immunity. The observer gain can be used to obtain fast error 
decay, as might be needed in the presence of plant disturbances w[n] that 
continually perturb the system state away from where we think it is — but 
large entries in ℓ may be required to accomplish this (certainly in the CT case, 
but also in DT if the model is a sampled-data version of some underlying CT 
system, as in the following example), and these large entries in ℓ will have 
the undesired result of accentuating the effect of the measurement noise. A 
large observer gain may also increase the susceptibility of the observer design 
to mod! eling errors and other discrepancies. In practice, such considerations 
would lead us design somewhat conservatively, not attempting to obtain overly 
fast error-decay dynamics. 

Some aspects of the tradeoffs above can be captured in a tractable optimiza
tion problem. Modeling w[n] and ζ[n] as stationary random processes (which 
are introduced in a later chapter), we can formulate the problem of picking 
ℓ to minimize some measure of the steady-state variances in the components 
of the state estimation error q̃[n]. The solution to this and a range of related 
problems is provided by the so-called Kalman filtering framework. We will be 
in a position to work through some elementary versions of this once we have 
developed the machinery for dealing with stationary random processes. 

EXAMPLE 6.1 Ship Steering 

Consider the following simplified sampled-data model for the steering dynamics 
of a ship traveling at constant speed, with a rudder angle that is controlled in a 
piecewise-constant fashion by a computer-based controller: 

[ 
q1[n + 1] 

] [ 
1 σ 

] [ 
q1[n] 

] [ 
ǫ 

] 

q[n + 1] = = + x[n]
q2[n + 1] 0 α q2[n] σ 

= Aq[n] + bx[n] . (6.13) 

The state vector q[n] comprises the sampled heading error q1[n] (which is the 
direction the ship points in, relative to the desired direction of motion) and the 
sampled rate of turn q2[n] of the ship, both sampled at time t = nT ; x[n] is the 
constant value of the rudder angle (relative to the direction in which the ship 
points) in the interval nT ≤ t < nT + T (we pick positive rudder angle to be that 
which would tend to increase the heading error). The positive parameters α, σ 
and ǫ are determined by the type of ship, its speed, and the sampling interval T . 
In particular, α is generally smaller than 1, but can be larger than 1 for a large 
tanker; in any case, the system (6.13) is not asymptotically stable. The constant σ 
is approximately equal to the sampling interval T . 

Suppose we had (noisy) measurements of the rate of turn, so 
T c = 

( 
0 1 

) 
. (6.14) 

Then ( 
1 σ + ℓ1 

) 

A + ℓc T = . (6.15) 
0 α + ℓ2 
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Evidently one natural frequency of the error equation is fixed at 1, no matter what 
ℓ is. This natural frequency corresponds to a mode of the original system that is 
unobservable from rate-of-turn measurements. Moreover, it is not an asymptotically 
stable mode, so the corresponding observer error will not decay. Physically, the 
problem is that the rate of turn contains no input from or information about the 
heading error itself. 

If, instead, we have (noisy) measurements of the heading error, so 

T c = 
( 

1 0 
) 

. (6.16) 

In this case ( 
1 + ℓ1 σ 

) 

A + ℓc T = . (6.17) 
ℓ2 α 

The characteristic polynomial of this matrix is 

κ(λ) = λ2 − λ(1 + ℓ1 + α) + α(1 + ℓ1) − ℓ2σ . (6.18) 

This can be made into an arbitrary monic polynomial of degree 2 by choice of the 
gains ℓ1 and ℓ2, which also establishes the observability of our plant model. 

One interesting choice of observer gains in this case is ℓ1 = −1 − α and ℓ2 = −α2/σ 
(which, for typical parameter values, results in ℓ2 being large). With this choice, 

( 
σ 

) 

A + ℓc T = −
−
α2

α
/σ α 

. (6.19) 

The characteristic polynomial of this matrix is κ(λ) = λ2, so the natural frequencies 
of the observer error equation are both at 0. 

A DT LTI system with all natural frequencies at 0 is referred to as deadbeat, because 
its zero-input response settles exactly to the origin in finite time. (This finite-time 
settling is possible for the zero-input response of an LTI DT system, but not for 
an LTI CT system, though of course it is possible for an LTI CT system to have 
an arbitrarily small zero-input response after any specified positive time.) We have 
not discussed how to analyze LTI state-space models with non-distinct eigenvalues, 
but to verify the above claim of finite settling for our observer, it suffices to confirm 
from (6.19) that (A + ℓcT )2 = 0 when the gains ℓi are chosen to yield κ(λ) = λ2 . 
This implies that in the absence of plant disturbance and measurement noise, the 
observer error goes to 0 in at most two steps. 

In the presence of measurement noise, one may want to choose a slower error decay, 
so as to keep the observer gain ℓ — and ℓ2 in particular — smaller than in the 
deadbeat case, and thereby not accentuate the effects of measurement noise on the 
estimation error. 

6.4 STATE FEEDBACK CONTROL 

For a causal system or plant with inputs that we are able to manipulate, it is 
natural to ask how the inputs should be chosen in order to cause the system to 
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behave in some desirable fashion. Feedback control of such a system is based on 
sensing its present or past behavior, and using the measurements of the sensed 
variables to generate control signals to apply to it. Feedback control is also referred 
to as closed-loop control. 

Open-loop control, by contrast, is not based on continuous monitoring of the plant, 
but rather on using only information available at the time that one starts inter
acting with the system. The trouble with open-loop control is that errors, even if 
recognized, are not corrected or compensated for. If the plant is poorly behaved or 
unstable, then uncorrected errors can lead to bad or catastrophic consequences. 

Feedforward control refers to schemes incorporating measurements of signals that 
currently or in the future will affect the plant, but that are not themselves af
fected by the control. For example, in generating electrical control signals for the 
positioning motor of a steerable radar antenna, the use of measurements of wind 
velocity would correspond to feedforward control, whereas the use of measurements 
of antenna position would correspond to feedback control. Controls can have both 
feedback and feedforward components. 

Our focus in this section is on feedback control. To keep our development stream
lined, we assume the plant is well modeled by the following Lth-order LTI state-
space description: 

q[n + 1] = Aq[n] + bx[n] (6.20) 

y[n] = c T q[n] (6.21) 

rather than the more elaborate description (6.1), (6.2). As always, x[n] denotes 
the control input and y[n] denotes the measured output, both taken to be scalar 
functions of time. We shall also refer to this as the open-loop system. Again, we 
treat the DT case, but essentially everything carries over naturally to CT. Also, 
for notational simplicity, we omit from (6.21) the direct feedthrough term dx[n] 
that has appeared in our system descriptions until now, because this term can 
complicate the appearance of some of the expressions we derive, without being of 
much significance in itself; it is easily accounted for if necessary. 

Denote the characteristic polynomial of the matrix A in (6.20) by 

L

a(λ) = det(λI − A) = 
∏

(λ − λi) . (6.22) 
i=1 

The transfer function H(z) of the system (6.20), (6.21) is given by 

H(z) = c T (zI − A)−1b (6.23) 

η(z) 
= . (6.24) 

a(z) 

(The absence of the direct feedthrough term in (6.21) causes the degree of the 
polynomial η(z) to be strictly less than L. If the feedthrough term was present, the 
transfer function would simply have d added to the H(z) above.) Note that there 
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may be pole-zero cancelations involving common roots of a(z) and η(z) in (6.24), 
corresponding to the presence of unreachable and/or unobservable modes of the 
system. Only the uncanceled roots of a(z) survive as poles of H(z), and similarly 
only the uncanceled roots of η(z) survive as zeros of the transfer function. 

We reiterate that the model undoubtedly differs from the plant in many ways, 
but we shall not examine the effects of various possible sources of discrepancy 
and uncertainty. A proper treatment of such issues constitutes the field of robust 
control, which continues to be an active area of research. 

Since the state of a system completely summarizes the relevant past of the system, 
we should expect that knowledge of the state at every instant gives us a powerful 
basis for designing feedback control signals. In this section we consider the use of 
state feedback for the system (6.20), assuming that we have access to the entire state 
vector at each time. Though this assumption is unrealistic in general, it will allow 
us to develop some preliminary results as a benchmark. We shall later consider 
what happens when we treat the more realistic situation, where the state cannot 
be measured but has to be estimated instead. It will turn out in the LTI case that 
the state estimate provided by an observer will actually suffice to accomplish much 
of what can be achieved when the actual state is used for feedback. 

The particular case of LTI state feedback is represented in Figure 6.3, in which the 
feedback part of the input x[n] is a constant linear function of the state q[n] at that 
instant: 

x[n] = p[n] + g T q[n] (6.25) 

where the L-component row vector gT is the state feedback gain vector (with ith 
component gi), and p[n] is some external input signal that can be used to augment 
the feedback signal. Thus x[n] is p[n] plus a weighted linear combination of the 
state variables qi[n], with constant weights gi. 

�p + �x Linear Dynamical 
System > 

q 

<gTg T 
q 

� 

FIGURE 6.3 Linear dynamical system with LTI state feedback. The single lines 
denote scalar signals and the double lines denote vector signals. 

With this choice for x[n], the system (6.20) becomes 

(
T 

)
q[n + 1] = Aq[n] + b p[n] + g q[n]

= 
(
A + bgT 

)
q[n] + bp[n] . (6.26) 
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The behavior of this closed-loop system, and in particular its stability, is governed 
by its natural frequencies, namely by the L eigenvalues of the matrix A + bgT or 
the roots of the characteristic polynomial 

ν(λ) = det
(
λI − (A + bgT )

)	
(6.27) 

= λL + νL−1λ
L−1 + + ν0 .	 (6.28) · · · 

Some questions immediately arise: 

(i)	 How much freedom do we have in placing the closed-loop eigenvalues, i.e., the 
eigenvalues of A +bgT or the roots of ν(λ), by appropriate choice of the state 
feedback gain gT ? 

(ii)	 How does state feedback affect reachability, observability and the transfer

function of the system?


(iii)	 How does the choice of gT affect the state behavior and the control effort that 
is required? 

Brief answers to these (inter-related) questions are respectively as follows: 

(i)	 By varying the entries of gT away from 0, we can move all the reachable 
eigenvalues of the system (which may number as many as L), and only those 
eigenvalues. Moreover, appropriate choice of gT allows us, in principle, to 
move the reachable eigenvalues to any arbitrary set of self-conjugate points in 
the complex plane. 

The unreachable eigenvalues of the open-loop system remain eigenvalues of 
the closed-loop system, and cannot be moved. (This can be explicitly demon
strated by transformation to modal coordinates, but we omit the details.) 
The reason for this is that the control input cannot access these unreachable 
modes. 

It follows from the preceding claims that a stable closed-loop system can be 
designed if and only if all unreachable modes of the open-loop system are 
stable (a property that is termed stabilizability). Also, state feedback can 
yield an arbitrary closed-loop characteristic polynomial ν(λ) if and only if the 
open-loop system (6.20) is reachable. 

The proof for the above claims is presented in Section 6.4.1.


In designing state feedback control analytically for low-order examples, one

way to proceed is by specifying a desired set of closed-loop eigenvalues µ1, µL,
· · · 
thus specifying ν(λ) as 

L

ν(λ) = 
∏

(λ − νi) .	 (6.29) 
i=1 

Expanding this out and equating it to det
(
λI − (A + bgT )

)
, as in (6.27), 

yields L simultaneous linear equations in the unknown gains g1, , gL. These · · · 
equations will be consistent and solvable for the state feedback gains if and 
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only if all the unreachable eigenvalues of the plant are included among the 
specified closed-loop eigenvalues {µi}. 
The preceding results also suggest an alternative way to determine the un

reachable eigenvalues of the given plant: the roots of det
(
λI−(A+bgT )

) 
that 

cannot be moved, no matter how gT is chosen, are precisely the unreachable 
eigenvalues of the plant. This approach to exposing unreachable modes can 
be easier in some problems than the approach used in the previous chapter, 
which required first computing the eigenvectors {vi} of the plant, and then 
checking which of these eigenvectors were not needed in writing b as a linear 
combination of the eigenvectors. 

[The above discussion has closely paralleled our discussion of observers, except 
that observability statements have been replaced by reachability statements 
throughout. The underlying reason for this “duality” is that the eigenvalues 
of A + bgT are the same as those of its transpose, namely AT + gbT . The 
latter matrix has exactly the structure of the matrix A + ℓcT that was the 
focus of our discussion of observers, except that A is now replaced by AT , 
and cT is replaced by bT . It is not hard to see that the structure of observable 
and unobservable modes determined by the pair AT and bT is the same as 
the structure of reachable and unreachable modes determined by the pair A 
and b.] 

(ii)	 The results in part (i) above already suggest the following fact: that whether 
or not an eigenvalue is reachable from the external input — i.e., from x[n] 
for the open-loop system and p[n] for the closed-loop system — is unaffected 
by state feedback. An unreachable eigenvalue of the open-loop system cannot 
be excited from the input x[n], no matter how the input is generated, and 
therefore cannot be excited even in closed loop (which also explains why it 
cannot be moved by state feedback). Similarly, a reachable eigenvalue of the 
open-loop system can also be excited in the closed-loop system, because any 
x[n] that excites it in the open-loop system may be generated in the closed-
loop system by choosing p[n] = x[n] − gT q[n]. 

The proof in Section 6.4.1 of the claims in (i) will also establish that the 
transfer function of the closed-loop system, from p[n] to y[n], is now 

Hcl(z) = c T 
( 
zI − (A + bgT )

)−1 
b (6.30) 

= 
η(z) 
ν(z) 

. (6.31) 

Thus the zeros of the closed-loop transfer function are still drawn from the 
roots of the same numerator polynomial η(z) in (6.24) that contains the zeros 
of the open-loop system; state feedback does not change η(z). However, the 
actual zeros of the closed-loop system are those roots of η(z) that are not 
canceled by roots of the new closed-loop characteristic polynomial ν(z), and 
may therefore differ from the zeros of the open-loop system. 

We know from the previous chapter that hidden modes in a transfer function 
are the result of the modes being unreachable and/or unobservable. Because 
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state feedback cannot alter reachability properties, it follows that any changes 
in cancelations of roots of η(z), in going from the original open-loop system to 
the closed-loop one, must be the result of state feedback altering the observ
ability properties of the original modes. If an unobservable (but reachable) 
eigenvalue of the open-loop system is moved by state feedback and becomes 
observable, then a previously canceled root of η(z) is no longer canceled and 
now appears as a zero of the closed-loop system. Similarly, if an observable 
(and reachable) eigenvalue of the open-loop system is moved by state feedback 
to a location where it now cancels a root of η(z), then this root is no longer a 
zero of the closed-loop system, and this hidden mode corresponds to a mode 
that has been made unobservable by state feed! back. 

(iii)	 We turn now to the question of how the choice of gT affects the state behavior 
and the control effort that is required. Note first that if gT is chosen such 
that the closed-loop system is asymptotically stable, then a bounded external 
signal p[n] in (6.26) will lead to a bounded state trajectory in the closed-loop 
system. This is easily seen by considering the transformation of (6.26) to 
modal coordinates, but we omit the details. 

The state feedback gain gT affects the closed-loop system in two key ways, 
first by causing the dynamics to be governed by the eigenvalues of A + bgT 

rather than those of A, and second by determining the scaling of the control 
input x[n] via the relationship in (6.25). This highlights a basic tradeoff 
between the response rate and the control effort. The state feedback gain 
can be used to obtain a fast response, to bring the system state from its 
initially disturbed value rapidly back to the origin — but large entries in gT 

may be needed to do this (certainly in the CT case, but also in DT if the 
model is a sampled-data version of some underlying CT system), and these 
large entries in gT result in large control effort being expended. Furthermore, 
the effects of any errors in measuring or estimating the state vector, or of 
modeling errors and other discrepancies, are likely to be accentuated with 
large feedback gains. In practice, these considerations would lead us design 
somewhat conservatively, not attempting to obtain overly fast closed-loop 
dynamics. Again, some aspects of the tradeoffs involved can be captured in 
tractable optimization problems, but these are left to more advanced courses. 

We work through a CT example first, partly to make clear that our development 
carries over directly from the DT to the CT case. 
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EXAMPLE 6.2 Inverted Pendulum with Torque Control 

R 

m 

θ 

FIGURE 6.4 Inverted pendulum. 

Consider the inverted pendulum shown in Figure 6.4, comprising a mass m at the 
end of a light, hinged rod of length R. For small deviations θ(t) from the vertical, 

d2θ(t) 
= Kθ(t) + σx(t) , (6.32) 

dt2 

where K = g/R (g being the acceleration due to gravity), σ = 1/(mR2), and 
a torque input x(t) is applied at the point of support of the pendulum. Define 
q1(t) = θ(t), q2(t) = θ̇(t); then 

[ 
0 1 

] [ 
0 

] 

q̇(t) = q(t) + x(t) . (6.33) 
K 0 σ 

We could now determine the system eigenvalues and eigenvectors to decide whether 
the system is reachable. However, this step is actually not necessary in order to 
assess reachability and compute a state feedback. Instead, considering directly the 
effect of the state feedback, we find 

x(t) = g T q(t) (6.34) 
[ 

0 1 
] [ 

0 
] 

q̇(t) = q(t) + [ g1 g2 ]q(t) (6.35) 
K 0 σ 

[ 
0 1 

] 

= q(t) . (6.36) 
K + σg1 σg2 

The corresponding characteristic polynomial is 

ν(λ) = λ2 − λσg2 − (K + σg1) . (6.37) 

Inspection of this expression shows that by appropriate choice of the real gains g1 

and g2 we can make this polynomial into any desired monic second-degree polyno
mial. In other words, we can obtain any self-conjugate set of closed-loop eigenvalues. 
This also establishes that the original system is reachable. 
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Suppose we want the closed-loop eigenvalues at particular numbers µ1, µ2, which 
is equivalent to specifying the closed-loop characteristic polynomial to be 

ν(λ) = (λ − µ1)(λ − µ2) = λ2 − λ(µ1 + µ2) + µ1µ2 . (6.38) 

Equating this to the polynomial in (6.37) shows that 

µ1µ2 + K µ1 + µ2 
g1 = − and g2 = . (6.39) 

σ σ 

Both gains are negative when µ1 and µ2 form a self-conjugate set in the open 
left-half plane. 

We return now to the ship steering example introduced earlier. 

EXAMPLE 6.3 Ship Steering (continued) 

Consider again the DT state-space model in Example 6.1, repeated here for conve
nience: 

[ 
q1[n + 1] 

] [ 
1 σ 

] [ 
q1[n] 

] [ 
ǫ 

] 

q[n + 1] = = + x[n]
q2[n + 1] 0 α q2[n] σ 

= Aq[n] + bx[n] . (6.40) 

(A model of this form is also obtained for other systems of interest, for instance the 
motion of a DC motor whose input is a voltage that is held constant over intervals 
of length T by a computer-based controller. In that case, for x[n] in appropriate 
units, we have α = 1, σ = T , and ǫ = T 2/2.) 

For the purposes of this example, take 
1 

] [ 
1 

][ 
1 

A = 4 , b = 32 (6.41) 
0 1 1 

4 

and set 
x[n] = g1q1[n] + g2q2[n] (6.42) 

to get the closed-loop matrix 
1 g2 

][ 
1 + g1 

32 4 32 A + bgT = g1 

+ 
. (6.43) 

1 + g2 
4 4 

The fastest possible closed-loop response in this DT model is the deadbeat behavior 
described earlier in Example 6.1, obtained by placing both closed-loop natural 
frequencies at 0, i.e., choosing the closed-loop characteristic polynomial to be ν(λ) = 
λ2 . A little bit of algebra shows that g1 and g2 need to satisfy the following equations 
for this to be achieved: 

g1 g2 
+ = −2 

32 4 
g1 g2 − 
32 

+
4 

= −1 . (6.44) 
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Solving these simultaneously, we get g1 = −16 and g2 = −6. We have not shown 
how to analyze system behavior when there are repeated eigenvalues, but in the 
particular instance of repeated eigenvalues at 0, it is easy to show that the state 
will die to 0 in a finite number of steps — at most two steps, for this second-order 
system. To establish this, note that with the above choice of g we get 

1 1 
] 

2 16 A + bgT = 1 , (6.45) −4 − 2 

so (
A + bgT 

)2 
= 0 , (6.46) 

which shows that any nonzero initial condition will vanish in two steps. In practice, 
such deadbeat behavior may not be attainable, as unduly large control effort — 
rudder angles, in the case of the ship — would be needed. One is likely therefore 
to aim for slower decay of the error. 

Typically, we do not have direct measurements of the state variables, only knowl
edge of the control input, along with noisy measurements of the system output. 
The state may then be reconstructed using an observer that produces asymptot
ically convergent estimates of the state variables, under the assumption that the 
system (6.20), (6.21) is observable. We shall see in more detail shortly that one can 
do quite well using the state estimates produced by the observer, in place of direct 
state measurements, in a feedback control scheme. 

6.4.1 Proof of Eigenvalue Placement Results 

This subsection presents the proof of the main result claimed earlier for state feed
back, namely that it can yield any (monic, real-coefficient) closed-loop characteristic 
polynomial ν(λ) that includes among its roots all the unreachable eigenvalues of the 
original system. We shall also demonstrate that the closed-loop transfer function 
is given by the expression in (6.31). 

First transform the open-loop system (6.20), (6.21) to modal coordinates; this 
changes nothing essential in the system, but simplifies the derivation. Using the 
same notation for modal coordinates as in the previous chapter, the closed-loop 
system is now defined by the equations 

ri[n + 1] = λiri[n] + βix[n] , i = 1, 2, . . . , L (6.47) 

x[n] = γ1r1[n] + + γLrL[n] + p[n] , (6.48) · · · 

where ( 
γ1 γL 

) 
= g T V , (6.49) · · · 

and V is the modal matrix, whose columns are the eigenvectors of the open-loop 
system. The γi are therefore just the state-feedback gains in modal coordinates. 
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Now using (6.47) and (6.48) to evaluate the transfer function from p[n] to x[n], we 
get 

L
X(z)

= 
(
1 − 

∑ γiβi 
)−1 

= 
a(z) 

. (6.50) 
P (z) z − λi ν(z)

1 

To obtain the second equality in the above equation, we have used the following 
facts: (ii) the open-loop characteristic polynomial a(z) is given by (6.22), and this 
is what appears in the numerator of (6.50; (ii) the poles of this transfer function 
must be the closed-loop poles of the system, and its denominator degree must equal 
its numerator degree, so the denominator of this expression must be the closed-loop 
characteristic polynomial ν(z). Then using (6.24), we find that the overall transfer 
function from the input p[n] of the closed-loop system to the output y[n] is 

Y (z) Y (z) X(z) 
= (6.51) 

P (z) X(z) P (z) 

η(z) a(z) 
= (6.52) 

a(z) ν(z) 

η(z) 
= . (6.53) 

ν(z) 

The conclusion from all this is that state feedback has changed the denominator of 
the input-output transfer function expression from a(z) in the open-loop case to ν(z) 
in the closed-loop case, and has accordingly modified the characteristic polynomial 
and poles. State feedback has left unchanged the numerator polynomial η(z) from 
which the zeros are selected; all roots of η(z) that are not canceled by roots of ν(z) 
will appear as zeros of the closed-loop transfer function. 

Inverting (6.50), we find 
L

ν(z) ∑ γiβi 

a(z) 
= 1 − 

z − λi 
. (6.54) 

1 

Hence, given the desired closed-loop characteristic polynomial ν(λ), we can expand 
ν(z)/a(z) in a partial fraction expansion, and determine the state feedback gain γi 

(in modal coordinates) for each i by dividing the coefficient of 1/(z − λi) by −βi, 
assuming this is nonzero, i.e., assuming the ith mode is reachable. If the jth mode 
is unreachable, so βj = 0, then λj does not appear as a pole on the right side of 
(6.54), which must mean that ν(z) has to contain z − λj as a factor (in order for 
this factor to cancel out on the left side of the equation), i.e., every unreachable 
natural frequency of the open-loop system has to remain as a natural frequency of 
the closed-loop system. 

6.5 OBSERVER-BASED FEEDBACK CONTROL 

The obstacle to state feedback is the general unavailability of direct measurements 
of the state. All we typically have are knowledge of what control signal x[n] we 
are applying, along with (possibly noise-corrupted) measurements of the output 
y[n], and a nominal model of the system. We have already seen how to use this 
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information to estimate the state variables, using an observer or state estimator. 
Let us therefore consider what happens when we use the state estimate provided 
by the observer, rather than the (unavailable) actual state, in the feedback control 
law (6.25). With this substitution, (6.25) is modified to 

x[n] = p[n] + g T q̂[n] 

= p[n] + g T (q[n] − q̃[n]) . (6.55) 

The overall closed-loop system is then as shown in Figure 6.5, and is governed by 
the following state-space model, obtained by combining the representations of the 
subsystems that make up the overall system, namely the plant (6.1), observer error 
dynamics (6.9), and feedback control law (6.55): 
[ 

q[n + 1] 
] [ 

A + bgT −bgT 
] [ 

q[n] 
] [ 

b 
] [ 

I 
] [ 

0 
] 

q[n + 1] 
= 

0 A + ℓcT q[n]
+

0 
p[n]+ 

I
w[n]+ 

ℓ
ζ[n] . 

(6.56) 
Note that we have reverted here to the more elaborate plant representation in 
(6.1), (6.2) rather than the streamlined one in (6.20), (6.21), in order to display 
the effect of plant disturbance and measurement error on the overall closed-loop 
system. (Instead of choosing the state vector of the overall system to comprise 
the state vector q[n] of the plant and the state vector q̃[n] of the error equation, 
we could equivalently have picked q[n] and q̂[n]. The former choice leads to more 
transparent expressions.) 

The (block) triangular structure of the state matrix in (6.56) allows us to conclude 
that the natural frequencies of the overall system are simply the eigenvalues of A + 
bgT along with those of A+ℓcT . (This is not hard to demonstrate, either based on 
the definition of eigenvalues and eigenvectors, or using properties of determinants, 
but we omit the details.) In other words, our observer-based feedback control law 
results in a nicely behaved closed-loop system, with natural frequencies that are 
the union of those obtained with perfect state feedback and those obtained for the 
observer error equation. Both sets of natural frequencies can be arbitrarily selected, 
provided the open-loop system is reachable and observable. One would normally 
pick the modes that govern observer error decay to be faster than those associated 
with state feedback, in order to have reasonably accurate estimates available to the 
feedback control law before the plant state can wander too far away from what is 
desired. 

The other interesting fact is that the transfer function from p[n] to y[n] in the new 
closed-loop system is exactly what would be obtained with perfect state feedback, 
namely the transfer function in (6.46). The reason is that the condition under which 
the transfer function is computed — as the input-output response when starting 
from the zero state — ensures that the observer starts up from the same initial 
condition as the plant. This in turn ensures that there is no estimation error, so 
the estimated state is as good as the true state. Another way to see this is to note 
that the observer error modes are unobservable from the available measurements. 

The preceding observer-based compensator is the starting point for a very general 
and powerful approach to control design, one that carries over to the multi-input, 
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FIGURE 6.5 Observer-based compensator, feeding back an LTI combination of the 
estimated state variables. 

multi-output case. With the appropriate embellishments around this basic struc
ture, one can obtain every possible stabilizing LTI feedback controller for the system 
(6.20), (6.21). Within this class of controllers, we can search for those that have 
good robustness properties, in the sense that they are relatively immune to the 
uncertainties in our models. Further exploration of all this has to be left to more 
advanced courses. 
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C H A P T E R 7 

Probabilistic Models 

INTRODUCTION 

In the preceding chapters our emphasis has been on deterministic signals. In the 
remainder of this text we expand the class of signals considered to include those that 
are based on probabilistic models, referred to as random or stochastic processes. 
In introducing this important class of signals, we begin in this chapter with a 
review of the basics of probability and random variables. We assume that you have 
encountered this foundational material in a previous course, but include a review 
here for convenient reference and to establish notation. In the following chapter 
and beyond, we apply these concepts to define and discuss the class of random 
signals. 

7.1 THE BASIC PROBABILITY MODEL 

Associated with a basic probability model are the following three components, as 
indicated in Figure 7.1: 

1.	 Sample Space The sample space Ψ is the set of all possible outcomes ψ of 
the probabilistic experiment that the model represents. We require that one 
and only one outcome be produced in each experiment with the model. 

2.	 Event Algebra An event algebra is a collection of subsets of the sample 
space — referred to as events in the sample space — chosen such that unions 
of events and complements of events are themselves events (i.e., are in the 
collection of subsets). We say that a particular event has occurred if the 
outcome of the experiment lies in this event subset; thus Ψ is the “certain 
event” because it always occurs, and the empty set ∅ is the “impossible event” 
because it never occurs. Note that intersections of events are also events, 
because intersections can be expressed in terms of unions and complements. 

3.	 Probability Measure A probability measure associates with each event A 
a number P (A), termed the probability of A, in such a way that: 

(a) P (A) ≥ 0 ; 

(b) P (Ψ) = 1 ; 

(c) If A ∩ B = ∅, i.e., if events A and B are mutually exclusive, then 

P (A ∪ B) = P (A) + P (B) . 
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Sample Space Ψ 

Collection of outcomes 
Outcome ψ (Event) 

� � 

FIGURE 7.1 Sample space and events. 

Note that for any particular case we often have a range of options in specifying what 
constitutes an outcome, in defining an event algebra, and in assigning a probability 
measure. It is generally convenient to have as few elements or outcomes as possible 
in a sample space, but we need enough of them to enable specification of the events 
of interest to us. It is typically convenient to pick the smallest event algebra that 
contains the events of interest. We also require that there be an assignment of 
probabilities to events that is consistent with the above conditions. This assignment 
may be made on the basis of symmetry arguments or in some other way that is 
suggested by the particular application. 

7.2	 CONDITIONAL PROBABILITY, BAYES’ RULE, AND INDEPEN
DENCE 

The probability of event A, given that event B has occurred, is denoted by P (A B). |
Knowing that B has occurred in effect reduces the sample space to the outcomes 
in B, so a natural definition of the conditional probability is 

Δ P (A ∩ B)
P (A|B) = 

P (B) 
if P (B) > 0 .	 (7.1) 

It is straightforward to verify that this definition of conditional probability yields a 
valid probability measure on the sample space B. The preceding equation can also 
be rearranged to the form 

P (A ∩ B) = P (A|B)P (B) .	 (7.2) 

We often write P (AB) or P (A,B) for the joint probability P (A ∩ B). If P (B) = 0, 
then the conditional probability in (7.1) is undefined. 

By symmetry, we can also write 

P (A ∩ B) = P (B|A)P (A)	 (7.3) 

Combining the preceding two equations, we obtain one form of Bayes’ rule (or 
theorem), which is at the heart of much of what we’ll do with signal detection, 
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classification, and estimation: 

P (B|A) = 
P (A

P

|B
(A

)P 
)

(B) 
(7.4) 

A more detailed form of Bayes’ rule can be written for the conditional probability of 
one of a set of events {Bj } that are mutually exclusive and collectively exhaustive, 
i.e. Bℓ ∩ Bm = ∅ if ℓ =6 m, and 

⋃
Bj = Ψ. In this case, j 

P (A) = 
∑ 

P (A ∩ Bj ) = 
∑ 

P (A|Bj )P (Bj ) (7.5) 
j j 

so that 

P (Bℓ A) = 
P (A|Bℓ)P (Bℓ) 

(7.6) | ∑
j P (A|Bj )P (Bj ) 

Events A and B are said to be independent if 

P (A B) = P (A) (7.7) |

or equivalently if the joint probability factors as 

P (A ∩ B) = P (A)P (B) . (7.8) 

More generally, a collection of events is said to be mutually independent if the 
probability of the intersection of events from this collection, taken any number at 
a time, is always the product of the individual probabilities. Note that pairwise 
independence is not enough. Also, two sets of events A and B are said to be 
independent of each other if the probability of an intersection of events taken from 
these two sets always factors into the product of the joint probability of those events 
that are in A and the joint probability of those events that are in B. 

EXAMPLE 7.1 Transmission errors in a communication system 

A communication system transmits symbols labeled A, B, and C. Because of 
errors (noise) introduced by the channel, there is a nonzero probability that for 
each transmitted symbol, the received symbol differs from the transmitted one. 
Table 7.1 describes the joint probability for each possible pair of transmitted and 
received symbols under a certain set of system conditions. 

Symbol received 
Symbol sent A B C 

A 0.05 0.10 0.09 
B 0.13 0.08 0.21 
C 0.12 0.07 0.15 

TABLE 7.1 Joint probability for each possible pair of transmitted and received 
symbols 
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For notational convenience let’s use As, Bs, Cs to denote the events that A, B or 
C respectively is sent, and Ar, Br, Cr to denote A, B or C respectively being re
ceived. So, for example, P (Ar, Bs) = 0.13 and P (Cr, Cs) = 0.15. To determine the 
marginal probability P (Ar), we sum the probabilities for all the mutually exclusive 
ways that A is received. So, for example, 

P (Ar) = P (Ar, As) + P (Ar, Bs) + P (Ar, Cs) (7.9) 

= .05 + .13 + .12 = 0.3 . 

Similarly we can determine the marginal probability P (As) as 

P (As) = P (Ar, As) + P (Br, As) + P (Cr, As) = 0.24 (7.10) 

In a communication context, it may be important to know the probability, for exam
ple, that C was sent, given that B was received, i.e., P (Cs Br). That information |
is not entered directly in the table but can be calculated from it using Bayes’ rule. 
Specifically, the desired conditional probability can be expressed as 

P (Cs, Br)
P (Cs|Br) = 

P (Br) 
(7.11) 

The numerator in (7.11) is given directly in the table as .07. The denominator is 
calculated as P (Br) = P (Br, As) + P (Br, Bs) + P (Br, Cs) = 0.25. The result then 
is that P (Cs Br) = 0.28. |
In communication systems it is also often of interest to measure or calculate the 
probability of a transmission error. Denoting this by Pt it would correspond to any 
of the following mutually exclusive events happening: 

(As ∩ Br), (As ∩ Cr), (Bs ∩ Ar), (Bs ∩ Cr), (Cs ∩ Ar), (Cs ∩ Br) (7.12) 

Pt is therefore the sum of the probabilities of these six mutually exclusive events, 
and all these probabilities can be read directly from the table in the off-diagonal 
locations, yielding Pt = 0.72. 

7.3 RANDOM VARIABLES 

A real-valued random variable X( ) is a function that maps each outcome ψ of a · 
probabilistic experiment to a real number X(ψ), which is termed the realization of 
(or value taken by) the random variable in that experiment. An additional technical 
requirement imposed on this function is that the set of outcomes {ψ} that maps to 
the interval X ≤ x must be an event in Ψ, for all real numbers x. We shall typically 
just write the random variable as X instead of X( ) or X(ψ). · 
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Ψ �Real line 

X(ψ) 

ψ 

� 

FIGURE 7.2 A random variable. 

It is often also convenient to consider random variables taking values that are 
not specified as real numbers but rather a finite or countable set of labels, say 
L0, L1, L2, . . .. For instance, the random status of a machine may be tracked using 
the labels Idle, Busy, and Failed. Similarly, the random presence of a target in a 
radar scan can be tracked using the labels Absent and Present. We can think of 
these labels as comprising a set of mutually exclusive and collectively exhaustive 
events, where each such event comprises all the outcomes that carry that label. 
We refer to such random variables as random events, mapping each outcome ψ 
of a probabilistic experiment to the label L(ψ), chosen from the possible values 
L0, L1, L2, . . .. We shall typically just write L instead of L(ψ). 

7.4	 CUMULATIVE DISTRIBUTION, PROBABILITY DENSITY, AND 
PROBABILITY MASS FUNCTION FOR RANDOM VARIABLES 

Cumulative Distribution Functions For a (real-valued) random variable X, 
the probability of the event comprising all ψ for which X(ψ) ≤ x is described using 
the cumulative distribution function (CDF) FX (x): 

FX (x) = P (X ≤ x) .	 (7.13) 

We can therefore write 

P (a < X ≤ b) = FX (b) − FX (a) .	 (7.14) 

In particular, if there is a nonzero probability that X takes a specific value x1, i.e. 
if P (X = x1) > 0, then FX (x) will have a jump at x1 of height P (X = x1), and 
FX (x1) − FX (x1−) = P (X = x1). The CDF is nondecreasing as a function of x; it 
starts from FX (−∞) = 0 and rises to FX (∞) = 1. 

A related function is the conditional CDF FX|L(x|Li), used to describe the distri
bution of X conditioned on some random event L taking the specific value Li, and 
assuming P (L = Li) > 0: 

P (X ≤ x, L = Li)
FX|L(x|Li) = P (X ≤ x|L = Li) = 

P (L = Li) 
. (7.15) 
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FIGURE 7.3 Example of a CDF. 

Probability Density Functions The probability density function (PDF) fX (x) 
of the random variable X is the derivative of FX (x): 

dFX (x)
fX (x) = . (7.16) 

dx 

It is of course always non-negative because FX (x) is nondecreasing. At points of 
discontinuity in FX (x), corresponding to values of x that have non-zero probability 
of occurring, there will be (Dirac) impulses in fX (x), of strength or area equal to 
the height of the discontinuity. We can write 

∫ b 

P (a < X ≤ b) = fX (x) dx . (7.17) 
a 

(Any impulse of fX (x) at b would be included in the integral, while any impulse 
at a would be left out — i.e. the integral actually goes from a+ to b+.) We can 
heuristically think of fX (x) dx as giving the probability that X lies in the interval 
(x − dx, x]: 

P (x − dx < X ≤ x) ≈ fX (x) dx . (7.18) 

Note that at values of x where fX (x) does not have an impulse, the probability of 
X having the value x is zero, i.e., P (X = x) = 0. 

A related function is the conditional PDF fX|L(x|Li), defined as the derivative of 
FX|L(x|Li) with respect to x. 

Probability Mass Function A real-valued discrete random variable X is one 
that takes only a finite or countable set of real values, {x1, x2, · · · }. (Hence this is 
actually a random event — as defined earlier — but specified numerically rather 
than via labels.) The CDF in this case would be a “staircase” function, while the 
PDF would be zero everywhere, except for impulses at the xj , with strengths cor
responding to the respective probabilities of the xj . These strengths/probabilities 
are conveniently described by the probability mass function (PMF) pX (x), which 
gives the probability of the event X = xj : 

P (X = xj ) = pX (xj ) . (7.19) 
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7.5 JOINTLY DISTRIBUTED RANDOM VARIABLES 

We almost always use models involving multiple (or compound) random variables. 
Such situations are described by joint probabilities. For example, the joint CDF of 
two random variables X and Y is 

FX,Y (x, y) = P (X ≤ x, Y ≤ y) . (7.20) 

The corresponding joint PDF is 

∂2FX,Y (x, y)
fX,Y (x, y) = (7.21) 

∂x ∂y 

and has the heuristic interpretation that 

P (x − dx < X ≤ x , y − dy < Y ≤ y) ≈ fX,Y (x, y) dx dy . (7.22) 

The marginal PDF fX (x) is defined as the PDF of the random variable X considered 
on its own, and is related to the joint density fX,Y (x, y) by 

∫ +∞ 

fX (x) = fX,Y (x, y) dy . (7.23) 
−∞ 

A similar expression holds for the marginal PDF fY (y). 

We have already noted that when the model involves a random variable X and a 
random event L, we may work with the conditional CDF 

FX|L(x Li) = P (X ≤ x L = Li) = 
P (X ≤ x, L = Li) 

, (7.24) | |
P (L = Li) 

provided P (L = Li) > 0. The derivative of this function with respect to x gives 
the conditional PDF fX|L(x|Li). When the model involves two continuous random 
variables X and Y , the corresponding function of interest is the conditional PDF 
fX|Y (x|y) that describes the distribution of X, given that Y = y. However, for 
a continuous random variable Y , P (Y = y) = 0, so even though the following 
definition may seem natural, its justification is more subtle: 

fX,Y (x, y)
fX|Y (x|y) = 

fY (y) 
. (7.25) 

To see the plausibility of this definition, note that the conditional PDF fX|Y (x|y) 
must have the property that 

fX|Y (x|y) dx ≈ P (x − dx < X ≤ x | y − dy < Y ≤ y) (7.26) 

but by Bayes’ rule the quantity on the right in the above equation can be rewritten 
as 

fX,Y (x, y) dx dy 
P (x − dx < X ≤ x | y − dy < Y ≤ y) ≈ 

fY (y)dy 
. (7.27) 
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Combining the latter two expressions yields the definition of fX|Y (x|y) given in 
(7.25). 

Using similar reasoning, we can obtain relationships such as the following: 

P (L = Li X = x) = 
fX|L(x|Li)P (L = Li) 

. (7.28) |
fX (x) 

Two random variables X and Y are said to be independent or statistically indepen
dent if their joint PDF (or equivalently their joint CDF) factors into the product 
of the individual ones: 

fX,Y (x, y) = fX (x)fY (y) , or 
(7.29) 

FX,Y (x, y) = FX (x)FY (y) . 

This condition turns out to be equivalent to having any collection of events defined 
in terms of X be independent of any collection of events defined in terms of Y . 

For a set of more than two random variables to be independent, we require that the 
joint PDF (or CDF) of random variables from this set factors into the product of 
the individual PDFs (respectively, CDFs). One can similarly define independence 
of random variables and random events. 

EXAMPLE 7.2 Independence of events 

To illustrate some of the above definitions and concepts in the context of random 
variables and random events, consider two independent random variables X and Y 
for which the marginal PDFs are uniform between zero and one: 

{ 
1 0 ≤ x ≤ 1 

fX (x) = 
0 otherwise 

fY (y) = 

{ 
1 0 ≤ y ≤ 1 
0 otherwise 

Because X and Y are independent, the joint PDF fX,Y (x, y) is given by 

fX,Y (x, y) = fX (x)fY (y) 

We define the events A, B, C and D as follows: 

A = y > 
1} { 1 } 

, C = 
{

x < 
1 } 

, B = y < ,
2 2 2 
1 1 } { 1 1 }

D = x < 
2 

and y < 
2 

∪ x > 
2 

and y > 
2 

. 

These events are illustrated pictorially in Figure 7.4 
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FIGURE 7.4 Illustration of events A, B, C, and D, for Example 7.2 

Questions that we might ask include whether these events are pairwise independent, 
e.g. whether A and C are independent. To answer such questions, we consider 
whether the joint probability factors into the product of the individual probabilities. 
So, for example, 

( 
1 1 

) 
1 

P (A ∩ C) = P y > , x < = 
2 2 4 

1 
P (A) = P (C) = 

2 

Since P (A ∩ C) = P (A)P (C), events A and C are independent. However, 

( 
1 1 

) 

P (A ∩ B) = P y > , y < = 0 
2 2 

1 
P (A) = P (B) = 

2 

Since P (A ∩ B) =6 P (A)P (B), events A and B are not independent. 

1
2

Note that P (A ∩ C ∩ D) = 0 since there is no region where all three sets overlap. 
, so P (A ∩ C ∩ D) =6 P (A)P (C)P (D) and 

the events A, C, and D are not mutually independent, even though they are easily 
However, P (A) = P (C) = P (D) = 

seen to be pairwise independent. For a collection of events to be independent, we 
require the probability of the intersection of any of the events to equal the product 
of the probabilities of each individual event. So for the 3–event case, pairwise 
independence is a necessary but not sufficient condition for independence. 

7.6 EXPECTATIONS, MOMENTS AND VARIANCE 

For many purposes it suffices to have a more aggregated or approximate description 
than the PDF provides. The expectation — also termed the expected or mean 
or average value, or the first-moment — of the real-valued random variable X is 
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denoted by E[X] or X or µX , and defined as 
∫ ∞ 

E[X] = X = µX = xfX (x) dx . (7.30) 
−∞ 

In terms of the probability “mass” on the real line, the expectation gives the location 
of the center of mass. Note that the expected value of a sum of random variables 
is just the sum of the individual expected values: 

E[X + Y ] = E[X] + E[Y ] . (7.31) 

Other simple measures of where the PDF is centered or concentrated are provided 
by the median, which is the value of x for which FX (x) = 0.5, and by the mode, 
which is the value of x for which fX (x) is maximum (in degenerate cases one or 
both of these may not be unique). 

The variance or centered second-moment of the random variable X is denoted by 
σ2 and defined as X 

σ2 = E[(X − µX )
2] = expected squared deviation from the mean X ∫ ∞ 

= (x − µX )
2fX (x)dx (7.32) 

−∞ 
2= E[X2] − µX , 

where the last equation follows on writing (X − µX )
2 = X2 − 2µX X + µ2 and X 

taking the expectation term by term. We refer to E[X2] as the second-moment 
of X. The square root of the variance, termed the standard deviation, is a widely 
used measure of the spread of the PDF. 

The focus of many engineering models that involve random variables is primarily 
on the means and variances of the random variables. In some cases this is because 
the detailed PDFs are hard to determine or represent or work with. In other cases, 
the reason for this focus is that the means and variances completely determine the 
PDFs, as with the Gaussian (or normal) and uniform PDFs. 

EXAMPLE 7.3 Gaussian and uniform random variables 

Two common PDF’s that we will work with are the Gaussian (or normal) density 
and the uniform density: 

1 
2 σ√

2πσ 
e− 1 ( x−m )2 

Gaussian: fX (x) = 

{ (7.33) 
1 a < x < b 

Uniform: fX (x) = b−a 
0 otherwise 

The two parameters m and σ that define the Gaussian PDF can be shown to be its 
mean and standard deviation respectively. Similarly, though the uniform density 
can be simply parametrized by its lower and upper limits a and b as above, an 
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equivalent parametrization is via its mean m = (a + b)/2 and standard deviation 
σ = 

√
(b − a)2/12. 

There are useful statements that can be made for general PDFs on the basis of just 
the mean and variance. The most familiar of these is the Chebyshev inequality: 

1 
P 

( |X
σ

− 

X 

µX | ≥ k
) 
≤ 

k2 
. (7.34) 

This inequality implies that, for any random variable, the probability it lies at 
or more than 3 standard deviations away from the mean (on either side of the 
mean) is not greater than (1/32) = 0.11. Of course, for particular PDFs, much 
more precise statements can be made, and conclusions derived from the Chebyshev 
inequality can be very conservative. For instance, in the case of a Gaussian PDF, 
the probability of being more than 3 standard deviations away from the mean is 
only 0.0026, while for a uniform PDF the probability of being more than even 2 
standard deviations away from the mean is precisely 0. 

For much of our discussion we shall make do with evaluating the means and vari
ances of the random variables involved in our models. Also, we will be highlighting 
problems whose solution only requires knowledge of means and variances. 

The conditional expectation of the random variable X, given that the random 
variable Y takes the value y, is the real number 

∫ +∞ 

E[X Y = y] = xfX|Y (x y)dx = g(y) , (7.35) |
−∞ 

|

i.e., this conditional expectation takes some value g(y) when Y = y. We may also 
consider the random variable g(Y ), namely the function of the random variable Y 
that, for each Y = y, evaluates to the conditional expectation E[X Y = y]. We |
refer to this random variable g(Y ) as the conditional expectation of X “given Y ” (as 
opposed to “given Y = y”), and denote g(Y ) by E[X Y ]. Note that the expectation |
E[g(Y )] of the random variable g(Y ), i.e. the iterated expectation E[E[X Y ]], is |
well defined. What we show in the next paragraph is that this iterated expectation 
works out to something simple, namely E[X]. This result will be of particular use 
in the next chapter. 

Consider first how to compute E[X] when we have the joint PDF fX,Y (x, y). One 
way is to evaluate the marginal density fX (x) of X, and then use the definition of 
expectation in (7.30): 

E[X] = 
∫ ∞ 

x
(∫ ∞ 

fX,Y (x, y) dy
) 

dx . (7.36) 
−∞ −∞ 

However, it is often simpler to compute the conditional expectation of X, given 
Y = y, then average this conditional expectation over the possible values of Y , 
using the marginal density of Y . To derive this more precisely, recall that 

fX,Y (x, y) = fX|Y (x|y)fY (y) (7.37) 
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and use this in (7.36) to deduce that 

E[X] = 
∫ ∞ 

fY (y)
(∫ ∞ 

xfX|Y (x|y) dx
) 

dy = EY [EX|Y [X|Y ]] . (7.38) 
−∞ −∞ 

We have used subscripts on the preceding expectations in order to make explicit 
which densities are involved in computing each of them. More simply, one writes 

E[X] = E[E[X Y ]] .	 (7.39) |

The preceding result has an important implication for the computation of the expec
tation of a function of a random variable. Suppose X = h(Y ), then E[X Y ] = h(Y ), |
so ∫ ∞ 

E[X] = E[E[X Y ]] = h(y)fY (y)dy . (7.40) |
−∞ 

This shows that we only need fY (y) to calculate the expectation of a function of 
Y ; to compute the expectation of X = h(Y ), we do not need to determine fX (x). 

Similarly, if X is a function of two random variables, X = h(Y,Z), then 
∫ ∞	 ∫ ∞ 

E[X] = h(y, z)fY,Z (y, z)dy dz . (7.41) 
−∞ −∞ 

It is easy to show from this that if Y and Z are independent, and if h(y, z) = 
g(y)ℓ(z), then 

E[g(Y )ℓ(Z)] = E[g(Y )]E[ℓ(Z)] . (7.42) 

7.7	 CORRELATION AND COVARIANCE FOR BIVARIATE RANDOM 
VARIABLES 

Consider a pair of jointly distributed random variables X and Y . Their marginal 
PDFs are simply obtained by projecting the probability mass along the y-axis and 
x-axis directions respectively: 

∫ ∞	 ∫ ∞ 

fX (x) = fX,Y (x, y) dy , fY (y) = fX,Y (x, y) dx . (7.43) 
−∞	 −∞ 

In other words, the PDF of X is obtained by integrating the joint PDF over all 
possible values of the other random variable Y — and similarly for the PDF of Y . 

It is of interest, just as in the single-variable case, to be able to capture the location 
and spread of the bivariate PDF in some aggregate or approximate way, without 
having to describe the full PDF. And again we turn to notions of mean and variance. 
The mean value of the bivariate PDF is specified by giving the mean values of each 
of its two component random variables: the mean value has an x component that 
is E[X], and a y component that is E[Y ], and these two numbers can be evaluated 
from the respective marginal densities. The center of mass of the bivariate PDF is 
thus located at 

(x, y) = (E[X], E[Y ]) .	 (7.44) 
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A measure of the spread of the bivariate PDF in the x direction may be obtained 
from the standard deviation σX of X, computed from fX (x); and a measure of 
the spread in the y direction may be obtained from σY , computed similarly from 
fY (y). However, these two numbers clearly only offer a partial view. We would 
really like to know what the spread is in a general direction rather than just along 
the two coordinate axes. We can consider, for instance, the standard deviation (or, 
equivalently, the variance) of the random variable Z defined as 

Z = αX + βY (7.45) 

for arbitrary constants α and β. Note that by choosing α and β appropriately, 
we get Z = X or Z = Y , and therefore recover the special coordinate directions 
that we have already considered; but being able to analyze the behavior of Z for 
arbitary α and β allows us to specify the behavior in all directions. 

To visualize how Z behaves, note that Z = 0 when αx+βy = 0. This is the equation 
of a straight line through the origin in the (x, y) plane, a line that indicates the 
precise combinations of values x and y that contribute to determining fZ (0), by 
projection of fX,Y (x, y) along the line. Let us call this the reference line. If Z now 
takes a nonzero value z, the corresponding set of (x, y) values lies on a line offset 
from but parallel to the reference line. We project fX,Y (x, y) along this new offset 
line to determine fZ (z). 

Before seeing what computations are involved in determining the variance of Z, 
note that the mean of Z is easily found in terms of quantities we have already 
computed, namely E[X] and E[Y ]: 

E[Z] = αE[X] + βE[Y ] . (7.46) 

As for the variance of Z, it is easy to establish from (7.45) and (7.46) that 

= α2σ2σ2 = E[Z2] − (E[Z])2 
X + β2σ2 + 2αβ σX,Y (7.47) Z Y 

where σ2 and σ2 are the variances already computed along the coordinate direc-X Y 
tions x and y, and σX,Y is the covariance of X and Y , also denoted by cov(X,Y ) 
or CX,Y , and defined as 

σX,Y = cov(X,Y ) = CX,Y = E[(X − E[X])(Y − E[Y ])] (7.48) 

or equivalently 
σX,Y = E[XY ] − E[X]E[Y ] . (7.49) 

where (7.49) follows from multiplying out the terms in parentheses in (7.48) and 
then taking term-by-term expectations. Note that when Y = X we recover the 
familiar expressions for the variance of X. The quantity E[XY ] that appears in 
(7.49), i.e., the expectation of the product of the random variables, is referred to 
as the correlation or second cross-moment of X and Y (to distinguish it from the 
second self-moments E[X2] and E[Y 2]), and will be denoted by RX,Y : 

RX,Y = E[XY ] . (7.50) 
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It is reassuring to note from (7.47) that the covariance σX,Y is the only new quantity 
needed when going from mean and spread computations along the coordinate axes 
to such computations along any axis; we do not need a new quantity for each new 
direction. In summary, we can express the location of fX,Y (x, y) in an aggregate 
or approximate way in terms of the 1st-moments, E[X] , E[Y ]; and we can express 
the spread around this location in an aggregate or approximate way in terms of the 
(central) 2nd-moments, σ2 , σ2 , σX,Y .X Y 

It is common to work with a normalized form of the covariance, namely the corre
lation coefficient ρX,Y : 

σX,Y 
ρX,Y = . (7.51) 

σX σY 

This normalization ensures that the correlation coefficient is unchanged if X and/or 
Y is multiplied by any nonzero constant or has any constant added to it. For 
instance, the centered and normalized random variables 

V = 
X − µX 

, W = 
Y − µY 

, (7.52) 
σX σY 

each of which has mean 0 and variance 1, have the same correlation coefficient as 
X and Y . The correlation coefficient might have been better called the covariance 
coefficient, since it is defined in terms of the covariance and not the correlation of 
the two random variables, but this more helpful name is not generally utilized. 

Invoking the fact that σ2 in (7.47) must be non-negative, and further noting from Z 
this equation that σ2 /β2 is quadratic in α, it can be proved by elementary analysis Z 
of the quadratic expression that 

|ρX,Y | ≤ 1 . (7.53) 

From the various preceding definitions, a positive correlation RX,Y > 0 suggests 
that X and Y tend to take the same sign, on average, whereas a positive covariance 
σX,Y > 0 — or equivalently a positive correlation coefficient ρX,Y > 0 — suggests 
that the deviations of X and Y from their respective means tend to take the same 
sign, on average. Conversely, a negative correlation suggests that X and Y tend to 
take opposite signs, on average, while a negative covariance or correlation coefficient 
suggests that the deviations of X and Y from their means tend to take opposite 
signs, on average. 

Since the correlation coefficient of X and Y captures some features of the rela
tion between their deviations from their respective means, we might expect that 
the correlation coefficient can play a role in constructing an estimate of Y from 
measurements of X, or vice versa. We shall see in the next chapter, where linear 
minimum mean-square error (LMMSE) estimation is studied, that this is indeed 
the case. 

The random variables X and Y are said to be uncorrelated (or linearly independent, 
a less common and potentially misleading term) if 

E[XY ] = E[X]E[Y ] , (7.54) 
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or equivalently if 
σX,Y = 0 or ρX,Y = 0 . (7.55) 

Thus uncorrelated does not mean zero correlation (unless one of the random vari
ables has an expected value of zero). Rather, uncorrelated means zero covariance. 
Again, a better term for uncorrelated might have been non-covariant, but this term 
is not widely used. 

Note also that independent random variables X and Y , i.e., those for which 

fX,Y (x, y) = fX (x)fY (y) , (7.56) 

are always uncorrelated, but the converse is not generally true: uncorrelated random 
variables may not be independent. If X and Y are independent, then E[XY ] = 
E[X]E[Y ] so X and Y are uncorrelated. The converse does not hold in general. 
For instance, consider the case where the combination (X,Y ) takes only the values 
(1, 0), (−1, 0). (0, 1) and (0, −1), each with equal probability 1 . Then X and Y4 
are easily seen to be uncorrelated but dependent, i.e., not independent. 

A final bit of terminology that we will shortly motivate and find useful occurs in the 
following definition: Two random variables X and Y are orthogonal if E[XY ] = 0. 

EXAMPLE 7.4 Perfect correlation, zero correlation 

Consider the degenerate case where Y is given by a deterministic linear function of 
a random variable X (so Y is also a random variable, of course): 

Y = ξX + ζ , (7.57) 

where ξ and ζ are constants. Then it is easy to show that ρX,Y = 1 if ξ > 0 and 
ρ = −1 if ξ < 0. Note that in this case the probability mass is entirely concentrated 
on the line defined by the above equation, so the bivariate PDF — if we insist on 
talking about it! — is a two-dimensional impulse (but this fact is not important in 
evaluating ρX,Y ). 

You should also have no difficulty establishing that ρX,Y = 0 if 

Y = ξX2 + ζ (7.58) 

and X has a PDF fX (x) that is even about 0, i.e., fX (−x) = fX (x). 

EXAMPLE 7.5 Bivariate Gaussian density 

The random variables X and Y are said to be bivariate Gaussian or bivariate normal 
if their joint PDF is given by 

fX,Y (x, y) = c exp
{
−q

( x − 
σX 

µX 
,
y − 

σY 

µY 
)} 

(7.59) 
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where c is a normalizing constant (so that the PDF integrates to 1) and q(v, w) 
is a quadratic function of its two arguments v and w, expressed in terms of the 
correlation coefficient ρ of X and Y : 

1 
c =	 (7.60) 

2πσX σY 

√
1 − ρ2 

q(v, w) = 
2(1 − 

1 
ρ2)

(v 2 − 2ρvw + w 2)	 (7.61) 

This density is the natural bivariate generalization of the familiar Gaussian density, 
and has several nice properties: 

•	 The marginal densities of X and Y are Gaussian. 

•	 The conditional density of Y , given X = x, is Gaussian with mean ρx and 
variance σ2 (1 − ρ2) (which evidently does not depend on the value of x); and Y 
similary for the conditional density of X, given Y = y. 

•	 If X and Y are uncorrelated, i.e., if ρ = 0, then X and Y are actually 
independent, a fact that is not generally true for other bivariate random 
variables, as noted above. 

•	 Any two affine (i.e., linear plus constant) combinations of X and Y are them
selves bivariate Gaussian (e.g., Q = X + 3Y + 2 and R = 7X + Y − 3 are 
bivariate Gaussian). 

The bivariate Gaussian PDF and indeed the associated notion of correlation were 
essentially discovered by the statistician Francis Galton (a first-cousin of Charles 
Darwin) in 1886, with help from the mathematician Hamilton Dickson. Galton was 
actually studying the joint distribution of the heights of parents and children, and 
found that the marginals and conditionals were well represented as Gaussians. His 
question to Dickson was: what joint PDF has Gaussian marginals and conditionals? 
The answer: the bivariate Gaussian! It turns out that there is a 2-dimensional 
version of the central limit theorem, with the bivariate Gaussian as the limiting 
density, so this is a reasonable model for two jointly distributed random variables 
in many settings. There are also natural generalization to many variables. 

Some of the generalizations of the preceding discussion from two random variables 
to many random variables are fairly evident. In particular, the mean of a joint PDF 

fX1,X2, ,Xℓ (x1, x2, , xℓ)	 (7.62) ··· · · · 

in the ℓ-dimensional space of possible values has coordinates that are the respective 
individual means, E[X1], , E[Xℓ]. The spreads in the coordinate directions are · · · 
deduced from the individual (marginal) spreads, σX1 , , σXℓ . To be able to com· · · 
pute the spreads in arbitrary directions, we need all the additional ℓ(ℓ−1)/2 central 
2nd moments, namely σXi,Xj for all 1 ≤ i < j ≤ ℓ (note that σXj ,Xi = σXi,Xj ) — 
but nothing more. 
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7.8	 A VECTOR-SPACE PICTURE FOR CORRELATION PROPERTIES OF 
RANDOM VARIABLES 

A vector-space picture is often useful as an aid to recalling the second-moment 
relationships between two random variables X and Y . This picture is not just a 
mnemonic: there is a very precise sense in which random variables can be thought 
of (or are) vectors in a vector space (of infinite dimensions), as long as we are only 
interested in their second-moment properties. Although we shall not develop this 
correspondence in any depth, it can be very helpful in conjecturing or checking 
answers in the linear minimum mean-square-error (LMMSE) estimation problems 
that we shall treat. 

To develop this picture, we represent the random variables X and Y as vectors X 
and Y in some abstract vector space. For the squared lengths of these vectors, 
we take the second-moments of the associated random variables, E[X2] and E[Y 2] 
respectively. Recall that in Euclidean vector space the squared length of a vector is 
the inner product of the vector with itself. This suggests that perhaps in our vector-
space interpretation the inner product < X, Y > between two general vectors X and 
Y should be defined as the correlation (or second cross-moment) of the associate 
random variables: 

< X, Y >= E[XY ] = RX,Y .	 (7.63) 

This indeed turns out to be the definition that’s needed. With this definition, the 
standard properties required of an inner product in a vector space are satisfied, 
namely: 

Symmetry: < X, Y >=< Y, X > . 

Linearity: < X, a1Y1 + a2Y2 >= a1 < X, Y1 > +a2 < X, Y2 > 

Positivity: < X, X > is positive for X = 0, and 0 otherwise. 

This definition of inner product is also consistent with the fact that we often refer 
to two random variables as orthogonal when E[XY ] = 0. 

The centered random variables X − µX and Y − µY can similary be represented as 
vectors X̃ and Ỹ in this abstract vector space, with squared lengths that are now 
the variances of the random variables X and Y : 

σ2 = E[(X − µX )
2] , σ2 = E[(Y − µY )

2] (7.64) X	 Y 

respectively. The lengths are therefore the standard deviations of the associated 
random variables, σX and σY respectively. The inner product of the vectors X̃ and 
Ỹ becomes 

< X̃, Ỹ >= E[(X − µX )(Y − µY )] = σX,Y , (7.65) 

namely the covariance of the random variables. 

In Euclidean space the inner product of two vectors is given by the product of the 
lengths of the individual vectors and the cosine of the angle between them: 

< X̃, Ỹ >= σX,Y = σX σY cos(θ) ,	 (7.66) 
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�X − µX 

� Y − µY 

θ = cos−1 ρ 

σX 

σY 

FIGURE 7.5 Random Variables as Vectors. 

so the quantity 

θ = cos−1
( σX,Y 

) 
= cos−1 ρ (7.67) 

σX σY 

can be thought of as the angle between the vectors. Here ρ is the correlation 
coefficient of the two random variables, so evidently 

ρ = cos(θ) . (7.68) 

Thus, the correlation coefficient is the cosine of the angle between the vectors. It 
is therefore not surprising at all that 

− 1 ≤ ρ ≤ 1 . (7.69) 

When ρ is near 1, the vectors are nearly aligned in the same direction, whereas 
when ρ is near −1 they are close to being oppositely aligned. The correlation 
coefficient is zero when these vectors X̃ and Ỹ (which represent the centered random 
variables) are orthogonal, or equivalently, the corresponding random variables have 
zero covariance, 

σX,Y = 0 . (7.70) 
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Estimation with Minimum Mean 
Square Error 

INTRODUCTION 

A recurring theme in this text and in much of communication, control and signal 
processing is that of making systematic estimates, predictions or decisions about 
some set of quantities, based on information obtained from measurements of other 
quantities. This process is commonly referred to as inference. Typically, inferring 
the desired information from the measurements involves incorporating models that 
represent our prior knowledge or beliefs about how the measurements relate to the 
quantities of interest. 

Inference about continuous random variables and ultimately about random pro
cesses is the topic of this chapter and several that follow. One key step is the 
introduction of an error criterion that measures, in a probabilistic sense, the error 
between the desired quantity and our estimate of it. Throughout our discussion 
in this and the related subsequent chapters, we focus primarily on choosing our 
estimate to minimize the expected or mean value of the square of the error, re
ferred to as a minimum mean-square-error (MMSE) criterion. In Section 8.1 we 
consider the MMSE estimate without imposing any constraint on the form that 
the estimator takes. In Section 8.3 we restrict the estimate to be a linear combina
tion of the measurements, a form of estimation that we refer to as linear minimum 
mean-square-error (LMMSE) estimation. 

Later in the text we turn from inference problems for continuous random variables 
to inference problems for discrete random quantities, which may be numerically 
specified or may be non-numerical. In the latter case especially, the various possible 
outcomes associated with the random quantity are often termed hypotheses, and 
the inference task in this setting is then referred to as hypothesis testing, i.e., the 
task of deciding which hypothesis applies, given measurements or observations. The 
MMSE criterion may not be meaningful in such hypothesis testing problems, but we 
can for instance aim to minimize the probability of an incorrect inference regarding 
which hypothesis actually applies. 
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140 Chapter 8 Estimation with Minimum Mean Square Error 

8.1 ESTIMATION OF A CONTINUOUS RANDOM VARIABLE 

To begin the discussion, let us assume that we are interested in a random variable 
Y and we would like to estimate its value, knowing only its probability density 
function. We will then broaden the discussion to estimation when we have a mea
surement or observation of another random variable X, together with the joint 
probability density function of X and Y . 

Based only on knowledge of the PDF of Y , we wish to obtain an estimate of Y 
— which we denote as ŷ — so as to minimize the mean square error between the 
actual outcome of the experiment and our estimate ŷ. Specifically, we choose ŷ to 
minimize 

E[(Y − ŷ)2] = (y − ŷ)2fY (y) dy . (8.1) 

Differentiating (8.1) with respect to ŷ and equating the result to zero, we obtain 

− 2 (y − ŷ)fY (y) dy = 0 (8.2) 

or 

yfY (y) dy = yfY (y) dy (8.3) 

from which 
y = E[Y ] . (8.4) 

The second derivative of E[(Y − ŷ)2] with respect to ŷ is


2 fY (y) dy = 2 , (8.5) 

which is positive, so (8.4) does indeed define the minimizing value of ŷ. Hence the 
MMSE estimate of Y in this case is simply its mean value, E[Y ]. 

The associated error — the actual MMSE — is found by evaluating the expression 
in (8.1) with ŷ = E[Y ]. We conclude that the MMSE is just the variance of Y , 
namely σY 

2 : 
min E[(Y − ŷ)2] = E[(Y − E[Y ])2] = σ2 . (8.6) Y 

In a similar manner, it is possible to show that the median of Y , which has half 
the probability mass of Y below it and the other half above, is the value of ŷ that 
minimizes the mean absolute deviation, E[ |Y − ŷ| ]. Also, the mode of Y , which 
is the value of y at which the PDF fY (y) is largest, turns out to minimize the 
expected value of an all-or-none cost function, i.e., a cost that is unity when the 
error is outside of a vanishingly small tolerance band, and is zero within the band. 
We will not be pursuing these alternative error metrics further, but it is important 
to be aware that our choice of mean square error, while convenient, is only one of 
many possible error metrics. 

The insights from the simple problem leading to (8.4) and (8.6) carry over directly 
to the case in which we have additional information in the form of the measured or 
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observed value x of a random variable X that is related somehow to Y . The only 
change from the previous discussion is that, given the additional measurement, 
we work with the conditional or a posteriori density fY |X (y|x), rather than the 
unconditioned density fY (y), and now our aim is to minimize 

E[{Y − ŷ(x)}2|X = x] = {y − ŷ(x)}2fY |X (y|x) dy . (8.7) 

We have introduced the notation ŷ(x) for our estimate to show that in general it 
will depend on the specific value x. Exactly the same calculations as in the case of 
no measurements then show that 

y(x) = E[Y X = x] , (8.8) 

the conditional expectation of Y , given X = x. The associated MMSE is the vari
ance σ2 of the conditional density fY |X (y|x), i.e., the MMSE is the conditional Y |X 
variance. Thus, the only change from the case of no measurements is that we now 
condition on the obtained measurement. 

Going a further step, if we have multiple measurements, say X1 = x1, X2 = 
x2, , XL = xL, then we work with the a posteriori density · · · 

fY | X1,X2,··· ,XL 
(y | x1, x2, · · · , xL) . (8.9) 

Apart from this modification, there is no change in the structure of the solutions. 
Thus, without further calculation, we can state the following: 

The MMSE estimate of Y , 
given X1 = x1, , XL = xL,· · · 

is the conditional expectation of Y : (8.10) 

y(x1, . . . , xL) = E[Y X1 = x1, , XL = xL]̂ | · · · 

For notational convenience, we can arrange the measured random variables into a 
column vector X, and the corresponding measurements into the column vector x. 
The dependence of the MMSE estimate on the measurements can now be indicated 
by the notation ŷ(x), with 

∫ ∞ 

ŷ(x) = 
−∞ 

y fY |X(y | X = x) dy = E[ Y | X = x ] . (8.11) 

The minimum mean square error (or MMSE) for the given value of X is again the 
conditional variance, i.e., the variance σY 

2 
|X of the conditional density fY |X(y | x). 

EXAMPLE 8.1 MMSE Estimate for Discrete Random Variables 

A discrete-time discrete-amplitude sequence s[n] is stored on a noisy medium. The 
retrieved sequence is r[n]. Suppose at some particular time instant n = n0 we have 
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s[n0] and r[n0] modeled as random variables, which we shall simply denote by S 
and R respectively. From prior measurements, we have determined that S and R 
have the joint probability mass function (PMF) shown in Figure 8.1. 

r 

1 

s
-1 1 

-1 

FIGURE 8.1 Joint PMF of S and R. 

Based on receiving the value R = 1, we would like to make an MMSE estimate ŝ
of S. From (8.10), ŝ = E(S|R = 1), which can be determined from the conditional 
PMF PS|R(s|R = 1), which in turn we can obtain as 

PR,S (R = 1, s)
PS|R(s|R = 1) = 

PR(R = 1) 
. (8.12) 

From Figure 8.1, 

2 
PR(1) = (8.13) 

7 

and 

PR,S (1, s) = 


 

 

0 s = −1 
1/7 s = 0 
1/7 s = +1 

Consequently, 
{ 

1/2 s = 0 
PS|R(s|R = 1) = 

1/2 s = +1 

Thus, the MMSE estimate is ŝ = 1 . Note that although this estimate minimizes 2 
the mean square error, we have not constrained it to take account of the fact that 
S can only have the discrete values of +1, 0 or −1. In a later chapter we will 
return to this example and consider it from the perspective of hypothesis testing, 
i.e., determining which of the three known possible values will result in minimizing 
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a suitable error criterion. 

EXAMPLE 8.2 MMSE Estimate of Signal in Additive Noise 

A discrete-time sequence s[n] is transmitted over a noisy channel and retrieved. 
The received sequence r[n] is modeled as r[n] = s[n] + w[n] where w[n] represents 
the noise. At a particular time instant n = n0, suppose r[n0], s[n0] and w[n0] are 
random variables, which we denote as R, S and W respectively. We assume that 

1
2

1
2S and W are independent, that W is uniformly distributed between + and −

and S is uniformly distributed between −1 and +1. The specific received value is 
1
4

, 

R = , and we want the MMSE estimate ŝ for S. From (8.10), 

1 ̂ |
4
) (8.14) s = E(S R = 

1
4 ): which can be determined from fS|R(s R =|

1
4fR|S ( s)fS (s)1 |

fR(
fS|R(s|R = 

4
) = . (8.15) 1

4 ) 

We evaluate separately the numerator and denominator terms in (8.15). The PDF 
fR|S (r

indicated in Figure 8.2 below.


s) is identical in shape to the PDF of W , but with the mean shifted to s, as |
1
4 |s) is as shown in Figure 8.3,Consequently, fR|S (

s)fS (s) is shown in Figure 8.4.and fR|S (
1
4 |

fR|S (r|s) 

r 

1 

− 1
2 + s + 1

2 + s 

FIGURE 8.2 Conditional PDF of R given S, fR|S (r|s). 

1
4

1
4To obtain fS|R(s R|

tained by evaluating the convolution of the PDF’s of S and W 
) we divide Figure 8.4 by fR( ), which can easily be ob=

at the argument 
1
4

1
4More simply, since fS|R(s R|

same as Figure 8.4 but scaled by fR(

) must have total area of unity and it is the =. 
1
4 ), we can easily obtain it by just normalizing 

Figure 8.4 to have an area of 1. The resulting value for ŝ is the mean associated 
1
4with the PDF fS|R(s R =| ), which will be 

1 ̂
4 

. (8.16) s = 
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1 

s 

− 1
4 0 

3
4 

1
4 |s). Plot of fR|S (FIGURE 8.3 

1 
2 

s 
− 1

4
3
40 

1
4 |Plot of fR|S ( s)fS (s). FIGURE 8.4 

1 
12 .The associated MMSE is the variance of this PDF, namely

EXAMPLE 8.3 MMSE Estimate for Bivariate Gaussian Random Variables 

Two random variables X and Y are said to have a bivariate Gaussian joint PDF if 
the joint density of the centered (i.e. zero-mean) and normalized (i.e. unit-variance) 
random variables 

V = 
X − µX 

, W = 
Y − µY 

(8.17) 
σX σY 

is given by 

1 (v2 − 2ρvw + w
2(1 − ρ2) 

2) 
} 

. (8.18) fV,W (v, w) = 
2π

√
1 − ρ2 

exp − 

Here µX and µY are the means of X and Y respectively, and σX , σY are the respec
tive standard deviations of X and Y . The number ρ is the correlation coefficient 
of X and Y , and is defined by 

σXY 
ρ = , with σXY = E[XY ] − µX µY (8.19) 

σX σY 

where σXY is the covariance of X and Y . 

Now, consider ŷ(x), the MMSE estimate of Y given X = x, when X and Y are 
bivariate Gaussian random variables. From (8.10), 

y(x) = E[Y X = x] (8.20) 
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or, in terms of the zero-mean normalized random variables V and W , 
[ 

x − µX 
] 

y(x) = E (σY W + µY ) V =̂ | 
σX 

= σY E 

[ 

W | V = 
x − 

σX 

µX 
] 

+ µY . (8.21) 

It is straightforward to show with some computation that fW |V (w v) is Gaussian 
with mean ρv, and variance 1 − ρ2, from which it follows that 

| 

[ 
x − µX 

] [ 
x − µX 

] 

E W V = = ρ . (8.22) | 
σX σX 

Combining (8.21) and (8.22), 

y(x) = E[ Y X = x ]̂ | 
σY 

= µY + ρ (x − µX ) (8.23) 
σX 

The MMSE estimate in the case of bivariate Gaussian variables has a nice linear 
(or more correctly, affine, i.e., linear plus a constant) form. 

The minimum mean square error is the variance of the conditional PDF fY |X(y|X = 
x): 

E[ (Y − ŷ(x))2 | X = x ] = σY 
2 (1 − ρ2) . (8.24) 

Note that σY 
2 is the mean square error in Y in the absence of any additional infor

mation. Equation (8.24) shows what the residual mean square error is after we have 
a measurement of X. It is evident and intuitively reasonable that the larger the 
magnitude of the correlation coefficient between X and Y , the smaller the residual 
mean square error. 

8.2 FROM ESTIMATES TO AN ESTIMATOR 

The MMSE estimate in (8.8) is based on knowing the specific value x that the 
random variable X takes. While X is a random variable, the specific value x is not, 
and consequently ŷ(x) is also not a random variable. 

As we move forward in the discussion, it is important to draw a distinction between 
the estimate of a random variable and the procedure by which we form the estimate. 
This is completely analogous to the distinction between the value of a function at 
a point and the function itself. We will refer to the procedure or function that 
produces the estimate as the estimator. 

For instance, in Example 8.1 we determined the MMSE estimate of S for the specific 
value of R = 1. We could more generally determine an estimate of S for each of 
the possible values of R, i.e., −1, 0, and + 1. We could then have a tabulation of 
these results available in advance, so that when we retrieve a specific value of R 
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we can look up the MMSE estimate. Such a table or more generally a function 
of R would correspond to what we term the MMSE estimator. The input to the 
table or estimator would be the specific retrieved value and the output would be 
the estimate associated with that retrieved value. 

We have already introduced the notation ŷ(x) to denote the estimate of Y given 
X = x. The function ŷ( ) determines the corresponding estimator, which we · 
will denote by ŷ(X), or more simply by just Ŷ , if it is understood what random 
variable the estimator is operating on. Note that the estimator Ŷ = ŷ(X) is a 
random variable. We have already seen that the MMSE estimate ŷ(x) is given by 
the conditional mean, E[Y X = x], which suggests yet another natural notation for |
the MMSE estimator: 

Ŷ = ŷ(X) = E[Y |X] . (8.25) 

Note that E[Y X] denotes a random variable, not a number. |
The preceding discussion applies essentially unchanged to the case where we observe 
several random variables, assembled in the vector X. The MMSE estimator in this 
case is denoted by 

Ŷ = ŷ(X) = E[Y |X] . (8.26) 

Perhaps not surprisingly, the MMSE estimator for Y given X minimizes the mean 
square error, averaged over all Y and X. This is because the MMSE estimator 
minimizes the mean square error for each particular value x of X. More formally, 

EY,X 

( 
[Y − ŷ(X)]2 

) 
= EX 

( 
EY |X 

( 
[Y − ŷ(X)]2 | X 

)) 

= 
∫ ∞ ( 

EY |X 

( 
[Y − ŷ(x)]2 | X = x 

) 
fX(x) dx . (8.27) 

−∞ 

(The subscripts on the expectation operators are used to indicate explicitly which 
densities are involved in computing the associated expectations; the densities and 
integration are multivariate when X is not a scalar.) Because the estimate ŷ(x) 
is chosen to minimize the inner expectation EY |X for each value x of X, it also 
minimizes the outer expectation EX, since fX(X) is nonnegative. 

EXAMPLE 8.4 MMSE Estimator for Bivariate Gaussian Random Variables 

We have already, in Example 8.3, constructed the MMSE estimate of one member 
of a pair of bivariate Gaussian random variables, given a measurement of the other. 
Using the same notation as in that example, it is evident that the MMSE estimator 
is simply obtained on replacing x by X in (8.23): 

σY
Ŷ = ŷ(X) = µY + ρ

σX 
(X − µX ) . (8.28) 

The conditional MMSE given X = x was found in the earlier example to be σ2 (1 −Y 
ρ2), which did not depend on the value of x, so the MMSE of the estimator, averaged 
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over all X, ends up still being σ2 (1 − ρ2). Y 

EXAMPLE 8.5 MMSE Estimator for Signal in Additive Noise 

Suppose the random variable X is a noisy measurement of the angular position Y of 
an antenna, so X = Y + W , where W denotes the additive noise. Assume the noise 
is independent of the angular position, i.e., Y and W are independent random 
variables, with Y uniformly distributed in the interval [−1, 1] and W uniformly 
distributed in the interval [−2, 2]. (Note that the setup in this example is essentially 
the same as in Example 8.2, though the context, notation and parameters are 
different.) 

Given that X = x, we would like to determine the MMSE estimate ŷ(x), the 
resulting mean square error, and the overall mean square error averaged over all 
possible values x that the random variable X can take. Since ŷ(x) is the conditional 
expectation of Y given X = x, we need to determine fY |X (y|x). For this, we first 
determine the joint density of Y and W , and from this the required conditional 
density. 

From the independence of Y and W : 


1 − 2 ≤ w ≤ 2, −1 ≤ y ≤ 1 
fY,W (y, w) = fY (y)fW (w) = 8
 

0 otherwise


�y 
1 

� 
−2 0 2 w 

−1 

FIGURE 8.5 Joint PDF of Y and W for Example 8.5. 

Conditioned on Y = y, X is the same as y + W , uniformly distributed over the 
interval [y − 2, y + 2]. Now 

1 1 1 
fX,Y (x, y) = fX|Y (x|y)fY (y) = ( 

4
)( 

2
) = 

8 
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for −1 ≤ y ≤ 1, y − 2 ≤ x ≤ y + 2, and zero otherwise. The joint PDF is therefore 
uniform over the parallelogram shown in the Figure 8.6. 

�y 
1


� 
x
−3 −2 −1 0 1 2 3


−1 

FIGURE 8.6 Joint PDF of X and Y and plot of the MMSE estimator of Y from X

for Example 8.5.
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FIGURE 8.7 Conditional PDF fY |X for various realizations of X for Example 8.5. 

Given X = x, the conditional PDF fY |X is uniform on the corresponding vertical 
section of the parallelogram: 

fY |X (y, x) = 


 

 

1
 − 3 ≤ x ≤ −1 , −1 ≤ y ≤ x + 2

3 + x


1
 − 1 ≤ x ≤ 1 , −1 ≤ y ≤ 1 (8.29)
2


1

3 − x 

1 ≤ x ≤ 3 , x − 2 ≤ y ≤ 1
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The MMSE estimate ŷ(x) is the conditional mean of Y given X = x, and the 
conditional mean is the midpoint of the corresponding vertical section of the paral
lelogram. The conditional mean is displayed as the heavy line on the parallelogram 
in the second plot. In analytical form, 


 

 

1 1

+ x − 3 ≤ x < −1 

2 2

y(x) = E[Y 

The minimum mean square error associated with this estimate is the variance of 
the uniform distribution in eq. (8.29), specifically: 

X = x] = 0 − 1 ≤ x < 1
 (8.30)| 
1 1
−
2

+
2 

1 ≤ x ≤ 3
x


X = x]E[{Y − ŷ(x)}2 | 


 

 

(3 + x)2 

− 3 ≤ x < −1 
12


1

3


(3 − x)2


12


− 1 ≤ x < 1 (8.31) 

1 ≤ x ≤ 3


Equation (8.31) specifies the mean square error that results for any specific value 
x of the measurement of X. Since the measurement is a random variable, it is also 
of interest to know what the mean square error is, averaged over all possible values 
of the measurement, i.e. over the random variable X. To determine this, we first 
determine the marginal PDF of X: 

fX (x) = 
fX,Y (x, y) 
fY |X (y | x) 

= 



 

3 + x
 − 3 ≤ x < −1 
8


1

4


− 1 ≤ x < 1


3 − x 
1 ≤ x ≤ 3


8

0 otherwise


This could also be found by convolution, fX = fY ∗ fW , since Y and W are 
statistically independent. Then, 

∫∞ 

EX [EY |X {(Y − ŷ(x)}2 | X = x]] = E[(Y − ŷ(x))2 | X = x]fX (x)dx 

−∞ 

= 

−1 

( 
(3 + x)2 

12


1 3


)( )dx + ( )( )dx + ( 
(3 − x)2 

12

3 + x
 1 1


)( 
3 − x


8

)dx 

8
 3
 4

−3 −1 1 

1

= 

4
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Compare this with the mean square error if we just estimated Y by its mean, namely 
0. The mean square error would then be the variance σY 

2 : 

σ2 [1 − (−1)]2 1 
,= = Y 12 3 

so the mean square error is indeed reduced by allowing ourselves to use knowledge 
of X and of the probabilistic relation between Y and X. 

8.2.1	 Orthogonality 

A further important property of the MMSE estimator is that the residual error 
Y − ŷ(X) is orthogonal to any function h(X) of the measured random variables: 

EY,X [{Y − ŷ(X)}h(X)] = 0 ,	 (8.32) 

where the expectation is computed over the joint density of Y and X. Rearranging 
this, we have the equivalent condition 

EY,X [ŷ(X)h(X)] = EY,X [Y h(X)] , (8.33) 

i.e., the MMSE estimator has the same correlation as Y does with any function of 
X. In particular, choosing h(X) = 1, we find that 

EY,X [ŷ(X)] = EY [Y ] .	 (8.34) 

The latter property results in the estimator being referred to as unbiased: its 
expected value equals the expected value of the random variable being estimated. 
We can invoked the unbiasedness property to interpret (8.32) as stating that the 
estimation error of the MMSE estimator is uncorrelated with any function of the 
random variables used to construct the estimator. 

The proof of the correlation matching property in (8.33) is in the following sequence 
of equalities: 

EY,X [ŷ(X)h(X)] = EX [EY |X [Y |X]h(X)] (8.35)


= EX [EY |X [Y h(X)|X]] (8.36)


= EY,X [Y h(X)] . (8.37)


Rearranging the final result here, we obtain the orthogonality condition in (8.32). 

8.3	 LINEAR MINIMUM MEAN SQUARE ERROR ESTIMATION 

In general, the conditional expectation E(Y X) required for the MMSE estimator |
developed in the preceding sections is difficult to determine, because the conditional 
density fY |X(y|x) is not easily determined. A useful and widely used compromise 
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is to restrict the estimator to be a fixed linear (or actually affine, i.e., linear plus 
a constant) function of the measured random variables, and to choose the linear 
relationship so as to minimize the mean square error. The resulting estimator is 
called the linear minimum mean square error (LMMSE) estimator. We begin with 
the simplest case. 

Suppose we wish to construct an estimator for the random variable Y in terms of 
another random variable X, restricting our estimator to be of the form 

Ŷℓ = ŷℓ(X) = aX + b , (8.38) 

where a and b are to be determined so as to minimize the mean square error 

EY,X [(Y − Ŷℓ)
2] = EY,X [{Y − (aX + b)} 2] . (8.39) 

Note that the expectation is taken over the joint density of Y and X; the linear 
estimator is picked to be optimum when averaged over all possible combinations of 
Y and X that may occur. We have accordingly used subscripts on the expectation 
operations in (8.39) to make explicit for now the variables whose joint density the 
expectation is being computed over; we shall eventually drop the subscripts. 

Once the optimum a and b have been chosen in this manner, the estimate of Y , 
given a particular x, is just ŷℓ(x) = ax + b, computed with the already designed 
values of a and b. Thus, in the LMMSE case we construct an optimal linear 
estimator, and for any particular x this estimator generates an estimate that is 
not claimed to have any individual optimality property. This is in contrast to the 
MMSE case considered in the previous sections, where we obtained an optimal 
MMSE estimate for each x, namely E[Y X = x], that minimized the mean square |
error conditioned on X = x. The distinction can be summarized as follows: in 
the unrestricted MMSE case, the optimal estimator is obtained by joining together 
all the individual optimal estimates, whereas in the LMMSE case the (generally 
non-optimal) individual estimates are obtained by simply evaluating the optimal 
linear estimator. 

We turn now to minimizing the expression in (8.39), by differentiating it with 
respect to the parameters a and b, and setting each of the derivatives to 0. (Con
sideration of the second derivatives will show that we do indeed find minimizing 
values in this fashion, but we omit the demonstration.) First differentiating (8.39) 
with respect to b, taking the derivative inside the integral that corresponds to the 
expectation operation, and then setting the result to 0, we conclude that 

EY,X [Y − (aX + b)] = 0 , (8.40) 

or equivalently 
E[Y ] = E[aX + b] = E[Ŷℓ] , (8.41) 

from which we deduce that 
b = µY − aµX , (8.42) 

where µY = E[Y ] = EY,X [Y ] and µX = E[X] = EY,X [X]. The optimum value of 
b specified in (8.42) in effect serves to make the linear estimator unbiased, i.e., the 
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152 Chapter 8 Estimation with Minimum Mean Square Error 

expected value of the estimator becomes equal to the expected value of the random 
variable we are trying to estimate, as (8.41) shows. 

Using (8.42) to substitute for b in (8.38), it follows that 

Ŷℓ = µY + a(X − µX ) . (8.43) 

In other words, to the expected value µY of the random variable Y that we are 
estimating, the optimal linear estimator adds a suitable multiple of the difference 
X − µX between the measured random variable and its expected value. We turn 
now to finding the optimum value of this multiple, a. 

First rewrite the error criterion (8.39) as 

E[{(Y − µY ) − (Ŷℓ − µY )}2] = E[( Ỹ − aX̃)2] , (8.44) 

where 
Ỹ = Y − µY and X̃ = X − µX , (8.45) 

and where we have invoked (8.43) to obtain the second equality in (8.44). Now 
taking the derivative of the error criterion in (8.44) with respect to a, and setting 
the result to 0, we find 

E[( Ỹ − aX̃)X̃] = 0 . (8.46) 

Rearranging this, and recalling that E[Ỹ X̃] = σY X , i.e., the covariance of Y and 
X, and that E[X̃2] = σ2 , we obtain X 

σY X σY 
a = = ρY X 

σ2 σX 
, (8.47) 

X 

where ρY X — which we shall simply write as ρ when it is clear from context what 
variables are involved — denotes the correlation coefficient between Y and X. 

It is also enlightening to understand the above expression for a in terms of the 
vector-space picture for random variables developed in the previous chapter. 

aX̃

FIGURE 8.8 Expression for a from Eq. (8.47) illustrated in vector space. 

The expression (8.44) for the error criterion shows that we are looking for a vector 
aX̃, which lies along the vector X̃, such that the squared length of the error vector 
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Ỹ −aX̃ is minimum. It follows from familiar geometric reasoning that the optimum 
choice of aX̃ must be the orthogonal projection of Ỹ on X̃, and that this projection 
is 

< ˜ X > Y , ˜
X = X .	 (8.48) a ˜ ˜ X > 

˜
< X, ˜

Here, as in the previous chapter, < U, V > denotes the inner product of the vec
tors U and V , and in the case where the “vectors” are random variables, denotes 
E[UV ]. Our expression for a in (8.47) follows immediately. Figure 8.8 shows the 
construction associated with the requisite calculations. Recall from the previous 
chapter that the correlation coefficient ρ denotes the cosine of the angle between 
the vectors Ỹ and X̃. 

The preceding projection operation implies that the error Ỹ − aX̃, which can also 
be written as Y − Ŷℓ, must be orthogonal to X̃ = X − µX . This is precisely what 
(8.46) says. In addition, invoking the unbiasedness of Ŷℓ shows that Y − Ŷℓ must 
be orthogonal to µX (or any other constant), so Y − Ŷℓ is therefore orthogonal to 
X	 itself: 

E[(Y − Ŷℓ)X] = 0 . (8.49) 

In other words, the optimal LMMSE estimator is unbiased and such that the esti
mation error is orthogonal to the random variable on which the estimator is based. 
(Note that the statement in the case of the MMSE estimator in the previous section 
was considerably stronger, namely that the error was orthogonal to any function 
h(X) of the measured random variable, not just to the random variable itself.) 

The preceding development shows that the properties of (i) unbiasedness of the 
estimator, and (ii) orthogonality of the error to the measured random variable, 
completely characterize the LMMSE estimator. Invoking these properties yields 
the LMMSE estimator. 

Going a step further with the geometric reasoning, we find from Pythagoras’s the
orem applied to the triangle in Figure 8.8 that the minimum mean square error 
(MMSE) obtained through use of the LMMSE estimator is 

MMSE = E[( Ỹ − aX̃)2] = E[Ỹ 2](1 − ρ2) = σY 
2 (1 − ρ2) . (8.50) 

This result could also be obtained purely analytically, of course, without recourse 
to the geometric interpretation. The result shows that the mean square error σY 

2 

that we had prior to estimation in terms of X is reduced by the factor 1 − ρ2 when 
we use X in an LMMSE estimator. The closer that ρ is to +1 or −1 (corresponding 
to strong positive or negative correlation respectively), the more our uncertainty 
about Y is reduced by using an LMMSE estimator to extract information that X 
carries about Y . 

Our results on the LMMSE estimator can now be summarized in the following 
expressions for the estimator, with the associated minimum mean square error 
being given by (8.50): 

σY X	 σY
Ŷℓ = ŷℓ(X) = µY + 

σ2 (X − µX ) = µY + ρ
σX 

(X − µX ) , (8.51) 
X 
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or the equivalent but perhaps more suggestive form 

Ŷℓ − µY 
= ρ

X − µX 
. (8.52) 

σY σX 

The latter expression states that the normalized deviation of the estimator from its 
mean is ρ times the normalized deviation of the observed variable from its mean; the 
more highly correlated Y and X are, the more closely we match the two normalized 
deviations. 

Note that our expressions for the LMMSE estimator and its mean square error are 
the same as those obtained in Example 8.4 for the MMSE estimator in the bivariate 
Gaussian case. The reason is that the MMSE estimator in that case turned out to 
be linear (actually, affine), as already noted in the example. 

EXAMPLE 8.6 LMMSE Estimator for Signal in Additive Noise 

We return to Example 8.5, for which we have already computed the MMSE esti
mator, and we now design an LMMSE estimator. Recall that the random vari
able X denotes a noisy measurement of the angular position Y of an antenna, so 
X = Y + W , where W denotes the additive noise. We assume the noise is inde
pendent of the angular position, i.e., Y and W are independent random variables, 
with Y uniformly distributed in the interval [−1, 1] and W uniformly distributed 
in the interval [−2, 2]. 

For the LMMSE estimator of Y in terms of X, we need to determine the respective 
means and variances, as well as the covariance, of these random variables. It is easy 
to see that 

1 42 2= 0 , µW = 0 , µX = 0 , σ , σµY = = ,Y W3 3 

5 1 1 
σ2 

X = σ2 
Y + σ2 2 

Y, σY X = σ
3 

, ρY X = √
5 

= = .W 3 

2 

The LMMSE estimator is accordingly 

1 ̂
5 
X , Yℓ = 

and the associated MMSE is 

Y (1 − ρ2) = 
4 

. 
15 

σ

1 
3
1 
4

obtained 
obtained 

This MMSE should be compared with the (larger) mean square error of
if we simply use µY = 0 as our estimator for Y , and the (smaller) value
using the MMSE estimator in Example 8.5. 
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EXAMPLE 8.7 Single-Point LMMSE Estimator for Sinusoidal Random Process 

Consider a sinusoidal signal of the form 

X(t) = A cos(ω0t + Θ) (8.53) 

where ω0 is assumed known, while A and Θ are statistically independent random 
variables, with the PDF of Θ being uniform in the interval [0, 2π]. Thus X(t) is a 
random signal, or equivalently a set or “ensemble” of signals corresponding to the 
various possible outcomes for A and Θ in the underlying probabilistic experiment. 
We will discuss such signals in more detail in the next chapter, where we will refer 
to them as random processes. The value that X(t) takes at some particular time 
t = t0 is simply a random variable, whose specific value will depend on which 
outcomes for A and Θ are produced by the underlying probabilistic experiment. 

Suppose we are interested in determining the LMMSE estimator for X(t1) based 
on a measurement of X(t0), where t0 and t1 are specified sampling times. In other 
words, we want to choose a and b in 

X̂(t1) = aX(t0) + b (8.54) 

so as to minimize the mean square error between X(t1) and X̂(t1). 

We have established that b must be chosen to ensure the estimator is unbiased: 

E[X̂(t1)] = aE[X(t0)] + b = E[X(t1)] . 

Since A and Θ are independent, 

∫ 2π 1 
E[X(t0)] = E{A} cos(ω0t0 + θ) dθ = 0 

2π0 

and similarly E[X(t1)] = 0, so we choose b = 0. 

Next we use the fact that the error of the LMMSE estimator is orthogonal to the 
data: 

E[( X̂(t1) − X(t1))X(t0)] = 0 

and consequently 
aE[X2(t0)] = E[X(t1)X(t0)] 

or 
E[X(t1)X(t0)] 

a = . (8.55) 
E[X2(t0)] 

The numerator and denominator in (8.55) are respectively 

∫ 2π 1 
E[X(t1)X(t0)] = E[A2] cos(ω0t1 + θ) cos(ω0t0 + θ) dθ 

2π 

E[A2] 
0 

= cos{ω0(t1 − t0)}
2 
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and E[X2(t0)] = E[A2] . Thus a = cos{ω0(t1 − t0)}, so the LMMSE estimator is 2 

X(t1) = X(t0) cos{ω0(t1 − t0)} . (8.56) 

It is interesting to observe that the distribution of A doesn’t play a role in this 
equation. 

To evaluate the mean square error associated with the LMMSE estimator, we com
pute the correlation coefficient between the samples of the random signal at t0 and 
t1. It is easily seen thatρ = a = cos{ω0(t1 − t0)}, so the mean square error is 

E[A2] (
1 − cos 2 {ω0(t1 − t0)}

) 
= 

E[A2] 
sin2 {ω0(t1 − t0)} . (8.57) 

2 2 

We now extend the LMMSE estimator to the case where our estimation of a random 
variable Y is based on observations of multiple random variables, say X1, . . . , XL, 
gathered in the vector X. The affine estimator may then be written in the form 

L

Ŷℓ = ŷℓ(X) = a0 + 
∑ 

aj Xj . (8.58) 
j=1 

As we shall see, the coefficient ai of this LMMSE estimator can be found by solving 
a linear system of equations that is completely defined by the first and second 
moments (i.e., means, variances and covariances) of the random variables Y and 
Xj . The fact that the model (8.58) is linear in the parameters ai is what results in a 
linear system of equations; the fact that the model is affine in the random variables 
is what makes the solution only depend on their first and second moments. Linear 
equations are easy to solve, and first and second moments are generally easy to 
determine, hence the popularity of LMMSE estimation. 

The development below follows along the same lines as that done earlier in this 
section for the case where we just had a single observed random variable X, but 
we use the opportunity to review the logic of the development and to provide a few 
additional insights. 

We want to minimize the mean square error 

L

E
[(

Y − (a0 + 
∑ 

aj Xj )
)2] 

, (8.59) 
j=1 

where the expectation is computed using the joint density of Y and X. We use the 
joint density rather than the conditional because the parameters are not going to 
be picked to be best for a particular set of measured values x — otherwise we could 
do as well as the nonlinear estimate in this case, by setting a0 = E[Y X = x] and |
setting all the other ai to zero. Instead, we are picking the parameters to be the best 
averaged over all possible X. The linear estimator will in general not be as good 
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as the unconstrained estimator, except in special cases (some of them important, 
as in the case of bivariate Gaussian random variables) but this estimator has the 
advantage that it is easy to solve for, as we now show. 

To minimize the expression in (8.59), we differentiate it with respect to ai for 
i = 0, 1, , L, and set each of the derivatives to 0. (Again, calculations involving · · · 
second derivatives establish that we do indeed obtain minimizing values, but we 
omit these calculation here.) First differentiating with respect to a0 and setting 
the result to 0, we conclude that 

L

E[Y ] = E[ a0 + 
∑ 

aj Xj ] = E[Ŷℓ] (8.60) 
j=1 

or 
L

a0 = µY − 
∑ 

aj µXj , (8.61) 
j=1 

where µY = E[Y ] and µXj = E[Xj ]. This optimum value of a0 serves to make the 
linear estimator unbiased, in the sense that (8.60) holds, i.e., the expected value of 
the estimator is the expected value of the random variable we are trying to estimate. 

Using (8.61) to substitute for a0 in (8.58), it follows that 

L

Ŷℓ = µY + 
∑ 

aj (Xj − µXj ) . (8.62) 
j=1 

In other words, the estimator corrects the expected value µY of the variable we 
are estimating, by a linear combination of the deviations Xj − µXj between the 
measured random variables and their respective expected values. 

Taking account of (8.62), we can rewrite our mean square error criterion (8.59) as 

L

E[{(Y − µY ) − (Ŷℓ − µY )}2] = E
[( 

Ỹ − 
∑ 

aj X̃j )
)2] 

, (8.63) 
j=1 

where 
Ỹ = Y − µY and X̃j = Xj − µXj . (8.64) 

Differentiating this with respect to each of the remaining coefficients ai, i = 1, 2, ...L, 
and setting the result to zero produces the equations 

L

E[( Ỹ − 
∑ 

aj X̃j )X̃i] = 0 i = 1, 2, ..., L . (8.65) 
j=1 

or equivalently, if we again take account of (8.62), 

E[(Y − Ŷℓ)X̃i] = 0 i = 1, 2, ..., L . (8.66) 
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Yet another version follows on noting from (8.60) that Y − Ŷℓ is orthogonal to all 
constants, in particular to µXi , so 

E[(Y − Ŷℓ)Xi] = 0 i = 1, 2, ..., L . (8.67) 

All three of the preceding sets of equations express, in slightly different forms, the 
orthogonality of the estimation error to the random variables used in the estimator. 
One moves between these forms by invoking the unbiasedness of the estimator. 
The last of these, (8.67), is the usual statement of the orthogonality condition that 
governs the LMMSE estimator. (Note once more that the statement in the case of 
the MMSE estimator in the previous section was considerably stronger, namely that 
the error was orthogonal to any function h(X) of the measured random variables, 
not just to the random variables themselves.) Rewriting this last equation as 

E[Y Xi] = E[ŶℓXi] i = 1, 2, ..., L (8.68) 

yields an equivalent statement of the orthogonality condition, namely that the 
LMMSE estimator Ŷℓ has the same correlations as Y with the measured variables 
Xi. 

The orthogonality and unbiasedness conditions together determine the LMMSE 
estimator completely. Also, the preceding developments shows that the first and 
second moments of Y and the Xi are exactly matched by the corresponding first 
and second moments of Ŷℓ and the Xi. It follows that Y and Ŷℓ cannot be told 
apart on the basis of only first and second moments with the measured variables 
Xi. 

We focus now on (8.65), because it provides the best route to a solution for the 
coefficients aj , j = 1, . . . , L. This set of equations can be expressed as 

L∑ 
σXi Xj aj = σXiY , (8.69) 

j=1 

where σXiXj is the covariance of Xi and Xj (so σXiXi is just the variance σ2 ), Xi 

and σXiY is the covariance of Xi and Y . Collecting these equations in matrix form, 
we obtain 

 
σX1X1 σX1X2 · · · σX1XL 

  
a1 

  
σX1Y 

 

 

σX2X1 

. . . 

σX2X2 

. . . 

· · · 
. . . 

σX2XL 

. . . 

 

 

a2 
. . . 

 
= 

 

σX2Y 
. . . 

 
. (8.70) 

σXLX1 σXL X2 · · · σXLXL aL σXLY 

This set of equations is referred to as the normal equations. We can rewrite the 
normal equations in more compact matrix notation: 

(CXX) a = CXY (8.71) 

where the definitions of CXX, a, and CXY should be evident on comparing the last 
two equations. The solution of this set of L equations in L unknowns yields the 
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{aj } for j = 1, , L, and these values may be substituted in (8.62) to completely · · · 
specify the estimator. In matrix notation, the solution is 

a = (CXX)−1CXY . (8.72) 

It can be shown quite straightforwardly (though we omit the demonstration) that 
the minimum mean square error obtained with the LMMSE estimator is 

σY 
2 − CY X(CXX)−1CXY = σY 

2 − CY Xa , (8.73) 

where CY X is the transpose of CXY . 

EXAMPLE 8.8 Estimation from Two Noisy Measurements 

R1 

↓⊕ 
X1→ → 

|
Y → 

| ⊕ 
X2→ → 

↑
R2 

FIGURE 8.9 Illustration of relationship between random variables from Eq. (8.75) 
for Example 8.8. 

Assume that Y , R1 and R2 are mutually uncorrelated, and that R1 and R2 have zero 
means and equal variances. We wish to find the linear MMSE estimator for Y , given 
measurements of X1 and X2. This estimator takes the form Ŷℓ = a0 +a1X1 +a2X2. 
Our requirement that Ŷℓ be unbiased results in the constraint 

a0 = µY − a1µX1 − a2µX2 = µY (1 − a1 − a2) (8.74) 

Next, we need to write down the normal equations, for which some preliminary 
calculations are required. Since 

X1 = Y + R1


X2 = Y + R2 (8.75)


and Y , R1 and R2 are mutually uncorrelated, we find 

E[Xi 
2] = E[Y 2] + E[R2 

i ] , 

E[X1X2] = E[Y 2] , 

E[XiY ] = E[Y 2] . (8.76) 
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The normal equations for this case thus become 
[ 

σ2 + σ2 σ2 
[ 

σ2 
Y 

2 2 2 2σ σ σ σ+ Y 

[	
σ2 + σ2 

−σ2 
R 

Y 

Y

R 

Y 

Y

R

Y

Y

] [ 
a1 

] 

] [ 
2σY

Yσ2 

(8.77) = 
a2 

from which we conclude that 
[ 

a1 
] 

2σ+ R 

2σ− Y 
2σY

1 
= 

(σ2	 + σ2 

σ2 

= . 
R 

R

2 22σ σ+ 
Y 

Y

Y − σ4 
Y [ ]

1 

)2a2 

(8.78) 
1 

Finally, therefore, 

2(σR2σ+ R

1 2 2σ X σ+ +1 YY

2 2σ σRY

2σ2 
Y 

and applying (8.73) we get that the associated minimum mean square error (MMSE) 
is 

Ŷℓ X2) (8.79) = µY 

.	 (8.80) 

2 2sonable values at extreme ranges of the signal-to-noise ratio σ /σRY

2 22σ σ+ RY

One can easily check that both the estimator and the associated MMSE take rea
. 
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C H A P T E R 9 

Random Processes 

INTRODUCTION 

Much of your background in signals and systems is assumed to have focused on the 
effect of LTI systems on deterministic signals, developing tools for analyzing this 
class of signals and systems, and using what you learned in order to understand 
applications in communication (e.g., AM and FM modulation), control (e.g., sta
bility of feedback systems), and signal processing (e.g., filtering). It is important to 
develop a comparable understanding and associated tools for treating the effect of 
LTI systems on signals modeled as the outcome of probabilistic experiments, i.e., 
a class of signals referred to as random signals (alternatively referred to as random 
processes or stochastic processes). Such signals play a central role in signal and 
system design and analysis, and throughout the remainder of this text. In this 
chapter we define random processes via the associated ensemble of signals, and be
gin to explore their properties. In successive chapters we use random processes as 
models for random or uncertain signals that arise in communication, control and 
signal processing applications. 

9.1 DEFINITION AND EXAMPLES OF A RANDOM PROCESS 

In Section 7.3 we defined a random variable X as a function that maps each outcome 
of a probabilistic experiment to a real number. In a similar manner, a real-valued 
CT or DT random process, X(t) or X[n] respectively, is a function that maps 
each outcome of a probabilistic experiment to a real CT or DT signal respectively, 
termed the realization of the random process in that experiment. For any fixed 
time instant t = t0 or n = n0, the quantities X(t0) and X[n0] are just random 
variables. The collection of signals that can be produced by the random process is 
referred to as the ensemble of signals in the random process. 

EXAMPLE 9.1 Random Oscillators 

As an example of a random process, imagine a warehouse containing N harmonic 
oscillators, each producing a sinusoidal waveform of some specific amplitude, fre
quency, and phase, all of which may be different for the different oscillators. The 
probabilistic experiment that results in the ensemble of signals consists of selecting 
an oscillator according to some probability mass function (PMF) that assigns a 
probability to each of the numbers from 1 to N , so that the ith oscillator is picked 
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Ψ �Amplitude 

X(t; ψ) 

t0 t 

� 

�ψ 

FIGURE 9.1 A random process. 

with probability pi. Associated with each outcome of this experiment is a specific 
sinusoidal waveform. 

In Example 9.1, before an oscillator is chosen, there is uncertainty about what 
the amplitude, frequency and phase of the outcome of the experiment will be. 
Consequently, for this example, we might express the random process as 

X(t) = A sin(ωt + φ) 

where the amplitude A, frequency ω and phase φ are all random variables. The 
value X(t1) at some specific time t1 is also a random variable. In the context of 
this experiment, knowing the PMF associated with each of the numbers 1 to N 
involved in choosing an oscillator, as well as the specific amplitude, frequency and 
phase of each oscillator, we could determine the probability distributions of any of 
the underlying random variables A, ω, φ or X(t1) mentioned above. 

Throughout this and later chapters, we will be considering many other examples of 
random processes. What is important at this point, however, is to develop a good 
mental picture of what a random process is. A random process is not just one signal 
but rather an ensemble of signals, as illustrated schematically in Figure 9.2 below, 
for which the outcome of the probabilistic experiment could be any of the four wave
forms indicated. Each waveform is deterministic, but the process is probabilistic 
or random because it is not known a priori which waveform will be generated by 
the probabilistic experiment. Consequently, prior to obtaining the outcome of the 
probabilistic experiment, many aspects of the signal are unpredictable, since there 
is uncertainty associated with which signal will be produced. After the experiment, 
or a posteriori, the outcome is totally determined. 

If we focus on the values that a random process X(t) can take at a particular 
instant of time, say t1 — i.e., if we look down the entire ensemble at a fixed time — 
what we have is a random variable, namely X(t1). If we focus on the ensemble of 
values taken at an arbitrary collection of ℓ fixed time instants t1 < t2 < < tℓ for · · · 
some arbitrary integer ℓ, we are dealing with a set of ℓ jointly distributed random 
variables X(t1), X(t2), , X(tℓ), all determined together by the outcome of the · · · 
underlying probabilistic experiment. From this point of view, a random process 
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X(t) = x (t) 

t t1 2 

FIGURE 9.2 Realizations of the random process X(t) 

can be thought of as a family of jointly distributed random variables indexed by 
t (or n in the DT case). A full probabilistic characterization of this collection of 
random variables would require the joint PDFs of multiple samples of the signal, 
taken at arbitrary times: 

a 

X(t) = x (t)b 

X(t) = x (t)c 

X(t) = x (t)d 

t 

t 

t 

t 

fX(t1),X(t2), ,X(tℓ )(x1, x2, , xℓ)··· · · · 

for all ℓ and all t1, t2, , tℓ.· · · 
An important set of questions that arises as we work with random processes in later 
chapters of this book is whether, by observing just part of the outcome of a random 
process, we can determine the complete outcome. The answer will depend on the 
details of the random process, but in general the answer is no. For some random 
processes, having observed the outcome in a given time interval might provide 
sufficient information to know exactly which ensemble member was determined. In 
other cases it would not be sufficient. We will be exploring some of these aspects in 
more detail later, but we conclude this section with two additional examples that 
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further emphasize these points. 

EXAMPLE 9.2 Ensemble of batteries 

Consider a collection of N batteries, each providing one voltage out of a given finite 
set of voltage values. The histogram of voltages (i.e., the number of batteries with 
a given voltage) is given in Figure 9.3. The probabilistic experiment is to choose 

Number of 

Batteries 

Voltage 

FIGURE 9.3 Histogram of battery distribution for Example 9.2. 

one of the batteries, with the probability of picking any specific one being N 
1 , i.e., 

they are all equally likely to be picked. A little reflection should convince you that 
if we multiply the histogram in Figure 9.3 by N 

1 , this normalized histogram will 
represent (or approximate) the PMF for the battery voltage at the outcome of the 
experiment. Since the battery voltage is a constant signal, this corresponds to a 
random process, and in fact is similar to the oscillator example discussed earlier, 
but with ω = 0 and φ = 0, so that only the amplitude is random. 

For this example observation of X(t) at any one time is sufficient information to 
determine the outcome for all time. 

EXAMPLE 9.3 Ensemble of coin tossers 

Consider N people, each independently having written down a long random string 
of ones and zeros, with each entry chosen independently of any other entry in their 
string (similar to a sequence of independent coin tosses). The random process now 
comprises this ensemble of strings. A realization of the process is obtained by 
randomly selecting a person (and therefore one of the N strings of ones and zeros), 
following which the specific ensemble member of the random process is totally 
determined. The random process described in this example is often referred to as 
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the Bernoulli process because of the way in which the string of ones and zeros is 
generated (by independent coin flips). 

Now suppose that person shows you only the tenth entry in the string. Can you 
determine (or predict) the eleventh entry from just that information? Because of 
the manner in which the string was generated, the answer clearly is no. Similarly 
if the entire past history up to the tenth entry was revealed to you, could you 
determine the remaining sequence beyond the tenth? For this example, the answer 
is again clearly no. 

While the entire sequence has been determined by the nature of the experiment, 
partial observation of a given ensemble member is in general not sufficient to fully 
specify that member. 

Rather than looking at the nth entry of a single ensemble member, we can consider 
the random variable corresponding to the values from the entire ensemble at the 
nth entry. Looking down the ensemble at n = 10, for example, we would would see 
ones and zeros with equal probability. 

In the above discussion we indicated and emphasized that a random process can 
be thought of as a family of jointly distributed random variables indexed by t or 
n. Obviously it would in general be extremely difficult or impossible to represent a 
random process this way. Fortunately, the most widely used random process models 
have special structure that permits computation of such a statistical specification. 
Also, particularly when we are processing our signals with linear systems, we often 
design the processing or analyze the results by considering only the first and second 
moments of the process, namely the following functions: 

Mean: µX (ti) = E[X(ti)], (9.1) 

Auto-correlation: RXX (ti, tj ) = E[X(ti)X(tj )], and (9.2) 

Auto-covariance: CXX (ti, tj ) = E[(X(ti) − µX (ti))(X(tj ) − µX (tj ))] 

= RXX (ti, tj ) − µX (ti)µX (tj ). (9.3) 

The word “auto” (which is sometime written without the hyphen, and sometimes 
dropped altogether to simplify the terminology) here refers to the fact that both 
samples in the correlation function or the covariance function come from the same 
process; we shall shortly encounter an extension of this idea, where the samples are 
taken from two different processes. 

One case in which the first and second moments actually suffice to completely 
specify the process is in the case of what is called a Gaussian process, defined 
as a process whose samples are always jointly Gaussian (the generalization of the 
bivariate Gaussian to many variables). 

We can also consider multiple random processes, e.g., two processes, X(t) and Y (t). 
For a full stochastic characterization of this, we need the PDFs of all possible com
binations of samples from X(t), Y (t). We say that X(t) and Y (t) are independent 
if every set of samples from X(t) is independent of every set of samples from Y (t), 
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so that the joint PDF factors as follows: 

fX(t1), ,X(tk ),Y (t ′ ), ,Y (t ′ )(x1, , xk, y1, , yℓ)··· 1 ··· 
ℓ 

· · · · · · 
= fX(t1), ,X(tk )(x1, , xk).fY (t ′ ), ,Y (t ′ )(y1, , yℓ) . (9.4) 

1 ℓ
··· · · · ··· · · · 

If only first and second moments are of interest, then in addition to the individual 
first and second moments of X(t) and Y (t) respectively, we need to consider the 
cross-moment functions: 

Cross-correlation: RXY (ti, tj ) = E[X(ti)Y (tj )], and (9.5) 

Cross-covariance: CXY (ti, tj ) = E[(X(ti) − µX (ti))(Y (tj ) − µY (tj ))] 

= RXY (ti, tj ) − µX (ti)µY (tj ). (9.6) 

If CXY (t1, t2) = 0 for all t1, t2, we say that the processes X(t) and Y (t) are uncor
related. Note again that the term “uncorrelated” in its common usage means that 
the processes have zero covariance rather than zero correlation. 

Note that everything we have said above can be carried over to the case of DT 
random processes, except that now the sampling instants are restricted to be dis
crete time instants. In accordance with our convention of using square brackets 
[ ] around the time argument for DT signals, we will write µX [n] for the mean · 
of a random process X[ ] at time n; similarly, we will write RXX [ni, nj ] for the · 
correlation function involving samples at times ni and nj ; and so on. 

9.2 STRICT-SENSE STATIONARITY 

In general, we would expect that the joint PDFs associated with the random vari
ables obtained by sampling a random process at an arbitrary number k of arbitrary 
times will be time-dependent, i.e., the joint PDF 

fX(t1), ,X(tk )(x1, , xk)··· · · · 

will depend on the specific values of t1, , tk. If all the joint PDFs stay the same · · · 
under arbitrary time shifts, i.e., if 

fX(t1 ), ,X(tk )(x1, , xk) = fX(t1+τ ), ,X(tk +τ )(x1, , xk) (9.7) ··· · · · ··· · · · 

for arbitrary τ , then the random process is said to be strict-sense stationary (SSS). 
Said another way, for a strict-sense stationary process, the statistics depend only 
on the relative times at which the samples are taken, not on the absolute times. 

EXAMPLE 9.4 Representing an i.i.d. process 

Consider a DT random process whose values X[n] may be regarded as independently 
chosen at each time n from a fixed PDF fX (x), so the values are independent and 
identically distributed, thereby yielding what is called an i.i.d. process. Such pro
cesses are widely used in modeling and simulation. For instance, if a particular 
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DT communication channel corrupts a transmitted signal with added noise that 
takes independent values at each time instant, but with characteristics that seem 
unchanging over the time window of interest, then the noise may be well modeled 
as an i.i.d. process. It is also easy to generate an i.i.d. process in a simulation envi
ronment, provided one can arrange a random-number generator to produce samples 
from a specified PDF (and there are several good ways to do this). Processes with 
more complicated dependence across time samples can then be obtained by filtering 
or other operations on the i.i.d. process, as we shall see in the next chapter. 

For such an i.i.d. process, we can write the joint PDF quite simply: 

fX[n1 ],X[n2], ,X[nℓ](x1, x2, , xℓ) = fX (x1)fX (x2) fX (xℓ) (9.8) ··· · · · · · · 

for any choice of ℓ and n1, , nℓ. The process is clearly SSS. · · · 

9.3 WIDE-SENSE STATIONARITY 

Of particular use to us is a less restricted type of stationarity. Specifically, if the 
mean value µX (ti) is independent of time and the autocorrelation RXX (ti, tj ) or 
equivalently the autocovariance CXX (ti, tj ) is dependent only on the time difference 
(ti − tj ), then the process is said to be wide-sense stationary (WSS). Clearly a 
process that is SSS is also WSS. For a WSS random process X(t), therefore, we 
have 

µX (t) = µX (9.9) 

RXX (t1, t2) = RXX (t1 + α, t2 + α) for every α 

= RXX (t1 − t2, 0) . (9.10) 

(Note that for a Gaussian process (i.e., a process whose samples are always jointly 
Gaussian) WSS implies SSS, because jointly Gaussian variables are entirely deter
mined by the their joint first and second moments.) 

Two random processes X(t) and Y (t) are jointly WSS if their first and second 
moments (including the cross-covariance) are stationary. In this case we use the 
notation RXY (τ) to denote E[X(t + τ)Y (t)]. 

EXAMPLE 9.5 Random Oscillators Revisited 

Consider again the harmonic oscillators as introduced in Example 9.1, i.e. 

X(t; A, Θ) = A cos(ω0t + Θ) 

where A and Θ are independent random variables, and now ω0 is fixed at some 
known value. 

If Θ is actually fixed at the constant value θ0, then every outcome is of the form 
x(t) = A cos(ω0t + θ0), and it is straightforward to see that this process is not WSS 
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(and hence not SSS). For instance, if A has a nonzero mean value, µA = 0, then the 
expected value of the process, namely µA cos(ω0t + θ0), is time varying. To argue 
that the process is not WSS even when µA = 0, we can examine the autocorrelation 
function. Note that x(t) is fixed at the value 0 for all values of t such that ω0t + θ0 

is an odd multiple of π/2, and takes the values ±A half-way between such points; 
the correlation between such samples taken π/ω0 apart in time can correspondingly 
be 0 (in the former case) or −E[A2] (in the latter). The process is thus not WSS. 

On the other hand, if Θ is distributed uniformly in [−π, π], then 

∫ π 1 
µX (t) = µA cos(ω0t + θ)dθ = 0 , (9.11) 

−π 2π 

CXX (t1, t2) = RXX (t1, t2) 

= E[A2]E[cos(ω0t1 + Θ) cos(ω0t2 + Θ)] 

E[A2] 
= cos(ω0(t2 − t1)) , (9.12) 

2 

so the process is WSS. It can also be shown to be SSS, though this is not totally 
straightforward to show formally. 

To simplify notation for a WSS process, we write the correlation function as 
RXX (t1 − t2); the argument t1 − t2 is referred to as the lag at which the corre
lation is computed. For the most part, the random processes that we treat will 
be WSS processes. When considering just first and second moments and not en
tire PDFs or CDFs, it will be less important to distinguish between the random 
process X(t) and a specific realization x(t) of it — so we shall go one step further 
in simplifying notation, by using lower case letters to denote the random process 
itself. We shall thus talk of the random process x(t), and — in the case of a WSS 
process — denote its mean by µx and its correlation function E{x(t + τ )x(t)} by 
Rxx(τ). Correspondingly, for DT we’ll refer to the random process x[n] and (in the 
WSS case) denote its mean by µx and its correlation function E{x[n + m]x[n]} by 
Rxx[m]. 

9.3.1 Some Properties of WSS Correlation and Covariance Functions 

It is easily shown that for real-valued WSS processes x(t) and y(t) the correlation 
and covariance functions have the following symmetry properties: 

Rxx(τ ) = Rxx(−τ ) , Cxx(τ) = Cxx(−τ ) (9.13) 

Rxy(τ ) = Ryx(−τ) , Cxy (τ) = Cyx(−τ ) . (9.14) 

We see from (9.13) that the autocorrelation and autocovariance have even symme
try. Similar properties hold for DT WSS processes. 

Another important property of correlation and covariance functions follows from 
noting that the correlation coefficient of two random variables has magnitude not 
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exceeding 1. Applying this fact to the samples x(t) and x(t + τ ) of the random 
process x( ) directly leads to the conclusion that · 

− Cxx(0) ≤ Cxx(τ ) ≤ Cxx(0) . (9.15) 

In other words, the autocovariance function never exceeds in magnitude its value 
at the origin. Adding µx 

2 to each term above, we find the following inequality holds 
for correlation functions: 

− Rxx(0) + 2µx 
2 ≤ Rxx(τ) ≤ Rxx(0) . (9.16) 

In Chapter 10 we will demonstrate that correlation and covariance functions are 
characterized by the property that their Fourier transforms are real and non
negative at all frequencies, because these transforms describe the frequency dis
tribution of the expected power in the random process. The above symmetry con
straints and bounds will then follow as natural consequences, but they are worth 
highlighting here already. 

9.4 SUMMARY OF DEFINITIONS AND NOTATION 

In this section we summarize some of the definitions and notation we have previously 
introduced. As in Section 9.3, we shall use lower case letters to denote random 
processes, since we will only be dealing with expectations and not densities. Thus, 
with x(t) and y(t) denoting (real) random processes, we summarize the following 
definitions: 

mean : (t) 
△

(9.17) µx = E{x(t)} 

autocorrelation : (t1, t2) 
△

(9.18) Rxx = E{x(t1)x(t2)} 

cross − correlation : (t1, t2) 
△

(9.19) Rxy = E{x(t1)y(t2)} 

autocovariance : (t1, t2) 
△

(t1)][x(t2) − µx(t2)]}Cxx = E{[x(t1) − µx


= Rxx(t1, t2) − µx(t1)µx(t2) (9.20)


cross − covariance : (t1, t2) 
△

(t1)][y(t2) − µy(t2)]}Cxy = E{[x(t1) − µx


= Rxy (t1, t2) − µx(t1)µy (t2) (9.21)
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strict-sense stationary (SSS): all joint statistics for x(t1), x(t2), . . . , x(tℓ) for all ℓ > 0 
and all choices of sampling instants t1, · · · , tℓ 

depend only on the relative locations of sampling instants. 
wide-sense stationary (WSS): µx(t) is constant at some value µx, and Rxx(t1, t2) is a function 

jointly wide-sense stationary: 

of (t1 − t2) only, denoted in this case simply by Rxx(t1 − t2); 
hence Cxx(t1, t2) is a function of (t1 − t2) only, and 
written as Cxx(t1 − t2). 
x(t) and y(t) are individually WSS and Rxy(t1, t2) is 
a function of (t1 − t2) only, denoted simply by 
Rxy(t1 − t2); hence Cxy(t1, t2) is a function of (t1 − t2) only, 
and written as Cxy(t1 − t2). 

For WSS processes we have, in continuous-time and with simpler notation, 

Rxx(τ ) = E{x(t + τ)x(t)} = E{x(t)x(t − τ)} (9.22) 

Rxy (τ ) = E{x(t + τ)y(t)} = E{x(t)y(t − τ)}, (9.23) 

and in discrete-time, 

Rxx[m] = E{x[n + m]x[n]} = E{x[n]x[n − m]} (9.24) 

Rxy[m] = E{x[n + m]y[n]} = E{x[n]y[n − m]}. (9.25) 

We use corresponding (centered) definitions and notation for covariances: 

Cxx(τ), Cxy(τ), Cxx[m], and Cxy[m] . 

It is worth noting that an alternative convention used elsewhere is to define Rxy(τ) 

as Rxy = E{x(t)y(t+τ)}.(τ) 
△

In our notation, this expectation would be denoted by 
Rxy(−τ). It’s important to be careful to take account of what notational convention 
is being followed when you read this material elsewhere, and you should also be 
clear about what notational convention we are using in this text. 

9.5 FURTHER EXAMPLES 

EXAMPLE 9.6 Bernoulli process 

The Bernoulli process, a specific example of which was discussed previously in 
Example 9.3, is an example of an i.i.d. DT process with 

P(x[n] = 1) = p (9.26) 

P(x[n] = −1) = (1 − p) (9.27) 

and with the value at each time instant n independent of the values at all other 
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time instants. A simple calculation results in 

E {x[n]} = 2p − 1 = µx (9.28) 
{

1 m = 0 
E {x[n + m]x[n]} = 

(2p − 1)2 m = 0 6	 (9.29) 

Cxx[m] = E{(x[n + m] − µx)(x[n] − µx)} (9.30) 

= {1 − (2p − 1)2}δ[m] = 4p(1 − p)δ[m] . (9.31) 

EXAMPLE 9.7 Random telegraph wave 

A useful example of a CT random process that we’ll make occasional reference 
to is the random telegraph wave. A representative sample function of a random 
telegraph wave process is shown in Figure 9.4. The random telegraph wave can be 
defined through the following two properties: 

� t 

x(t) 

+1 

−1 

FIGURE 9.4 One realization of a random telegraph wave. 

1.	 X(0) = ±1 with probability 0.5. 

2.	 X(t) changes polarity at Poisson times, i.e., the probability of k sign changes

in a time interval of length T is


(λT )ke−λT 

P(k sign changes in an interval of length T ) = . (9.32) 
k! 

Property 2 implies that the probability of a non-negative, even number of sign 
changes in an interval of length T is 

∞
(λT )k ∞

1 + (−1)k (λT )k 

P(a non-negative even # of sign changes) = 
∑ e−λT 

= e−λT 
∑ 

k!	 2 k! 
k=0 k=0 

k even 
(9.33) 

Using the identity 
∞

(λT )k 
λT 

∑
e = 

k! 
k=0 
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equation (9.33) becomes 

P(a non-negative even # of sign changes) = e−λT (e
λT + e−λT ) 

2 
1 

= (1 + e−2λT ) . (9.34) 
2 

Similarly, the probability of an odd number of sign changes in an interval of length 
T is 1 (1 − e−2λT ). It follows that 2 

P(X(t) = 1) = P(X(t) = 1 X(0) = 1)P(X(0) = 1) |
+ P(X(t) = 1|X(0) = −1)P(X(0) = −1) 

1 
= P(even # of sign changes in [0, t]) 

2 
1 

+ P(odd # of sign changes in [0, t]) 
2 
1 

{ 
1 

} 
1 

{ 
1 

} 
1 

(1 − e−2λt)= (1 + e−2λt) + = . (9.35) 
2 2 2 2 2 

Note that because of Property I, the expression in the last line of Eqn. (9.35) is not 
needed, since the line before that already allows us to conclude that the answer is 12 : 
since the number of sign changes in any interval must be either even or odd, their 
probabilities add up to 1, so P (X(t) = 1) = 12 . However, if Property 1 is relaxed to 
allow P(X(0) = 1) = p0 = 2

1 , then the above computation must be carried through 
to the last line, and yields the result 

(1 − e−2λt)P(X(t) = 1) = p0 (1 + e−2λt) +(1−p0) = 

{ 
1 

} { 
1 

} 
1 {

1 + (2p0 − 1)e−2λt
} 

. 
2 2 2 

(9.36) 

Returning to the case where Property 1 holds, so P(X(t) = 1), we get 

µX (t) = 0, and (9.37) 

RXX (t1, t2) = E[X(t1)X(t2)] 

= 1 × P (X(t1) = X(t2)) + (−1) × P (X(t1) =6 X(t2)) 

= e−2λ|t2−t1| . (9.38) 

In other words, the process is exponentially correlated and WSS. 

9.6 ERGODICITY 

The concept of ergodicity is sophisticated and subtle, but the essential idea is de
scribed here. We typically observe the outcome of a random process (e.g., we record 
a noise waveform) and want to characterize the statistics of the random process by 
measurements on one ensemble member. For instance, we could consider the time-
average of the waveform to represent the mean value of the process (assuming this 
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mean is constant for all time). We could also construct histograms that represent 
the fraction of time (rather than the probability-weighted fraction of the ensemble) 
that the waveform lies in different amplitude bins, and this could be taken to reflect 
the probability density across the ensemble of the value obtained at a particular 
sampling time. If the random process is such that the behavior of almost every par
ticular realization over time is representative of the behavior down the ensemble, 
then the process is called ergodic. 

A simple example of a process that is not ergodic is Example 9.2, an ensemble of 
batteries. Clearly, for this example, the behavior of any realization is not represen
tative of the behavior down the ensemble. 

Narrower notions of ergodicity may be defined. For example, if the time average 

1 
∫ T 

〈x〉 = 
T →∞ 2T −T 

x(t) dt (9.39) lim 

almost always (i.e. for almost every realization or outcome) equals the ensemble 
average µX , then the process is termed ergodic in the mean. It can be shown, 
for instance, that a WSS process with finite variance at each instant and with a 
covariance function that approaches 0 for large lags is ergodic in the mean. Note 
that a (nonstationary) process with time-varying mean cannot be ergodic in the 
mean. 

In our discussion of random processes, we will primarily be concerned with first-
and second-order moments of random processes. While it is extremely difficult 
to determine in general whether a random process is ergodic, there are criteria 
(specified in terms of the moments of the process) that will establish ergodicity 
in the mean and in the autocorrelation. Frequently, however, such ergodicity is 
simply assumed for convenience, in the absence of evidence that the assumption 
is not reasonable. Under this assumption, the mean and autocorrelation can be 
obtained from time-averaging on a single ensemble member, through the following 
equalities: 

1 
∫T

E{x(t)} = lim x(t)dt (9.40) 
T →∞ 2T 

−T 

and 

1 
∫T

E{x(t)x(t + τ)} = lim x(t)x(t + τ)dt (9.41) 
T →∞ 2T 

−T 

A random process for which (9.40) and (9.41) are true is referred as second-order 
ergodic. 

9.7 LINEAR ESTIMATION OF RANDOM PROCESSES 

A common class of problems in a variety of aspects of communication, control and 
signal processing involves the estimation of one random process from observations 
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of another, or estimating (predicting) future values from the observation of past 
values. For example, it is common in communication systems that the signal at the 
receiver is a corrupted (e.g., noisy) version of the transmitted signal, and we would 
like to estimate the transmitted signal from the received signal. Other examples 
lie in predicting weather and financial data from past observations. We will be 
treating this general topic in much more detail in later chapters, but a first look at 
it here can be beneficial in understanding random processes. 

We shall first consider a simple example of linear prediction of a random process, 
then a more elaborate example of linear FIR filtering of a noise-corrupted process to 
estimate the underlying random signal. We conclude the section with some further 
discussion of the basic problem of linear estimation of one random variable from 
measurements of another. 

9.7.1 Linear Prediction 

As a simple illustration of linear prediction, consider a discrete-time process x[n]. 
Knowing the value at time n0 we may wish to predict what the value will be m 
samples into the future, i.e. at time n0 + m. We limit the prediction strategy to a 
linear one, i.e., with x̂[n0 + m] denoting the predicted value, we restrict x̂[n0 + m] 
to be of the form 

x̂[n0 + m] = ax[n0] + b (9.42) 

and choose the prediction parameters a and b to minimize the expected value of 
the square of the error, i.e., choose a and b to minimize 

ǫ = E{(x[n0 + m] − x̂[n0 + m])2} (9.43) 

or 
ǫ = E{(x[n0 + m] − ax[n0] − b)2}. (9.44) 

To minimize ǫ we set to zero its partial derivative with respect to each of the two 
parameters and solve for the parameter values. The resulting equations are 

E{(x[n0 + m] − ax[n0] − b)x[n0]} = E{(x[n0 + m] − x̂[n0 + m])x[n0]} = 0 
(9.45a) 

E{x[n0 + m] − ax[n0] − b} = E{x[n0 + m] − x̂[n0 + m]} = 0 . 
(9.45b) 

Equation (9.45a) states that the error x[n0 + m] − x̂[n0 + m] associated with the 
optimal estimate is orthogonal to the available data x[n0]. Equation (9.45b) states 
that the estimate is unbiased. 

Carrying out the multiplications and expectations in the preceding equations results 
in the following equations, which can be solved for the desired constants. 

Rxx[n0 + m,n0] − aRxx[n0, n0] − bµx[n0] = 0 (9.46a) 

µx[n0 + m] − aµx[n0] − b = 0. (9.46b) 
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If we assume that the process is WSS so that Rxx[n0+m,n0] = Rxx[m], Rxx[n0, n0] = 
Rxx[0], and also assume that it is zero mean, (µx = 0), then equations (9.46) reduce 
to 

a = Rxx[m]/Rxx[0] (9.47) 

b = 0 (9.48) 

so that 
Rxx[m] 

x̂[n0 + m] = 
Rxx[0] 

x[n0]. (9.49) 

If the process is not zero mean, then it is easy to see that 

Cxx[m] 
x̂[n0 + m] = µx + 

Cxx[0] 
(x[n0] − µx) . (9.50) 

An extension of this problem would consider how to do prediction when measure
ments of several past values are available. Rather than pursue this case, we illustrate 
next what to do with several measurements in a slightly different setting. 

9.7.2 Linear FIR Filtering 

As another example, which we will treat in more generality in chapter 11 on Wiener 
filtering, consider a discrete-time signal s[n] that has been corrupted by additive 
noise d[n]. For example, s[n] might be a signal transmitted over a channel and d[n] 
the noise introduced by the channel. The received signal r[n] is then 

r[n] = s[n] + d[n]. (9.51) 

Assume that both s[n] and d[n] are zero-mean random processes and are uncor
related. At the receiver we would like to process r[n] with a causal FIR (finite 
impulse response) filter to estimate the transmitted signal s[n]. 

d[n] 

s[n] �� � ŝ[n]⊕ 
r[n] 

� h[n] 

FIGURE 9.5 Estimating the noise corrupted signal. 

If h[n] is a causal FIR filter of length L, then 

L−1

ŝ[n] = 
∑ 

h[k]r[n − k]. (9.52) 
k=0 
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We would like to determine the filter coefficients h[k] to minimize the mean square 
error between ŝ[n] and s[n], i.e., minimize ǫ given by 

ǫ = E(s[n] − ŝ[n])2 

L−1

= E(s[n] − 
∑ 

h[k]r[n − k])2 . (9.53) 
k=0 

∂ǫ To determine h, we set ∂h[m] = 0 for each of the L values of m. Taking this 
derivative, we get 

∂ǫ 
= −E{2(s[n] − 

∑ 
h[k]r[n − k])r[n − m]}

∂h[m] 
k 

= −E{2(s[n] − ŝ[n])r[n − m]}
= 0 m = 0, 1, , L − 1 (9.54) · · · 

which is the orthogonality condition we should be expecting: the error (s[n] − ŝ[n]) 
associated with the optimal estimate is orthogonal to the available data, r[n − m]. 

Carrying out the multiplications in the above equations and taking expectations 
results in 

L−1∑ 
h[k]Rrr[m − k] = Rsr[m] , m = 0, 1, , L − 1 (9.55) · · · 

k=0 

Eqns. (9.55) constitute L equations that can be solved for the L parameters h[k]. 
With r[n] = s[n] + d[n], it is straightforward to show that Rsr[m] = Rss[m] + 
Rsd[m] and since we assumed that s[n] and d[n] are uncorrelated, then Rsd[m] = 0. 
Similarly, Rrr[m] = Rss[m] + Rdd[m]. 

These results are also easily modified for the case where the processes no longer 
have zero mean. 

9.8 THE EFFECT OF LTI SYSTEMS ON WSS PROCESSES 

Your prior background in signals and systems, and in the earlier chapters of these 
notes, has characterized how LTI systems affect the input for deterministic signals. 

We will see in later chapters how the correlation properties of a random process, 
and the effects of LTI systems on these properties, play an important role in under
standing and designing systems for such tasks as filtering, signal detection, signal 
estimation and system identification. We focus in this section on understanding 
in the time domain how LTI systems shape the correlation properties of a random 
process. In Chapter 10 we develop a parallel picture in the frequency domain, af
ter establishing that the frequency distribution of the expected power in a random 
signal is described by the Fourier transform of the autocorrelation function. 

Consider an LTI system whose input is a sample function of a WSS random process 
x(t), i.e., a signal chosen by a probabilistic experiment from the ensemble that con
stitutes the random process x(t); more simply, we say that the input is the random 
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process x(t). The WSS input is characterized by its mean and its autocovariance 
or (equivalently) autocorrelation function. 

Among other considerations, we are interested in knowing when the output process 
y(t) — i.e., the ensemble of signals obtained as responses to the signals in the input 
ensemble — will itself be WSS, and want to determine its mean and autocovariance 
or autocorrelation functions, as well as its cross-correlation with the input process. 
For an LTI system whose impulse response is h(t), the output y(t) is given by the 
convolution 

∫ +∞ ∫ +∞ 

y(t) = h(v)x(t − v)dv = x(v)h(t − v)dv (9.56) 
−∞ −∞ 

for any specific input x(t) for which the convolution is well-defined. The convolution 
is well-defined if, for instance, the input x(t) is bounded and the system is bounded-
input bounded-output (BIBO) stable, i.e. h(t) is absolutely integrable. Figure 9.6 
indicates what the two components of the integrand in the convolution integral may 
look like. 

x(v) 

v 

h(t - v) 

t v 

FIGURE 9.6 Illustration of the two terms in the integrand of Eqn. (9.56) 

Rather than requiring that every sample function of our input process be bounded, 
it will suffice for our convolution computations below to assume that E[x2(t)] = 
Rxx(0) is finite. With this assumption, and also assuming that the system is BIBO 
stable, we ensure that y(t) is a well-defined random process, and that the formal 
manipulations we carry out below — for instance, interchanging expectation and 
convolution — can all be justified more rigorously by methods that are beyond 
our scope here. In fact, the results we obtain can also be applied, when properly 
interpreted, to cases where the input process does not have a bounded second 
moment, e.g., when x(t) is so-called CT white noise, for which Rxx(τ ) = δ(τ ). The 
results can also be applied to a system that is not BIBO stable, as long as it has a 
well-defined frequency response H(jω), as in the case of an ideal lowpass filter, for 
example. 

We can use the convolution relationship (9.56) to deduce the first- and second-
order properties of y(t). What we shall establish is that y(t) is itself WSS, and that 
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x(t) and y(t) are in fact jointly WSS. We will also develop relationships for the 
autocorrelation of the output and the cross-correlation between input and output. 

First, consider the mean value of the output. Taking the expected value of both 
sides of (9.56), we find 

{∫ +∞ } 

E[y(t)] = E h(v)x(t − v) dv 

∫ +∞
−∞ 

= h(v)E[x(t − v)] dv 
−∞∫ +∞ 

= h(v)µx dv 
−∞∫ +∞ 

= µx h(v) dv 
−∞ 

= H(j0) µx = µy . (9.57) 

In other words, the mean of the output process is constant, and equals the mean of 
the input scaled by the the DC gain of the system. This is also what the response 
of the system would be if its input were held constant at the value µx. 

The preceding result and the linearity of the system also allow us to conclude that 
applying the zero-mean WSS process x(t)−µx to the input of the stable LTI system 
would result in the zero-mean process y(t) − µy at the output. This fact will be 
useful below in converting results that are derived for correlation functions into 
results that hold for covariance functions. 

Next consider the cross-correlation between output and input: 

{[ ∫ +∞ ] } 

E{y(t + τ )x(t)} = E h(v)x(t + τ − v)dv x(t) 

∫ +∞ 
−∞ 

= h(v)E{x(t + τ − v)x(t)}dv . (9.58) 
−∞ 

Since x(t) is WSS, E{x(t + τ − v)x(t)} = Rxx(τ − v), so 

∫ +∞ 

E{y(t + τ )x(t)} = h(v)Rxx(τ − v)dv 
−∞ 

= h(τ ) ∗ Rxx(τ)


= Ryx(τ ) . (9.59)


Note that the cross-correlation depends only on the lag τ between the sampling 
instants of the output and input processes, not on both τ and the absolute time 
location t. Also, this cross-correlation between the output and input is determinis
tically related to the autocorrelation of the input, and can be viewed as the signal 
that would result if the system input were the autocorrelation function, as indicated 
in Figure 9.7. 

c©Alan V. Oppenheim and George C. Verghese, 2010 



Section 9.8 The Effect of LTI Systems on WSS Processes 179 

� Ryx(τ)Rxx(τ) � h(τ) 

FIGURE 9.7 Representation of Eqn. (9.59) 

We can also conclude that 

Rxy(τ) = Ryx(−τ) = Rxx(−τ) ∗ h(−τ) = Rxx(τ ) ∗ h(−τ) , (9.60) 

where the second equality follows from Eqn. (9.59) and the fact that time-reversing 
the two functions in a convolution results in time-reversal of the result, while the 
last equality follows from the symmetry Eqn. (9.13) of the autocorrelation function. 

The above relations can also be expressed in terms of covariance functions, rather 
than in terms of correlation functions. For this, simply consider the case where the 
input to the system is the zero-mean WSS process x(t) − µx, with corresponding 
zero-mean output y(t) − µy. Since the correlation function for x(t) − µx is the same 
as the covariance function for x(t), i.e., since 

Rx−µx ,x−µx (τ) = Cxx(τ) , (9.61) 

the results above hold unchanged when every correlation function is replaced by 
the corresponding covariance function. We therefore have, for instance, that 

Cyx(τ) = h(τ ) ∗ Cxx(τ) (9.62) 

Next we consider the autocorrelation of the output y(t): 
{[ ∫ +∞ ] } 

E{y(t + τ)y(t)} = E h(v)x(t + τ − v)dv y(t) 
−∞ 

∫ +∞ 

= h(v) E{x(t + τ − v)y(t)} dv 
−∞ ︸ ︷︷ ︸

Rxy (τ−v) 

∫ +∞ 

= h(v)Rxy(τ − v)dv 
−∞ 

= h(τ ) ∗ Rxy(τ )


= Ryy(τ) . (9.63)


Note that the autocorrelation of the output depends only on τ , and not on both 
τ and t. Putting this together with the earlier results, we conclude that x(t) and 
y(t) are jointly WSS, as claimed. 
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The corresponding result for covariances is 

Cyy(τ) = h(τ) ∗ Cxy(τ ) . (9.64) 

Combining (9.63) with (9.60), we find that 

Ryy(τ ) = Rxx(τ) ∗ h(τ) ∗ h(−τ) = Rxx(τ ) ∗ Rhh(τ) . (9.65) 

△ 
h(τ)∗h(−τ)=Rhh(τ ) 

The function Rhh(τ) is typically referred to as the deterministic autocorrelation 
function of h(t), and is given by 

∫ +∞ 

Rhh(τ ) = h(τ ) ∗ h(−τ ) = h(t + τ)h(t)dt . (9.66) 
−∞ 

For the covariance function version of (9.65), we have 

Cyy(τ ) = Cxx(τ) ∗ h(τ) ∗ h(−τ) = Cxx(τ) ∗ Rhh(τ) . (9.67) 

△ 
h(τ)∗h(−τ)=Rhh(τ ) 

Note that the deterministic correlation function of h(t) is still what we use, even 
when relating the covariances of the input and output. Only the means of the input 
and output processes get adjusted in arriving at the present result; the impulse 
response is untouched. 

The correlation relations in Eqns. (9.59), (9.60), (9.63) and (9.65), as well as 
their covariance counterparts, are very powerful, and we will make considerable 
use of them. Of equal importance are their statements in the Fourier and Laplace 
transform domains. Denoting the Fourier and Laplace transforms of the correlation 
function Rxx(τ) by Sxx(jω) and Sxx(s) respectively, and similarly for the other 
correlation functions of interest, we have: 

Syx(jω) = Sxx(jω)H(jω), Syy (jω) = Sxx(jω)|H(jω)| 2 , 

Syx(s) = Sxx(s)H(s), Syy(s) = Sxx(s)H(s)H(−s) . (9.68) 

We can denote the Fourier and Laplace transforms of the covariance function Cxx(τ) 
by Dxx(jω) and Dxx(s) respectively, and similarly for the other covariance functions 
of interest, and then write the same sorts of relationships as above. 

Exactly parallel results hold in the DT case. Consider a stable discrete-time LTI 
system whose impulse response is h[n] and whose input is the WSS random process 
x[n]. Then, as in the continuous-time case, we can conclude that the output process 
y[n] is jointly WSS with the input process x[n], and 

∞
µy = µx 

∑ 
h[n] (9.69) 

−∞ 

Ryx[m] = h[m] ∗ Rxx[m] (9.70) 

Ryy[m] = Rxx[m] ∗ Rhh[m] , (9.71) 
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where Rhh[m] is the deterministic autocorrelation function of h[m], defined as 

+∞
Rhh[m] = 

∑ 
h[n + m]h[n] . (9.72) 

n=−∞ 

The corresponding Fourier and Z-transform statements of these relationships are: 

µy = H(ej0)µx , Syx(ejΩ) = Sxx(ejΩ)H(ejΩ) , Syy(ejΩ) = Sxx(ejΩ)|H(ejΩ)| 2 , 

µy = H(1)µx , Syx(z) = Sxx(z)H(z) , Syy (z) = Sxx(z)H(z)H(1/z). 
(9.73) 

All of these expressions can also be rewritten for covariances and their transforms. 

The basic relationships that we have developed so far in this chapter are extremely 
powerful. In Chapter 10 we will use these relationships to show that the Fourier 
transform of the autocorrelation function describes how the expected power of a 
WSS process is distributed in frequency. For this reason, the Fourier transform of 
the autocorrelation function is termed the power spectral density (PSD) of the 
process. 

The relationships developed in this chapter are also very important in using random 
processes to measure or identify the impulse response of an LTI system. For exam
ple, from (9.70), if the input x[n] to a DT LTI system is a WSS random process with 
autocorrelation function Rxx[m] = δ[m], then by measuring the cross-correlation 
between the input and output we obtain a measurement of the system impulse re
sponse. It is easy to construct an input process with autocorrelation function δ[m], 
for example an i.i.d. process that is equally likely to take the values +1 and −1 at 
each time instant. 

As another example, suppose the input x(t) to a CT LTI system is a random 
telegraph wave, with changes in sign at times that correspond to the arrivals in a 
Poisson process with rate λ, i.e., 

(λT )ke−λT 

P(k switches in an interval of length T ) = . (9.74) 
k! 

Then, assuming x(0) takes the values ±1 with equal probabilities, we can determine 
that the process x(t) has zero mean and correlation function Rxx(τ ) = e−2λ|τ |, so 
it is WSS (for t ≥ 0). If we determine the cross-correlation Ryx(τ) with the output 
y(t) and then use the relation 

Ryx(τ) = Rxx(τ) ∗ h(τ) , (9.75) 

we can obtain the system impulse response h(τ). For example, if Syx(s), Sxx(s) and 
H(s) denote the associated Laplace transforms, then 

Syx(s)
H(s) = . (9.76) 

Sxx(s) 

Note that Sxx(s) is a rather well-behaved function of the complex variable s in this 
case, whereas any particular sample function of the process x(t) would not have 
such a well-behaved transform. The same comment applies to Syx(s). 
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As a third example, suppose that we know the autocorrelation function Rxx[m] 
of the input x[n] to a DT LTI system, but do not have access to x[n] and there
fore cannot determine the cross-correlation Ryx[m] with the output y[n], but can 
determine the output autocorrelation Ryy [m]. For example, if 

Rxx[m] = δ[m] (9.77) 

and we determine Ryy[m] to be Ryy[m] = 
( 

2
1 
)|m|

, then 

( 
1 
)|m|

Ryy[m] = = Rhh[m] = h[m] ∗ h[−m]. (9.78) 
2 

Equivalently, H(z)H(z−1) can be obtained from the Z-transform Syy (z) of Ryy [m]. 
Additional assumptions or constraints, for instance on the stability and causality 
of the system and its inverse, may allow one to recover H(z) from knowledge of 
H(z)H(z−1). 
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Power Spectral Density 

INTRODUCTION 

Understanding how the strength of a signal is distributed in the frequency domain, 
relative to the strengths of other ambient signals, is central to the design of any 
LTI filter intended to extract or suppress the signal. We know this well in the case 
of deterministic signals, and it turns out to be just as true in the case of random 
signals. For instance, if a measured waveform is an audio signal (modeled as a 
random process since the specific audio signal isn’t known) with additive distur
bance signals, you might want to build a lowpass LTI filter to extract the audio 
and suppress the disturbance signals. We would need to decide where to place the 
cutoff frequency of the filter. 

There are two immediate challenges we confront in trying to find an appropriate 
frequency-domain description for a WSS random process. First, individual sample 
functions typically don’t have transforms that are ordinary, well-behaved functions 
of frequency; rather, their transforms are only defined in the sense of generalized 
functions. Second, since the particular sample function is determined as the out
come of a probabilistic experiment, its features will actually be random, so we have 
to search for features of the transforms that are representative of the whole class 
of sample functions, i.e., of the random process as a whole. 

It turns out that the key is to focus on the expected power in the signal. This is a 
measure of signal strength that meshes nicely with the second-moment characteri
zations we have for WSS processes, as we show in this chapter. For a process that 
is second-order ergodic, this will also correspond to the time average power in any 
realization. We introduce the discussion using the case of CT WSS processes, but 
the DT case follows very similarly. 

10.1	 EXPECTED INSTANTANEOUS POWER AND POWER SPECTRAL 
DENSITY 

Motivated by situations in which x(t) is the voltage across (or current through) a 
unit resistor, we refer to x2(t) as the instantaneous power in the signal x(t). When 
x(t) is WSS, the expected instantaneous power is given by 

1 
∫ ∞ 

E[x 2(t)] = Rxx(0) = Sxx(jω) dω , (10.1) 
2π −∞ 
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where Sxx(jω) is the CTFT of the autocorrelation function Rxx(τ). Furthermore, 
when x(t) is ergodic in correlation, so that time averages and ensemble averages 
are equal in correlation computations, then (10.1) also represents the time-average 
power in any ensemble member. Note that since Rxx(τ) = Rxx(−τ), we know 
Sxx(jω) is always real and even in ω; a simpler notation such as Pxx(ω) might 
therefore have been more appropriate for it, but we shall stick to Sxx(jω) to avoid 
a proliferation of notational conventions, and to keep apparent the fact that this 
quantity is the Fourier transform of Rxx(τ). 

The integral above suggests that we might be able to consider the expected (in
stantaneous) power (or, assuming the process is ergodic, the time-average power) 
in a frequency band of width dω to be given by (1/2π)Sxx(jω) dω. To examine 
this thought further, consider extracting a band of frequency components of x(t) 
by passing x(t) through an ideal bandpass filter, shown in Figure 10.1. 

x(t) � H(jω) � y(t) 

� 

� 

H(jω) 
1 

�Δ ��Δ� 

ω0 ω−ω0 

FIGURE 10.1 Ideal bandpass filter to extract a band of frequencies from input, x(t). 

Because of the way we are obtaining y(t) from x(t), the expected power in the 
output y(t) can be interpreted as the expected power that x(t) has in the selected 
passband. Using the fact that 

Syy(jω) = |H(jω)|2Sxx(jω) , (10.2) 

we see that this expected power can be computed as 

1 
∫ +∞ 1 

∫ 
E{y 2(t)} = Ryy(0) = Syy(jω) dω = Sxx(jω) dω . (10.3) 

2π 2π−∞ passband 

Thus 
1 

∫ 
Sxx(jω) dω (10.4) 

2π passband 

is indeed the expected power of x(t) in the passband. It is therefore reasonable to 
call Sxx(jω) the power spectral density (PSD) of x(t). Note that the instanta
neous power of y(t), and hence the expected instantaneous power E[y2(t)], is always 
nonnegative, no matter how narrow the passband, It follows that, in addition to 
being real and even in ω, the PSD is always nonnegative, Sxx(jω) ≥ 0 for all ω. 
While the PSD Sxx(jω) is the Fourier transform of the autocorrelation function, it 
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is useful to have a name for the Laplace transform of the autocorrelation function; 
we shall refer to Sxx(s) as the complex PSD. 

Exactly parallel results apply for the DT case, leading to the conclusion that 
Sxx(ejΩ) is the power spectral density of x[n]. 

10.2	 EINSTEIN-WIENER-KHINCHIN THEOREM ON EXPECTED TIME
AVERAGED POWER 

The previous section defined the PSD as the transform of the autocorrelation func
tion, and provided an interpretation of this transform. We now develop an alter
native route to the PSD. Consider a random realization x(t) of a WSS process. 
We have already mentioned the difficulties with trying to take the CTFT of x(t) 
directly, so we proceed indirectly. Let xT (t) be the signal obtained by windowing 
x(t), so it equals x(t) in the interval (−T , T ) but is 0 outside this interval. Thus 

xT (t) = wT (t) x(t) ,	 (10.5) 

where we define the window function wT (t) to be 1 for t < T and 0 otherwise. Let | |
XT (jω) denote the Fourier transform of xT (t); note that because the signal xT (t) is 
nonzero only over the finite interval (−T, T ), its Fourier transform is typically well 
defined. We know that the energy spectral density (ESD) Sxx(jω) of xT (t) is 
given by 

Sxx(jω) = |XT (jω)|2	 (10.6) 

and that this ESD is actually the Fourier transform of xT (τ)∗x←
T (τ), where x←

T (t) = 
xT (−t). We thus have the CTFT pair 

∫ ∞ 

xT (τ) ∗ x←
T (τ) = wT (α)wT (α − τ)x(α)x(α − τ) dα ⇔ |XT (jω)|2 , (10.7) 

−∞ 

or, dividing both sides by 2T (which is valid, since scaling a signal by a constant 
scales its Fourier transform by the same amount), 

1 
∫ ∞	 1 2 

2T
wT (α)wT (α − τ )x(α)x(α − τ ) dα ⇔ 

2T 
|XT (jω)| . (10.8) 

−∞ 

The quantity on the right is what we defined (for the DT case) as the periodogram 
of the finite-length signal xT (t). 

Because the Fourier transform operation is linear, the Fourier transform of the 
expected value of a signal is the expected value of the Fourier transform. We 
may therefore take expectations of both sides in the preceding equation. Since 
E[x(α)x(α − τ)] = Rxx(τ), we conclude that 

1 
Rxx(τ)Λ(τ) ⇔ 

2T
E[|XT (jω)| 2] ,	 (10.9) 

where Λ(τ) is a triangular pulse of height 1 at the origin and decaying to 0 at 
|τ | = 2T , the result of carrying out the convolution wT ∗ wT

←(τ ) and dividing by 
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2T . Now taking the limit as T goes to ∞, we arrive at the result


1

Rxx ⇔ Sxx

T →∞ 2T
E[|XT (jω)| 2] . (10.10) (τ) (jω) = lim 

This is the Einstein-Wiener-Khinchin theorem (proved by Wiener, and inde
pendently by Khinchin, in the early 1930’s, but — as only recently recognized — 
stated by Einstein in 1914). 

The result is important to us because it underlies a basic method for estimating 
Sxx(jω): with a given T , compute the periodogram for several realizations of the 
random process (i.e., in several independent experiments), and average the results. 
Increasing the number of realizations over which the averaging is done will reduce 
the noise in the estimate, while repeating the entire procedure for larger T will 
improve the frequency resolution of the estimate. 

10.2.1 System Identification Using Random Processes as Input 

Consider the problem of determining or “identifying” the impulse response h[n] 
of a stable LTI system from measurements of the input x[n] and output y[n], as 
indicated in Figure 10.2. 

x[n] � h[n] � y[n] 

FIGURE 10.2 System with impulse response h[n] to be determined. 

The most straightforward approach is to choose the input to be a unit impulse 
x[n] = δ[n], and to measure the corresponding output y[n], which by definition is 
the impulse response. It is often the case in practice, however, that we do not wish 
to — or are unable to — pick this simple input. 

For instance, to obtain a reliable estimate of the impulse response in the presence of 
measurement errors, we may wish to use a more “energetic” input, one that excites 
the system more strongly. There are generally limits to the amplitude we can use 
on the input signal, so to get more energy we have to cause the input to act over 
a longer time. We could then compute h[n] by evaluating the inverse transform 
of H(ejΩ), which in turn could be determined as the ratio Y (ejΩ)/X(ejΩ). Care 
has to be taken, however, to ensure that X(ejΩ) = 0 for any Ω; in other words, 
the input has to be sufficiently “rich”. In particular, the input cannot be just a 
finite linear combination of sinusoids (unless the LTI system is such that knowledge 
of its frequency response at a finite number of frequencies serves to determine the 
frequency response at all frequencies — which would be the case with a lumped 
system, i.e., a finite-order system, except that one would need to know an upper 
bound on the order of the system so as to have a sufficient number of sinusoids 
combined in the input). 
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The above constraints might suggest using a randomly generated input signal. For 
instance, suppose we let the input be a Bernoulli process, with x[n] for each n taking 
the value +1 or −1 with equal probability, independently of the values taken at 
other times. This process is (strict- and) wide-sense stationary, with mean value 
0 and autocorrelation function Rxx[m] = δ[m]. The corresponding power spectral 
density Sxx(ejΩ) is flat at the value 1 over the entire frequency range Ω ∈ [−π, π]; 
evidently the expected power of x[n] is distributed evenly over all frequencies. A 
process with flat power spectrum is referred to as a white process (a term that 
is motivated by the rough notion that white light contains all visible frequencies in 
equal amounts); a process that is not white is termed colored. 

Now consider what the DTFT X(ejΩ) might look like for a typical sample function 
of a Bernoulli process. A typical sample function is not absolutely summable or 
square summable, and so does not fall into either of the categories for which we 
know that there are nicely behaved DTFTs. We might expect that the DTFT 
exists in some generalized-function sense (since the sample functions are bounded, 
and therefore do not grow faster than polynomially with n for large n ), and this | |
is indeed the case, but it is not a simple generalized function; not even as “nice” as 
the impulses or impulse trains or doublets that we are familiar with. 

When the input x[n] is a Bernoulli process, the output y[n] will also be a WSS 
random process, and Y (ejΩ) will again not be a pleasant transform to deal with. 
However, recall that 

Ryx[m] = h[m] ∗ Rxx[m] , (10.11) 

so if we can estimate the cross-correlation of the input and output, we can determine 
the impulse response (for this case where Rxx[m] = δ[m]) as h[m] = Ryx[m]. For 
a more general random process at the input, with a more general Rxx[m], we can 
solve for H(ejΩ) by taking the Fourier transform of (10.11), obtaining 

H(ejΩ) = 
Syx(ejΩ) 

. (10.12) 
Sxx(ejΩ) 

If the input is not accessible, and only its autocorrelation (or equivalently its PSD) 
is known, then we can still determine the magnitude of the frequency response, as 
long as we can estimate the autocorrelation (or PSD) of the output. In this case, 
we have 

2 Syy(ejΩ) |H(ejΩ)| = 
Sxx(ejΩ) 

. (10.13) 

Given additional constraints or knowledge about the system, one can often deter
mine a lot more (or even everything) about H(ejω) from knowledge of its magnitude. 

10.2.2 Invoking Ergodicity 

How does one estimate Ryx[m] and/or Rxx[m] in an example such as the one above? 
The usual procedure is to assume (or prove) that the signals x and y are ergodic. 
What ergodicity permits — as we have noted earlier — is the replacement of an 
expectation or ensemble average by a time average, when computing the expected 
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value of various functions of random variables associated with a stationary random 
process. Thus a WSS process x[n] would be called mean-ergodic if 

N

lim 
1 ∑ 

x[k] . (10.14) 
2N + 1 

E{x[n]} = 
N→∞ 

k=−N 

(The convergence on the right hand side involves a sequence of random variables, 
so there are subtleties involved in defining it precisely, but we bypass these issues in 
6.011.) Similarly, for a pair of jointly-correlation-ergodic processes, we could replace 
the cross-correlation E{y[n + m]x[n]} by the time average of y[n + m]x[n]. 

What ergodicity generally requires is that values taken by a typical sample function 
over time be representative of the values taken across the ensemble. Intuitively, 
what this requires is that the correlation between samples taken at different times 
falls off fast enough. For instance, a sufficient condition for a WSS process x[n] 
with finite variance to be mean-ergodic turns out to be that its autocovariance 
function Cxx[m] tends to 0 as |m| tends to ∞, which is the case with most of the 
examples we deal with in these notes. A more precise (necessary and sufficient) 
condition for mean-ergodicity is that the time-averaged autocovariance function 
Cxx[m], weighted by a triangular window, be 0: 

L

lim 
1 ∑ ( 

1 − |m| ) 

Cxx[m] = 0 . (10.15) 
L→∞ 2L + 1 

m=−L 
L + 1 

A similar statement holds in the CT case. More stringent conditions (involving 
fourth moments rather than just second moments) are needed to ensure that a 
process is second-order ergodic; however, these conditions are typically satisfied for 
the processes we consider, where the correlations decay exponentially with lag. 

10.2.3 Modeling Filters and Whitening Filters 

There are various detection and estimation problems that are relatively easy to 
formulate, solve, and analyze when some random process that is involved in the 
problem — for instance, the set of measurements — is white, i.e., has a flat spectral 
density. When the process is colored rather than white, the easier results from the 
white case can still often be invoked in some appropriate way if: 

(a)	 the colored process is the result of passing a white process through some LTI 
modeling or shaping filter, which shapes the white process at the input into 
one that has the spectral characteristics of the given colored process at the 
output; or 

(b)	 the colored process is transformable into a white process by passing it through 
an LTI whitening filter, which flattens out the spectral characteristics of the 
colored process presented at the input into those of the white noise obtained 
at the output. 
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Thus, a modeling or shaping filter is one that converts a white process to some col
ored process, while a whitening filter converts a colored process to a white process. 

An important result that follows from thinking in terms of modeling filters is the 
following (stated and justified rather informally here — a more careful treatment 
is beyond our scope): 

Key Fact: A real function Rxx[m] is the autocorrelation function of a real-valued 
WSS random process if and only if its transform Sxx(ejΩ) is real, even and non
negative. The transform in this case is the PSD of the process. 

The necessity of these conditions on the transform of the candidate autocorrelation 
function follows from properties we have already established for autocorrelation 
functions and PSDs. 

To argue that these conditions are also sufficient, suppose Sxx(ejΩ) has these prop
erties, and assume for simplicity that it has no impulsive part. Then it has a 
real and even square root, which we may denote by 

√
Sxx(ejΩ). Now construct a 

(possibly noncausal) modeling filter whose frequency response H(ejΩ) equals this 
square root; the unit-sample reponse of this filter is found by inverse-transforming 
H(ejΩ) = 

√
Sxx(ejΩ). If we then apply to the input of this filter a (zero-mean) 

unit-variance white noise process, e.g., a Bernoulli process that has equal probabil
ities of taking +1 and −1 at each DT instant independently of every other instant, 
then the output will be a WSS process with PSD given by |H(ejΩ)|2 = Sxx(ejΩ), 
and hence with the specified autocorrelation function. 

If the transform Sxx(ejΩ) had an impulse at the origin, we could capture this by 
adding an appropriate constant (determined by the impulse strength) to the output 
of a modeling filter, constructed as above by using only the non-impulsive part of 
the transform. For a pair of impulses at frequencies Ω = ±Ωo = 0 in the transform, 
we could similarly add a term of the form A cos(Ωon + Θ), where A is deterministic 
(and determined by the impulse strength) and Θ is independent of all other other 
variables, and uniform in [0, 2π]. 

Similar statements can be made in the CT case. 

We illustrate below the logic involved in designing a whitening filter for a particular 
example; the logic for a modeling filter is similar (actually, inverse) to this. 

Consider the following discrete-time system shown in Figure 10.3. 

x[n] � h[n] � w[n] 

FIGURE 10.3 A discrete-time whitening filter. 

Suppose that x[n] is a process with autocorrelation function Rxx[m] and PSD 
Sxx(ejΩ), i.e., Sxx(ejΩ) = F {Rxx[m]}. We would like w[n] to be a white noise 
output with variance σ2 .w
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We know that 
Sww(ejΩ) = |H(ejΩ)|2 Sxx(ejΩ) (10.16) 

or, 
σ2 

|H(ejΩ)|2 = 
Sxx(

w 

ejΩ) 
. (10.17) 

This then tells us what the squared magnitude of the frequency response of the 
LTI system must be to obtain a white noise output with variance σ2 . If we have w

Sxx(ejΩ) available as a rational function of ejΩ (or can model it that way), then we 
can obtain H(ejΩ) by appropriate factorization of |H(ejΩ)|2 . 

EXAMPLE 10.1 Whitening filter 

Suppose that 

Sxx(ejΩ) = 
5

4 
− cos(Ω). (10.18) 

Then, to whiten x(t), we require a stable LTI filter for which 

|H(ejΩ)|2 = 
(1 − 

1 
, (10.19) 1 1 e−jΩ)ejΩ)(1 −2 2 

or equivalently, 
1 

H(z)H(1/z) = 
(1 − 1 1 z−1) 

. (10.20) 
z)(1 −2 2 

The filter is constrained to be stable in order to produce a WSS output. One choice 
of H(z) that results in a causal filter is 

1 
H(z) = 1 , (10.21) 

1 − 2 z
−1 

with region of convergence (ROC) given by |z| > 1 . This system function could be 2 
multiplied by the system function A(z) of any allpass system, i.e., a system function 
satisfying A(z)A(z−1) = 1, and still produce the same whitening action, because 
|A(ejΩ)|2 = 1. 

10.3 SAMPLING OF BANDLIMITED RANDOM PROCESSES 

A WSS random process is termed bandlimited if its PSD is bandlimited, i.e., is 
zero for frequencies outside some finite band. For deterministic signals that are 
bandlimited, we can sample at or above the Nyquist rate and recover the signal 
exactly. We examine here whether we can do the same with bandlimited random 
processes. 

In the discussion of sampling and DT processing of CT signals in your prior courses, 
the derivations and discussion rely heavily on picturing the effect in the frequency 
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domain, i.e., tracking the Fourier transform of the continuous-time signal through 
the C/D (sampling) and D/C (reconstruction) process. While the arguments can 
alternatively be carried out directly in the time domain, for deterministic finite-
energy signals the frequency domain development seems more conceptually clear. 

As you might expect, results similar to the deterministic case hold for the re
construction of bandlimited random processes from samples. However, since these 
stochastic signals do not possess Fourier transforms except in the generalized sense, 
we carry out the development for random processes directly in the time domain. 
An essentially parallel argument could have been used in the time domain for de
terministic signals (by examining the total energy in the reconstruction error rather 
than the expected instantaneous power in the reconstruction error, which is what 
we focus on below). 

The basic sampling and bandlimited reconstruction process should be familiar from 
your prior studies in signals and systems, and is depicted in Figure 10.4 below. 
In this figure we have explicitly used bold upper-case symbols for the signals to 
underscore that they are random processes. 

� �C/D Xc(t) X[n] = Xc(nT ) 

� 
T 

X[n] � D/C � Yc(t) = 
∑+∞ 

X[n] sinc( t−T
nT )n=−∞ 

� where sinc x = sinπx 
T πx 

FIGURE 10.4 C/D and D/C for random processes. 

For the deterministic case, we know that if xc(t) is bandlimited to less than T
π , then 

with the D/C reconstruction defined as 

yc(t) = 
∑ 

x[n] sinc( 
t − nT 

) (10.22) 
T 

n 

it follows that yc(t) = xc(t). In the case of random processes, what we show below 
is that, under the condition that Sxcxc (jω), the power spectral density of Xc(t), is 
bandlimited to less that π , the mean square value of the error between Xc(t) and T 
Yc(t) is zero; i.e., if 

π 
Sxcxc (jω) = 0 |w| ≥ 

T
, (10.23) 
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then 
= E{[Xc(t) − Yc(t)]

2} = 0 . (10.24) E 
△

This, in effect, says that there is “zero power” in the error. (An alternative proof 
to the one below is outlined in Problem 13 at the end of this chapter.) 

To develop the above result, we expand the error and use the definitions of the C/D 
(or sampling) and D/C (or ideal bandlimited interpolation) operations in Figure 
10.4 to obtain 

(t)Xc (10.25) E = E{X2 
c (t)} + E{Yc 

2(t)} − 2E{Yc (t)} . 

We first consider the last term, E{Yc(t)Xc(t)}: 

+∞
t − nT 

E{Yc(t)Xc(t)} = E{ 
∑ 

Xc(nT ) sinc( ) Xc(t)}
T 

n=−∞ 

+∞
nT − t 

= 
∑ 

Rxcxc (nT − t) sinc( ) (10.26) 
T 

n=−∞ 

(10.27) 

where, in the last expression, we have invoked the symmetry of sinc(.) to change 
the sign of its argument from the expression that precedes it. 

Equation (10.26) can be evaluated using Parseval’s relation in discrete time, which 
states that 

+∞
1 

∫ π∑ 
v[n]w[n] = V (ejΩ)W ∗(ejΩ)dΩ (10.28) 

n=∞ 
2π −π 

To apply Parseval’s relation, note that Rxcxc (nT − t) can be viewed as the result 
of the C/D or sampling process depicted in Figure 10.5, in which the input is 
considered to be a function of the variable τ : 

Rxcxc (τ − t) � C/D � Rxcxc (nT − t) 

� 
T 

FIGURE 10.5 C/D applied to Rxcxc (τ − t). 

The CTFT (in the variable τ) of Rxcxc (τ − t) is e−jωtSxcxc (jω), and since this is 
bandlimited to ω < π , the DTFT of its sampled version Rxc xc (nT − t) is T| | 

−jΩt1 Ω 
e T Sxcxc (j ) (10.29) 

T T 
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in the interval |Ω| < π. Similarly, the DTFT of sinc( nT −t ) is 
π 
e 

−j
T 
Ωt 

. Consequently, T 
under the condition that Sxcxc (jω) is bandlimited to ω < T ,| | 

1 
∫ π jΩ 

E{Yc(t)Xc(t)} = Sxcxc ( )dΩ 
2πT T−π 

1 
∫ (π/T ) 

= Sxcxc (jω)dω 
2π −(π/T ) 

= Rxcxc (0) = E{Xc 
2(t)} (10.30) 

Next, we expand the middle term in equation (10.25): 

E{Yc 
2(t)} = E{

∑ ∑ 
Xc(nT )Xc(mT ) sinc( 

t − nT 
) sinc( 

t − mT 
)}

T T 
n m 

= 
∑ ∑ 

Rxcxc (nT − mT ) sinc( 
t − mT 

) sinc( 
t − mT 

) . (10.31) 
T T 

n m 

With the substitution n − m = r, we can express 10.31 as 

E{Yc 
2(t)} = 

∑ 
Rxcxc (rT ) 

∑ 
sinc( 

t − mT 
) sinc( 

t − mT − rT 
) . (10.32) 

T T 
r m 

Using the identity 
∑ 

sinc(n − θ1)sinc(n − θ2) = sinc(θ2 − θ1) , (10.33) 
n 

which again comes from Parseval’s theorem (see Problem 12 at the end of this 
chapter), we have 

(rT ) sinc(r)E{Yc 
2(t)} = 

∑ 
Rxcxc 

r 

= Rxcxc (0) = E{X2 
c } (10.34) 

since sinc(r) = 1 if r = 0 and zero otherwise. Substituting 10.31 and 10.34 into 
10.25, we obtain the result that E = 0, as desired. 
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C H A P T E R 11 

Wiener Filtering 

INTRODUCTION 

In this chapter we will consider the use of LTI systems in order to perform minimum 
mean-square-error (MMSE) estimation of a WSS random process of interest, given 
measurements of another related process. The measurements are applied to the 
input of the LTI system, and the system is designed to produce as its output the 
MMSE estimate of the process of interest. 

We first develop the results in discrete time, and for convenience assume (unless 
otherwise stated) that the processes we deal with are zero-mean. We will then show 
that exactly analogous results apply in continuous time, although their derivation 
is slightly different in certain parts. 

Our problem in the DT case may be stated in terms of Figure 11.1. 

Here x[n] is a WSS random process that we have measurements of. We want 
to determine the unit sample response or frequency response of the above LTI 
system such that the filter output ŷ[n] is the minimum-mean-square-error (MMSE) 
estimate of some “target” process y[n] that is jointly WSS with x[n]. Defining the 
error e[n] as 

Δ 
e[n] = ŷ[n] − y[n] , (11.1) 

we wish to carry out the following minimization: 

min ǫ = E{e 2[n]} .	 (11.2) 
h[ ]· 

The resulting filter h[n] is called the Wiener filter for estimation of y[n] from x[n]. 

In some contexts it is appropriate or convenient to restrict the filter to be an 
FIR (finite-duration impulse response) filter of length N , e.g. h[n] = 0 except in 
the interval 0 ≤ n ≤ N − 1. In other contexts the filter impulse response can 
be of infinite duration and may either be restricted to be causal or allowed to 
be noncausal. In the next section we discuss the FIR and general noncausal IIR 

x[n] � LTI h[n] �	 ŷ[n] = estimate 

y[n] = target process 

FIGURE 11.1 DT LTI filter for linear MMSE estimation. 
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(infinite-duration impulse response) cases. A later section deals with the more 
involved case where the filter is IIR but restricted to be causal. 

If x[n] = y[n]+v[n] where y[n] is a signal and v[n] is noise (both random processes), 
then the above estimation problem is called a filtering problem. If y[n] = x[n + n0] 
with n0 positive, and if h[n] is restricted to be causal, then we have a prediction 
problem. Both fit within the same general framework, but the solution under the 
restriction that h[n] be causal is more subtle. 

11.1 NONCAUSAL DT WIENER FILTER 

To determine the optimal choice for h[n] in (11.2), we first expand the error criterion 
in (11.2): 

ǫ = E 


 

 

+∞∑ 

k −∞=

h[k]x[n − k] − y[n] 

)2

 

 
. (11.3) 

The impulse response values that minimize ǫ can then be obtained by setting 
∂ǫ 

= 0 for all values of m for which h[m] is not restricted to be zero (or 
∂h[m]

otherwise pre-specified):


∂ǫ 
∂h[m] 

= E 


 

 

2 h[k]x[n − k] − y[n] x[n − m] 
k 

e[n] 


 

 

= 0 . (11.4) 

The above equation implies that 

E{e[n]x[n − m]} = 0, or 

Rex[m] = 0, for all m for which h[m] can be freely chosen. (11.5) 

You may recognize the above equation (or constraint) on the relation between the 
input and the error as the familiar orthogonality principle: for the optimal filter, 
the error is orthogonal to all the data that is used to form the estimate. Under our 
assumption of zero-mean x[n], orthogonality is equivalent to uncorrelatedness. As 
we will show shortly, the orthogonality principle also applies in continuous time. 

Note that 

Rex[m] = E{e[n]x[n − m]} 

= E{(ŷ[n] − y[n])x[n − m]} 

= R [m] − Ryx[m] . 
yx

(11.6) 

Therefore, an alternative way of stating the orthogonality principle (11.5) is that 

R
yx

[m] = Ryx[m] for all appropriate m . (11.7) 
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In other words, for the optimal system, the cross-correlation between the input and 
output of the estimator equals the cross-correlation between the input and target 
output. 

To actually find the impulse response values, observe that since ŷ[n] is obtained 
by filtering x[n] through an LTI system with impulse response h[n], the following 
relationship applies: 

R
yx

[m] = h[m] ∗ Rxx[m] . (11.8) 

Combining this with the alternative statement of the orthogonality condition, we 
can write 

h[m] ∗ Rxx[m] = Ryx[m] , (11.9) 

or equivalently, ∑ 
h[k]Rxx[m − k] = Ryx[m] (11.10) 

k 

Equation (11.10) represents a set of linear equations to be solved for the impulse 
response values. If the filter is FIR of length N , then there are N equations in the 
N unrestricted values of h[n]. For instance, suppose that h[n] is restricted to be 
zero except for n ∈ [0, N − 1]. The condition (11.10) then yields as many equations 
as unknowns, which can be arranged in the following matrix form, which you may 
recognize as the appropriate form of the normal equations for LMMSE estimation, 
which we introduced in Chapter 8: 
 

Rxx[0] Rxx[−1] Rxx[1 − N ] 
 

h[0] 
  

Ryx[0] 
 · · · 

 Rxx[1] Rxx[0] · · · Rxx[2 − N ]  h[1] 
= 

 Ryx[1] 
.


. . . . 


. 

 
. 


. . . . 


. 

 
. 

 . . . .  .   .  

Rxx[N − 1] Rxx[N − 2] Rxx[0] h[N − 1] Ryx[N − 1] · · · 
(11.11) 

These equations can now be solved for the impulse response values. Because of the 
particular structure of these equations, there are efficient methods for solving for 
the unknown parameters, but further discussion of these methods is beyond the 
scope of our course. 

In the case of an IIR filter, equation (11.10) must hold for an infinite number of 
values of m and, therefore, cannot simply be solved by the methods used for a 
finite number of linear equations. However, if h[n] is not restricted to be causal or 
FIR, the equation (11.10) must hold for all values of m from −∞ to +∞, so the 
z-transform can be applied to equation (11.10) to obtain 

H(z)Sxx(z) = Syx(z) (11.12) 

The optimal transfer function, i.e. the transfer function of the resulting (Wiener) 
filter, is then 

H(z) = Syx(z)/Sxx(z) (11.13) 

If either of the correlation functions involved in this calculation does not possess 
a z-transform but if both possess Fourier transforms, then the calculation can be 
carried out in the Fourier transform domain. 
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Note the similarity between the above expression for the optimal filter and the 
expression we obtained in Chapters 5 and 7 for the gain σY X /σXX that multiplies 
a zero-mean random variable X to produce the LMMSE estimator for a zero-mean 
random variables Y . In effect, by going to the transform domain or frequency 
domain, we have decoupled the design into a problem that — at each frequency — 
is as simple as the one we solved in the earlier chapters. 

As we will see shortly, in continuous time the results are exactly the same: 

R
yx

(τ) = Ryx(τ ), (11.14) 

h(τ) ∗ Rxx(τ) = Ryx(τ ), (11.15) 

H(s)Sxx(s) = Syx(s), and (11.16) 

H(s) = Syx(s)/Sxx(s) (11.17) 

The mean-square-error corresponding to the optimum filter, i.e. the minimum 
MSE, can be determined by straightforward computation. We leave you to show 
that 

Ree[m] = Ryy[m] − R [m] = Ryy [m] − h[m] ∗ Rxy[m] (11.18) 
yy

where h[m] is the impulse response of the optimal filter. The MMSE is then just 
Ree[0]. It is illuminating to rewrite this in the frequency domain, but dropping the 
argument ejΩ on the power spectra S (ejΩ) and frequency response H(ejΩ) below ∗∗
to avoid notational clutter: 

1 
∫ π 

MMSE = Ree[0] = See dΩ 
2π −π 

1 
∫ π 

= (Syy − HSxy) dΩ 
2π −π 

1 
∫ π SyxSxy

= 
2π −π 

Syy 

(
1 − 

SyySxx 

) 
dΩ 

1 
∫ π 

= Syy 

(
1 − ρyxρyx 

∗ 
) 

dΩ . (11.19) 
2π −π 

The function ρyx(ejΩ) defined by 

ρyx(ejΩ) = 
Syx(ejΩ) 

(11.20) 
(ejΩ)

√
Syy (ejΩ)Sxx

evidently plays the role of a frequency-domain correlation coefficient (compare with 
our earlier definition of the correlation coefficient between two random variables). 
This function is sometimes referred to as the coherence function of the two processes. 
Again, note the similarity of this expression to the expression σY Y (1−ρ2 ) that we Y X 
obtained in a previous lecture for the (minimum) mean-square-error after LMMSE 
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estimation of a random variable Y using measurements of a random variable X. 

EXAMPLE 11.1 Signal Estimation in Noise (Filtering) 

Consider a situation in which x[n], the sum of a target process y[n] and noise v[n], 
is observed: 

x[n] = y[n] + v[n] . (11.21) 

We would like to estimate y[n] from our observations of x[n]. Assume that the 
signal and noise are uncorrelated, i.e. Rvy[m] = 0. Then 

Rxx[m] = Ryy[m] + Rvv[m], (11.22) 

Ryx[m] = Ryy[m], (11.23) 

H(ejΩ) = 
Syy(ejΩ) 

. (11.24) 
Syy(ejΩ) + Svv (ejΩ) 

At values of Ω for which the signal power is much greater than the noise power, 
H(ejΩ) ≈ 1. Where the noise power is much greater than the signal power, 
H(ejΩ) ≈ 0. For example, when 

Syy (e
jΩ) = (1 + e−jΩ)(1 + ejΩ) = 2(1 + cos Ω) (11.25) 

and the noise is white, the optimal filter will be a low-pass filter with a frequency 
response that is appropriately shaped, shown in Figure 11.2. Note that the filter in 

4 

3.5


3


2.5


2


1.5


1


0.5


0


Ω 
−π −π/2 0 π/2 π 

S (ejΩ)
yy

H(ejΩ) 
S (ejΩ)

vv

FIGURE 11.2 Optimal filter frequency response, H(ejΩ), input signal PSD signal, 
Syy(ejΩ), and PSD of white noise, Svv(ejΩ). 

this case must have an impulse response that is an even function of time, since its 
frequency response is a real – and hence even – function of frequency. 

Figure 11.3 shows a simulation example of such a filter in action (though for a 
different Syy(ejΩ). The top plot is the PSD of the signal of interest; the middle 
plot shows both the signal s[n] and the measured signal x[n]; and the bottom plot 
compares the estimate of s[n] with s[n] itself. 
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FIGURE 11.3 Wiener filtering example. (From S.M. Kay, Fundamentals of Statistical

Signal Processing: Estimation Theory, Prentice Hall, 1993. Figures 11.9 and 11.10.)
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EXAMPLE 11.2 Prediction 

Suppose we wish to predict the measured process n0 steps ahead, so 

y[n] = x[n + n0] . (11.26) 

Then 
Ryx[m] = Rxx[m + n0] (11.27) 

so the optimum filter has system function 

H(z) = z n0 . (11.28) 

This is of course not surprising: since we’re allowing the filter to be noncausal, 
prediction is not a difficult problem! Causal prediction is much more challenging 
and interesting, and we will examine it later in this chapter. 

EXAMPLE 11.3 Deblurring (or Deconvolution) 

v[n] 

x[n] � G(z) �⊕� � H(z) � x̂[n] 
r[n] ξ[n]


Known, stable system Wiener filter


FIGURE 11.4 Wiener filtering of a blurred and noisy signal. 

In the Figure 11.4, r[n] is a filtered or “blurred” version of the signal of interest, 
x[n], while v[n] is additive noise that is uncorrelated with x[n]. We wish to design a 
filter that will deblur the noisy measured signal ξ[n] and produce an estimate of the 
input signal x[n]. Note that in the absence of the additive noise, the inverse filter 
1/G(z) will recover the input exactly. However, this is not a good solution when 
noise is present, because the inverse filter accentuates precisely those frequencies 
where the measurement power is small relative to that of the noise. We shall 
therefore design a Wiener filter to produce an estimate of the signal x[n]. 

We have shown that the cross-correlation between the measured signal, which is 
the input to the Wiener filter, and the estimate produced at its output is equal to 
the cross-correlation between the measurement process and the target process. In 
the transform domain, the statement of this condition is 

S
xξ

(z) = Sxξ(z) (11.29) 

or 
Sξξ(z)H(z) = S (z) = Sxξ(z) . (11.30) 

x̂ξ 
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We also know that 

Sξξ(z) = Svv(z) + Sxx(z)G(z)G(1/z) (11.31) 

Sxξ(z) = Sxr(z) (11.32) 

= Sxx(z)G(1/z), (11.33) 

where we have (in the first equality above) used the fact that Svr(z) = G(1/z)Svx(z) = 
0. We can now write 

Sxx(z)G(1/z)
H(z) = . (11.34) 

Svv(z) + Sxx(z)G(z)G(1/z) 

We leave you to check that this system function assumes reasonable values in the 
limiting cases where the noise power is very small, or very large. It is also interesting 
to verify that the same overall filter is obtained if we first find an MMSE estimate 
r̂[n] from ξ[n] (as in Example 11.1), and then pass r̂[n] through the inverse filter 
1/G(z). 

EXAMPLE 11.4 “De-Multiplication” 

A message s[n] is transmitted over a multiplicative channel (e.g. a fading channel) 
so that the received signal r[n] is 

r[n] = s[n]f [n] . (11.35) 

Suppose s[n] and f [n] are zero mean and independent. We wish to estimate s[n] 
from r[n] using a Wiener filter. 

Again, we have 

Rsr[m] = R
sr

[m] 

= h[m] ∗ Rrr[m] . (11.36) 

Rss[m]Rff [m] 

But we also know that Rsr[m] = 0. Therefore h[m] = 0. This example emphasizes 
that the optimality of a filter satisfying certain constraints and minimizing some 
criterion does not necessarily make the filter a good one. The constraints on the 
filter and the criterion have to be relevant and appropriate for the intended task. 
For instance, if f [n] was known to be i.i.d. and +1 or −1 at each time, then simply 
squaring the received signal r[n] at any time would have at least given us the value 
of s2[n], which would seem to be more valuable information than what the Wiener 
filter produces in this case. 
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11.2 NONCAUSAL CT WIENER FILTER 

In the previous discussion we derived and illustrated the discrete-time Wiener filter 
for the FIR and noncausal IIR cases. In this section we derive the continuous-time 
counterpart of the result for the noncausal IIR Wiener filter. The DT derivation 
involved taking derivatives with respect to a (countable) set of parameters h[m], 
but in the CT case the impulse response that we seek to compute is a CT function 
h(t), so the DT derivation cannot be directly copied. However, you will see that 
the results take the same form as in the DT case; furthermore, the derivation below 
has a natural DT counterpart, which provides an alternate route to the results in 
the preceding section. 

Our problem is again stated in terms of Figure 11.5. 

Estimator 

x(t) � h(t), H(jω) �	 ŷ(t) = estimate 

y(t) = target process 

FIGURE 11.5 CT LTI filter for linear MMSE estimation. 

Let x(t) be a (zero-mean) WSS random process that we have measurements of. 
We want to determine the impulse response or frequency response of the above LTI 
system such that the filter output ŷ(t) is the LMMSE estimate of some (zero-mean) 
“target” process y(t) that is jointly WSS with x(t). We can again write 

Δ 
e(t) = y(t) − ŷ(t) 

min ǫ = E{e 2(t)} . (11.37) 
h(	 )· 

Assuming the filter is stable (or at least has a well-defined frequency response), the 
process ŷ(t) is jointly WSS with x(t). Furthermore, 

E[ŷ(t + τ)y(t)] = h(τ) ∗ Rxy(τ ) = R
ŷy

(τ) , (11.38) 

The quantity we want to minimize can again be written as 

ǫ = E{e 2(t)} = Ree(0) ,	 (11.39) 

where the error autocorrelation function Ree(τ) is — using the definition in (11.37) 
— evidently given by 

Ree(τ) = Ryy(τ) + R
y
(τ) − R 

y
(τ ) − R

yy
(τ) . (11.40) 

ŷ̂ ŷ ̂
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Thus 

ǫ = E{e 2(t)} = Ree(0) = 
1 

∫ ∞ 

See(jω) dω 
2π −∞ 

= 
1 

∫ ∞ (
Syy(jω) + S

y
(jω) − S 

y (jω) − S
yy

(jω)
) 

dω 
2π ŷ̂ ŷ ̂

−∞ 

1 
∫ ∞ 

= (Syy + HH∗Sxx − H∗Syx − HSxy) dω , (11.41) 
2π −∞ 

where we have dropped the argument jω from the PSDs in the last line above for 
notational simplicity, and have used H∗ to denote the complex conjugate of H(jω), 
namely H(−jω). The expression in this last line is obtained by using the fact that 
x(t) and ŷ(t) are the WSS input and output, respectively, of a filter whose frequency 
response is H(jω). Note also that because Ryx(τ ) = Rxy(−τ ) we have 

Syx = Syx(jω) = Sxy(−jω) = S∗ . (11.42) xy 

Our task is now to choose H(jω) to minimize the integral in (11.41). We can do 
this by minimizing the integrand for each ω. The first term in the integrand does 
not involve or depend on H, so in effect we need to minimize 

HH∗Sxx − H∗Syx − HSxy = HH∗Sxx − H∗Syx − HS∗ . (11.43) yx 

If all the quantities in this equation were real, this minimization would be straight
forward. Even with a complex H and Syx, however, the minimization is not hard. 

The key to the minimization is an elementary technique referred to as completing 
the square. For this, we write the quantity in (11.43) in terms of the squared 
magnitude of a term that is linear in H. This leads to the following rewriting of 
(11.43): 

Syx Syx 
∗ ) S∗Syx yx 

(
H

√
Sxx − √

Sxx 

)(
H∗√Sxx − √

Sxx 
− 

Sxx 
. (11.44) 

In writing 
√

Sxx, we have made use of the fact that Sxx(jω) is real and nonnegative. 
We have also felt free to divide by 

√
Sxx(jω) because for any ω where this quantity 

is 0 it can be shown that Syx(jω) = 0 also. The optimal choice of H(jω) is therefore 
arbitrary at such ω, as evident from (11.43). We thus only need to compute the 
optimal H at frequencies where 

√
Sxx(jω) > 0. 

Notice that the second term in parentheses in (11.44) is the complex conjugate 
of the first term, so the product of these two terms in parentheses is real and 
nonnegative. Also, the last term does not involve H at all. To cause the terms 
in parentheses to vanish and their product to thereby become 0, which is the best 
we can do, we evidently must choose as follows (assuming there are no additional 
constraints such as causality on the estimator): 

Syx(jω)
H(jω) = (11.45) 

Sxx(jω) 

This expression has the same form as in the DT case. The formula for H(jω) causes 
it to inherit the symmetry properties of Syx(jω), so H(jω) has a real part that is 
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even in ω, and an imaginary part that is odd in ω. Its inverse transform is thus a 
real impulse response h(t), and the expression in (11.45) is the frequency response 
of the optimum (Wiener) filter. 

With the choice of optimum filter frequency response in (11.45), the mean-square
error expression in (11.41) reduces (just as in the DT case) to: 

1 
∫ ∞ 

MMSE = Ree(0) = See dω 
2π −∞ 

1 
∫ ∞ 

= (Syy − HSxy) dω 
2π −∞ 

= 
1 

∫ ∞ 

Syy 

(
1 − 

SyxSxy 
) 

dω 
2π SyySxx−∞ 

1 
∫ ∞ 

= Syy(1 − ρρ∗) dω (11.46) 
2π −∞ 

where the function ρ(jω) is defined by 

Syx(jω)
ρ(jω) = (11.47) √

Syy(jω)Sxx(jω) 

and evidently plays the role of a (complex) frequency-by-frequency correlation co
efficient, analogous to that played by the correlation coefficient of random variables 
Y and X. 

11.2.1 Orthogonality Property 

Rearranging the equation for the optimal Wiener filter, we find 

H Sxx = Syx (11.48) 

or 
S

yx = Syx , (11.49) 

or equivalently 
R

yx
(τ) = Ryx(τ) for all τ . (11.50) 

Again, for the optimal system, the cross-correlation between the input and output 
of the estimator equals the cross-correlation between the input and target output. 

Yet another way to state the above result is via the following orthogonality property: 

Rex(τ) = R (τ ) − Ryx(τ ) = 0 for all τ . (11.51) 
yx

In other words, for the optimal system, the error is orthogonal to the data. 

11.3 CAUSAL WIENER FILTERING 

In the preceding discussion we developed the Wiener filter with no restrictions on 
the filter frequency response H(jω). This allowed us to minimize a frequency-
domain integral by choosing H(jω) at each ω to minimize the integrand. However, 
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if we constrain the filter to be causal, then the frequency response cannot be chosen 
arbitrarily at each frequency, so the previous approach needs to be modified. It can 
be shown that for a causal system the real part of H(jω) can be determined from 
the imaginary part, and vice versa, using what is known as a Hilbert transform. 
This shows that H(jω) is constrained in the causal case. (We shall not need to deal 
explicitly with the particular constraint relating the real and imaginary parts of 
H(jω), so we will not pursue the Hilbert transform connection here.) The develop
ment of the Wiener filter in the causal case is therefore subtler than the unrestricted 
case, but you know enough now to be able to follow the argument. 

Recall our problem, described in terms of Figure 11.6. 

Estimator 

x(t) � h(t), H(jω) � ŷ(t) = estimate 

y(t) = target process 

FIGURE 11.6 Representation of LMMSE estimation using an LTI system. 

The input x(t) is a (zero-mean) WSS random process that we have measurements 
of, and we want to determine the impulse response or frequency response of the 
above LTI system such that the filter output ŷ(t) is the LMMSE estimate of some 
(zero-mean) “target” process y(t) that is jointly WSS with x(t): 

Δ 
e(t) = y(t) − ŷ(t) 

min ǫ = E{e 2(t)} . (11.52) 
h( )· 

We shall now require, however, that the filter be causal. This is essential in, for 
example, the problem of prediction, where y(t) = x(t + t0) with t0 > 0. 

We have already seen that the quantity we want to minimize can be written as 

1 
∫ ∞ 

ǫ = E{e 2(t)} = Ree(0) = See(jω) dω 
2π −∞ 

= 
1 

∫ ∞ (
Syy(jω) + S (jω) − S (jω) − S (jω)

) 
dω 

y y yy2π ŷ̂ ŷ ̂
−∞ 

1 
∫ ∞ 

= (Syy + HH∗Sxx − H∗Syx − HSxy) dω (11.53) 
2π −∞ 

Syx 2 
yx 

= 
1 

∫ ∞ ∣∣∣H
√

Sxx − 
∣∣∣ dω +

1 
∫ ∞ (

Syy − 
SyxS∗ ) 

dω . 
2π 

√
Sxx 2π Sxx−∞ −∞ 

(11.54) 

The last equality was the result of “completing the square” on the integrand in the 
preceding integral. In the case where H is unrestricted, we can set the first integral 
of the last equation to 0 by choosing 

Syx(jω)
H(jω) = (11.55) 

Sxx(jω) 
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at each frequency. The second integral of the last equation is unaffected by our 
choice of H, and determines the MMSE. 

If the Wiener filter is required to be causal, then we have to deal with the integral 

Syx 2 

2

1 
π 

∫ ∞ ∣∣∣H
√

Sxx − √
Sxx 

∣∣∣ dω (11.56) 
−∞ 

as a whole when we minimize it, because causality imposes constraints on H(jω) 
that prevent it being chosen freely at each ω. (Because of the Hilbert transform 
relationship mentioned earlier, we could for instance choose the real part of H(jω) 
freely, but then the imaginary part would be totally determined.) We therefore 
have to proceed more carefully. 

Note first that the expression we obtained for the integrand in (11.56) by completing 
the square is actually not quite as general as we might have made it. Since we may 
need to use all the flexibility available to us when we tackle the constrained problem, 
we should explore how generally we can complete the square. Specifically, instead 
of using the real square root 

√
Sxx of the PSD Sxx, we could choose a complex 

square root Mxx, defined by the requirement that 

M∗ or (jω) = Mxx(jω)Mxx(−jω) , (11.57) Sxx = Mxx xx Sxx

and correspondingly rewrite the criterion in (11.56) as 

21 
∫ ∞ ∣∣∣HMxx − 

Syx 
∣∣∣ dω , (11.58) 

2π M ∗−∞ xx 

which is easily verified to be the same criterion, although written differently. The 
quantity Mxx(jω) is termed a spectral factor of Sxx(jω) or a modeling filter for the 
process x. The reason for the latter name is that passing (zero-mean) unit-variance 
white noise through a filter with frequency response Mxx(jω) will produce a process 
with the PSD Sxx(jω), so we can model the process x as being the result of such 
a filtering operation. Note that the real square root 

√
Sxx(jω) we used earlier is a 

special case of a spectral factor, but others exist. In fact, multiplying 
√

Sxx(jω) by 
an all-pass frequency response A(jω) will yield a modeling filter: 

A(jω) 
√

Sxx(jω) = Mxx(jω) , A(jω)A(−jω) = 1 . (11.59) 

Conversely, it is easy to show that the frequency response of any modeling filter 
can be written as the product of an all-pass frequency response and 

√
Sxx(jω). 

It turns out that under fairly mild conditions (which we shall not go into here) a 
PSD is guaranteed to have a spectral factor that is the frequency response of a stable 
and causal system, and whose inverse is also the frequency response of a stable and 
causal system. (To simplify how we talk about such factors, we shall adopt an abuse 
of terminology that is common when talking about Fourier transforms, referring to 
the factor itself — rather than the system whose frequency response is this factor 
— as being stable and causal, with a stable and causal inverse.) For instance, if 

ω2 + 9 
Sxx(jω) = , (11.60) 

ω2 + 4 
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then the required factor is 
jω + 3 

Mxx(jω) = . (11.61) 
jω + 2 

We shall limit ourselves entirely to Sxx that have such a spectral factor, and assume 
for the rest of the derivation that the Mxx introduced in the criterion (11.58) is 
such a factor. (Keep in mind that wherever we ask for a stable system here, we 
can actually make do with a system with a well-defined frequency response, even if 
it’s not BIBO stable, except that our results may then need to be interpreted more 
carefully.) 

With these understandings, it is evident that the term HMxx in the integrand in 
(11.58) is causal, as it is the cascade of two causal terms. The other term, Syx/M∗ ,xx

is generally not causal, but we may separate its causal part out, denoting the 
transform of its causal part by [Syx/M∗ ]+, and the transform of its anti-causal part xx

by [Syx/M∗ ] (In the DT case, the latter would actually denote the transform of xx −. 
the strictly anti-causal part, i.e., at times −1 and earlier; the value at time 0 would 
be retained with the causal part.) 

Now consider rewriting (11.58) in the time domain, using Parseval’s theorem. If 
we denote the inverse transform operation by I{ · }, then the result is the following 
rewriting of our criterion: 

2
∫ ∞ ∣∣∣I{HMxx} − I{[Syx/M∗ ]+ − I{[Syx/M ∗ ]−} 

∣∣∣ dt (11.62) xx xx
−∞ 

Since the term I{HMxx} is causal (i.e., zero for negative time), the best we can 
do with it, as far as minimizing this integral is concerned, is to cancel out all of 

/M∗ In other words, our best choice is I{[Syx xx]+}. 

= [Syx/M∗ ]+ , (11.63) HMxx xx

or 
1 [ Syx(jω) ]

H(jω) = . (11.64) 
Mxx(jω) Mxx(−jω) + 

Note that the stability and causality of the inverse of Mxx guarantee that this last 
step preserves stability and causality, respectively, of the solution. 

The expression in (11.64) is the solution of the Wiener filtering problem under the 
causality constraint. It is also evident now that the MMSE is larger than in the 
unconstrained (noncausal) case by the amount 

2 
ΔMMSE = 

1 
∫ ∞ ∣∣∣

[ Syx 
] ∣∣∣ dω . (11.65) 

2π M ∗xx−∞ − 

EXAMPLE 11.5 DT Prediction 

Although the preceding results were developed for the CT case, exactly analogous 
expressions with obvious modifications (namely, using the DTFT instead of the 
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CTFT, with integrals from −π to π rather than −∞ to ∞, etc.) apply to the DT 
case. 

Consider a process x[n] that is the result of passing (zero-mean) white noise of unit 
variance through a (modeling) filter with frequency response 

Mxx(ejΩ) = α0 + α1e
−jΩ , (11.66) 

where both α0 and α1 are assumed nonzero. This filter is stable and causal, and 
if α1 < α0 then the inverse is stable and causal too. We assume this condition | | | |
holds. (If it doesn’t, we can always find another modeling filter for which it does, 
by multiplying the present filter by an appropriate allpass filter.) 

Suppose we want to do causal one-step prediction for this process, so y[n] = x[n+1]. 
Then Ryx[m] = Rxx[m + 1], so 

Syx = ejΩSxx = ejΩMxxM∗ . (11.67) xx 

Thus [ Syx 
] 

= [ejΩMxx]+ = α1 , (11.68) 
M∗ +xx 

and so the optimum filter, according to (11.64), has frequency response 

H(ejΩ) = 
α1 

. (11.69) 
α0 + α1e−jΩ 

The associated MMSE is evaluated by the expression in (11.65), and turns out to 
be simply α2

0 (which can be compared with the value of α2
0 + α1

2 that would have 
been obtained if we estimated x[n + 1] by just its mean value, namely zero). 

11.3.1 Dealing with Nonzero Means 

We have so far considered the case where both x and y have zero means (and the 
practical consequence has been that we haven’t had to worry about their PSDs 
having impulses at the origin). If their means are nonzero, then we can do a better 
job of estimating y(t) if we allow ourselves to adjust the estimates produced by the 
LTI system, by adding appropriate constants (to make an affine estimator). For 
this, we can first consider the problem of estimating y − µy from x − µx, illustrated 
in Figure 11.7 

Estimator 

� ŷ(t) − µy = estimate x(t) − µx 
� h(t), H(jω) 

y(t) − µy = target process 

FIGURE 11.7 Wiener filtering with non-zero means. 

Denoting the transforms of the covariances Cxx(τ) and Cyx(τ) by Dxx(jω) and 
Dyx(jω) respectively (these transforms are sometimes referred to as covariance 
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PSDs), the optimal unconstrained Wiener filter for our task will evidently have a 
frequency response given by 

Dyx(jω)
H(jω) = . (11.70) 

Dxx(jω) 

We can then add µy to the output of this filter to get our LMMSE estimate of y(t). 
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Pulse Amplitude Modulation (PAM), 
Quadrature Amplitude Modulation 
(QAM) 

12.1 PULSE AMPLITUDE MODULATION 

In Chapter 2, we discussed the discrete-time processing of continuous-time signals, 
and in that context reviewed and discussed D/C conversion for reconstructing a 
continuous-time signal from a discrete-time sequence. Another common context 
in which it is useful and important to generate a continuous-time signal from a 
sequence is in communication systems, in which discrete data — for example, digital 
or quantized data — is to be transmitted over a channel in the form of a continuous-
time signal. In this case, unlike in the case of DT processing of CT signals, the 
resulting continuous-time signal will be converted back to a discrete-time signal at 
the receiving end. Despite this difference in the two contexts, we will see that the 
same basic analysis applies to both. 

As examples of the communication of DT information over CT channels, consider 
transmitting a binary sequence of 1’s and 0’s from one computer to another over a 
telephone line or cable, or from a digital cell phone to a base station over a high-
frequency electromagnetic channel. These instances correspond to having analog 
channels that require the transmitted signal to be continuous in time, and to also be 
compatible with the bandwidth and other constraints of the channel. Such require
ments impact the choice of continuous-time waveform that the discrete sequence is 
modulated onto. 

The translation of a DT signal to a CT signal appropriate for transmission, and the 
translation back to a DT signal at the receiver, are both accomplished by devices 
referred to as modems (modulators/demodulators). Pulse Amplitude Modulation 
(PAM) underlies the operation of a wide variety of modems. 

12.1.1 The Transmitted Signal 

The basic idea in PAM for communication over a CT channel is to transmit a se
quence of CT pulses of some pre-specified shape p(t), with the sequence of pulse 
amplitudes carrying the information. The associated baseband signal at the trans
mitter (which is then usually modulated onto some carrier to form a bandpass signal 
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before actual transmission — but we shall ignore this aspect for now) is given by 

x(t) = 
∑ 

a[n] p(t − nT ) (12.1) 
n 

x(t) when a[n] are samples of bandlimited signal 

� 

� 

A 

p(t) 

Δ 
2−Δ 

2 T−T t 

� 

� 

x(t) for a[n] from bipolar signaling 

t 

+A 

−A 

� 

� 

x(t) for a[n] from antipodal signaling 

t 

+A 

−A 

� 

� 

x(t) for a[n] from on/off signaling 

t 

A 

� 

0 
� 

tT 

2T 

3T 

0 T 

2T 

3T 

0 T 

2T 

3T 

0 T 

2T 

3T 

FIGURE 12.1 Baseband signal at the transmitter in Pulse Amplitude Modulation 
(PAM). 

where the numbers a[n] are the pulse amplitudes, and T is the pulse repetition 
interval or the inter-symbol spacing, so 1/T is the symbol rate (or “baud” rate). 
An individual pulse may be confined to an interval of length T , as shown in Figure 
12.1, or it may extend over several intervals, as we will see in several examples 
shortly. The DT signal a[n] may comprise samples of a bandlimited analog message 
(taken at the Nyquist rate or higher, and generally quantized to a specified set of 
levels, for instance 32 levels); or 1 and 0 for on/off or “unipolar” signaling; or 1 and 
−1 for antipodal or “polar” signaling; or 1, 0 and −1 for “bipolar” signaling; each 
of these possibilities is illustrated in Figure 12.1. 

The particular pulse shape in Figure 12.1 is historically referred to as an RZ (return
to-zero) pulse when Δ < T and an NRZ (non-return-to-zero) pulse when Δ = T . 
These pulses would require substantial channel bandwidth (of the order of 1/Δ) 
in order to be transmitted without significant distortion, so we may wish to find 
alternative choices that use less bandwidth, to accommodate the constraints of the 
channel. Such considerations are important in designing appropriate pulse shapes, 
and we shall elaborate on them shortly. 
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If p(t) is chosen such that p(0) = 1 and p(nT ) = 0 for n = 0, then we could 
recover the amplitudes a[n] from the PAM waveform x(t) by just sampling x(t) at 
times nT , since x(nT ) = a[n] in this case. However, our interest is in recovering the 
amplitudes from the signal at the receiver, rather than directly from the transmitted 
signal, so we need to consider how the communication channel affects x(t). Our 
objective will be to recover the DT signal in as simple a fashion as possible, while 
compensating for distortion and noise in the channel. 

12.1.2 The Received Signal 

When we transmit a PAM signal through a channel, the characteristics of the 
channel will affect our ability to accurately recover the pulse amplitudes a[n] from 
the received signal r(t). We might model r(t) as 

r(t) = h(t) ∗ x(t) + η(t) (12.2) 

corresponding to the channel being modeled as LTI with impulse response h(t), and 
channel noise being represented through the additive noise signal η(t). We would 
still typically try to recover the pulse amplitudes a[n] from samples of r(t) — or 
from samples of an appropriately filtered version of r(t) — with the samples taken 
at intervals of T . 

The overall model is shown in Figure 12.2, with f(t) representing the impulse 
response of an LTI filter at the receiver. This receiver filter will play a key role in 
filtering out the part of the noise that lies outside the frequency bands in which 
the signal information is concentrated. Here, we first focus on the noise-free case 
(for which one would normally set f(t) = δ(t), corresponding to no filtering before 
sampling at the receiver end), but for generality we shall take account of the effect 
of the filter f(t) as well. 

Noise η(t) 
x(t) = � h(t)∑ 

a[n]p(t − nT ) 
�+ 

� � 
r(t) 

f(t) � 
b(t) 

� 

Filtering Sample every T 

FIGURE 12.2 Transmitter, channel and receiver model for a PAM system. 

12.1.3 Frequency-Domain Characterizations 

Denote the CTFT of the pulse p(t) by P (jω), and similarly for the other CT signals 
in Figure 12.2. If the frequency response H(jω) of the channel is unity over the 
frequency range where P (jω) is significant, then a single pulse p(t) is transmitted 
essentially without distortion. In this case, we might invoke the linearity and time 
invariance of our channel model to conclude that x(t) in (12.1) is itself transmit
ted essentially without distortion, in which case r(t) ≈ x(t) in the noise-free case 
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that we are considering. However, this conclusion leaves the possiblity that dis
tortions which are insignificant when a single pulse is transmitted accumulate in a 
non-negligible way when a succession of pulses is transmitted. We should therefore 
directly examine x(t), r(t), and their corresponding Fourier transforms. The un
derstanding we obtain from this is a prerequisite for designing P (jω) and picking 
the inter-symbol time T for a given channel, and also allows us to determine the 
influence of the DT signal a[n] on the CT signals x(t) and r(t). 

To compute X(jω), we take the transform of both sides of (12.1): 
(∑ 

a[n] e−jωnT 
) 

P (jω)X(jω) = 
n 

= A(ejΩ)|Ω=ωT P (jω) (12.3) 

where A(ejΩ) denotes the DTFT of the sequence a[n]. The quantity A(ejΩ)|Ω=ωT 

that appears in the above expression is simply a uniform re-scaling of the frequency 
axis of the DTFT; in particular, the point Ω = π in the DTFT is mapped to the 
point ω = π/T in the expression A(ejΩ)|Ω=ωT . 

The expression in (12.3) therefore describes X(jω) for us, assuming the DTFT of 
the sequence a[n] is well defined. For example, if a[n] = 1 for all n, corresponding 
to periodic repetition of the basic pulse waveform p(t), then A(ejΩ) = 2πδ(Ω) for 
|Ω| ≤ π, and repeats with period 2π outside this range. Hence X(jω) comprises a 
train of impulses spaced apart by 2π/T ; the strength of each impulse is 2π/T times 
the value of P (jω) at the location of the impulse (note that the scaling property of 
impulses yields δ(Ω) = δ(ωT ) = (1/T )δ(ω) for positive T ). 

In the absence of noise, the received signal r(t) and the signal b(t) that results from 
filtering at the receiver are both easily characterized in the frequency domain: 

R(jω) = H(jω)X(jω) , B(jω) = F (jω)H(jω)X(jω) . (12.4) 

Some important constraints emerge from (12.3) and (12.4). Note first that for a 
general DT signal a[n], necessary information about the signal will be distributed 
in its DTFT A(ejΩ) at frequencies Ω throughout the interval |Ω| ≤ π; knowing 
A(ejΩ) only in a smaller range |Ω| ≤ Ωa < π will in general be insufficient to 
allow reconstruction of the DT signal. Now, setting Ω = ωT as specified in (12.3), 
we see that A(ejωT ) will contain necessary information about the DT signal at 
frequencies ω that extend throughout the interval |ω| ≤ π/T . Thus, if P (jω) =6 0 
for |ω| ≤ π/T then X(jω) preserves the information in the DT signal; and if 
H(jω)P (jω) 6= 0 for |ω| ≤ π/T then R(jω) preserves the information in the DT 
signal; and if F (jω)H(jω)P (jω) =6 0 for |ω| ≤ π/T then B(jω) preserves the 
information in the DT signal. 

The above constraints have some design implications. A pulse for which P (jω) 
was nonzero only in a strictly smaller interval |ω| ≤ ωp < π/T would cause loss of 
information in going from the DT signal to the PAM signal x(t), and would not be 
a suitable pulse for the chosen symbol rate 1/T (but could become a suitable pulse 
if the symbol rate was reduced appropriately, to ωp/π or less). 
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Section 12.1 Pulse Amplitude Modulation 215 

Similarly, even if the pulse was appropriately designed so that x(t) preserved the 
information in the DT signal, if we had a lowpass channel for which H(jω) was 
nonzero only in a strictly smaller interval |ω| ≤ ωc < π/T (so ωc is the cutoff 
frequency of the channel), then we would lose information about the DT signal in 
going from x(t) to r(t); the chosen symbol rate 1/T would be inappropriate for this 
channel, and would need to be reduced to ωc/π in order to preserve the information 
in the DT signal. 

12.1.4 Inter-Symbol Interference at the Receiver 

In the absence of any channel impairments, the signal values can be recovered from 
the transmitted pulse trains shown in Figure 12.1 by re-sampling at the times which 
are integer multiples of T . However, these pulses, while nicely time localized, have 
infinite bandwidth. Since any realistic channel will have a limited bandwidth, one 
effect of a communication channel on a PAM waveform is to “de-localize” or disperse 
the energy of each pulse through low-pass filtering. As a consequence, pulses that 
may not have overlapped (or that overlapped only benignly) at the transmitter may 
overlap at the receiver in a way that impedes the recovery of the pulse amplitudes 
from samples of r(t), i.e. in a way that leads to inter-symbol interference (ISI). 
We now make explicit what condition is required in order for ISI to be eliminated 

M-ary signal 

0 1 2 3 4 

Intersymbol Interference 

x(t) r(t)
�� H(jω) 

t Channel 
T 2T 3T 

2π = ωsT 

FIGURE 12.3 Illustration of Inter-symbol Interference (ISI). 

from the filtered signal b(t) at the receiver. When this no-ISI condition is met, we 
will again be able to recover the DT signal by simply sampling b(t). Based on this 
condition, we can identify the additional constraints that must be satisfied by the 
pulse shape p(t) and the impulse response f(t) of the filter (or channel compensator 
or equalizer) at the receiver so as to eliminate or minimize ISI. 

With x(t) as given in (12.1), and noting that b(t) = f(t)∗h(t)∗x(t) in the noise-free 
case, we can write 

b(t) = 
∑ 

a[n] g(t − nT ) (12.5) 
n 

where 
g(t) = f(t) ∗ h(t) ∗ p(t) (12.6) 

We assume that g(t) is continuous (i.e., has no discontinuity) at the sampling times 
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nT . Our requirement for no ISI is then that 

g(0) = c , and g(nT ) = 0 for nonzero integers n, (12.7) 

where c is some nonzero constant. If this condition is satisfied, then if follows from 
(12.5) that b(nT ) = c.a[n], and consequently the DT signal is exactly recovered (to 
within the known scale factor c). 

As an example, suppose that g(t) in (12.6) is 

sin ωct 
g(t) = , (12.8) 

ωct 

with corresponding G(jω) given by 

π 
G(jω) = 

ωc 
for |ω| < ωc 

= 0 otherwise . (12.9) 

π 
Then choosing the inter-symbol spacing to be T = , we can avoid ISI in the 

ωc 
received samples, since g(t) = 1 at t = 0 and is zero at other integer multiples of 
T , as illustrated in Figure 12.4. 

a[0] 

a[1] 

π/ω 
c 

t 

FIGURE 12.4 Illustration of the no-ISI property for PAM when g(0) = 1 and g(t) = 0 
at other integer multiples of the inter-symbol time T . 

We are thereby able to transmit at a symbol rate that is twice the cutoff frequency 
of the channel. From what was said earlier, in the discussion following (12.3) on 
constraints involving the symbol rate and the channel cutoff frequency, we cannot 
expect to do better in general. 

More generally, in the next section we translate the no-ISI time-domain condition 
in (12.7) to one that is useful in designing p(t) and f(t) for a given channel. The 
approach is based on the frequency-domain translation of the no-ISI condition, 
leading to a result that was first articulated by Nyquist. 
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12.2 NYQUIST PULSES 

The frequency domain interpretation of the no-ISI condition of (12.7) was explored 
by Nyquist in 1924 (and extended by him in 1928 to a statement of the sampling 
theorem — this theorem then waited almost 20 years to be brought to prominence 
by Gabor and Shannon). 

Consider sampling g(t) with a periodic impulse train: 

+∞
g(t) = g(t) 

∑ 
δ(t − nT ) . (12.10) 

n=−∞ 

Then our requirements on g(t) in (12.7) imply that ĝ(t) = c δ(t), an impulse of 
strength c, whose transform is Ĝ(jω) = c. Taking transforms of both sides of 
(12.10), and utilizing the fact that multiplication in the time domain corresponds 
to convolution in the frequency domain, we obtain 

1 
+∞

2π 
Ĝ(jω) = c = 

T 

∑ 
G(jω − jm 

T 
) . (12.11) 

m=−∞ 

The expression on the right hand side of (12.11) represents a replication of G(jω) 
(scaled by 1/T ) at every integer multiple of 2π/T along the frequency axis. The 
Nyquist requirement is thus that G(jω) and its replications, spaced 2πm/T apart for 
all integer m, add up to a constant. Some examples of G(jω) = F (jω)H(jω)P (jω) 
that satisfy this condition are given below. 

The particular case of the sinc function of (12.8) and (12.9) certainly satisfies the 
Nyquist condition of (12.11). 

If we had an ideal lowpass channel H(jω) with bandwidth ωc or greater, then 
choosing p(t) to be the sinc pulse of (12.8) and not doing any filtering at the receiver 
— so F (jω) = 1 — would result in no ISI. However, there are two problems with the 
sinc characteristic. First, the signal extends indefinitely in time in both directions. 
Second, the sinc has a very slow roll-off in time (as 1/t). This slow roll-off in time 
is coupled to the sharp cut-off of the transform of the sinc in the frequency domain. 
This is a familiar manifestation of time-frequency duality: quick transition in one 
domain means slow transition in the other. 

It is highly desirable in practice to have pulses that taper off more quickly in time 
than a sinc. One reason is that, given the inevitable inaccuracies in sampling times 
due to timing jitter, there will be some unavoidable ISI, and this ISI will propagate 
for unacceptably long times if the underlying pulse shape decays too slowly. Also, 
a faster roll-off allows better approximation of a two-sided signal by a one-sided 
signal, as would be required for a causal implementation. The penalty for more 
rapid pulse roll-off in time is that the transition in the frequency domain has to 
be more gradual, necessitating a larger bandwidth for a given symbol rate (or a 
reduced symbol rate for a given bandwidth). 

The two examples in Figure 12.5 have smoother transitions than the previous case, 
and correspond to pulses that fall off as 1/t2 . It is evident that both can be made 
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to satisfy the Nyquist condition by appropriate choice of T . 

π/T π/T 
ω

ω 

P(jω)H(jω) 
P(jω)H(jω) 

FIGURE 12.5 Two possible choices for the Fourier transform of pulses that decay in 
time as 1/t2 and satisfy the Nyquist zero-ISI condition for appropriate choice of T . 

Still smoother transitions can be obtained with a family of frequency-domain char
acteristics in which there is a cosine transition from 1 to 0 over the frequency range 

π
T

π
T(1 − β) to ω 

corresponding formula for the received and filtered pulse is 
ω (1 + β), where β is termed the roll-off parameter. The = = 

π
T t cos β π

T tsin
f(t) ∗ h(t) ∗ p(t) (12.12) = π

T t 1 − (2βt/T )2 

which falls off as 1/t3 for large t. 

−4T −3T −2T −T 0 T 2T 3T 4T 

0 

T 
X(t) 

β=1 β=0.5 β=0 

X(ω) 

β = 1 

β = 0.5 

β = 0
T 

0 

−2π/T −π/T 0 π/T 2π/T
time, t frequency, ω 

FIGURE 12.6 Time and frequency characteristics of the family of pulses in Eq. 
(12.12) 

Once G(jω) is specified, knowledge of the channel characteristic H(jω) allows us 
to determine the corresponding pulse transform P (jω), if we fix F (jω) = 1. In the 
presence of channel noise that corrupts the received signal r(t), it turns out that it 
is best to only do part of the pulse shaping at the transmitter, with the rest done 
at the receiver prior to sampling. For instance, if the channel has no distortion 
in the passband (i.e., if H(jω) = 1 in the passband) and if the noise intensity is 
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TABLE 5.4: Selected CCITT International Telephone Line Modem Standards 

Bit Rate Symbol Rate Modulation CCITT Standard 

330 300 2FSK V.21 

1,200 600 QPSK V.22 

2,400 600 16QAM V.22bis 

1,200 1,200 2FSK V.23 

2,400 1,200 QPSK V.26 

4,800 1,600 8PSK V.27 

9,600 2,400 Fig. 3.15(a) V.29 

4,800 2,400 QPSK V.32 

9,600 2,400 16QAM V.32ALT 

14,400 
28,800 

2,400 
3,429 

128QAM,TCM 
1024QAM,TCM 

V.32bis 
V.fast(V.34) 

FIGURE 12.7 From Digital Transmission Engineering by J.B.Anderson, IEEE Press 
1999. The reference to Fig. 3.15 a is a particular QAM constellation. 

uniform in this passband, then the optimal choice of pulse is P (jω) = 
√

G(jω), 
assuming that G(jω) is purely real, and this is also the optimal choice of receiver 
filter F (jω). We shall say a little more about this sort of issue when we deal with 
matched filtering in a later chapter. 

12.3 CARRIER TRANSMISSION 

The previous discussion centered around the design of baseband pulses. For trans
mission over phone lines, wireless links, satellites, etc. the baseband signal needs 
to be modulated onto a carrier, i.e. converted to a passband signal. This also 
opens opportunities for augmentation of PAM. The table in Figure 12.7 shows the 
evolution of telephone line digital modem standards. FSK refers to frequency-shift
keying, PSK to phase-shift-keying, and QAM to quadrature amplitude modulation, 
each of which we describe in more detail below. The indicated increase in symbol 
rate (or baud rate) and bit rates over the years corresponds to improvements in 
signal processing, to better modulation schemes, to the use of better conditioned 
channels, and to more elaborate coding (and correspondingly complex decoding, 
but now well within real-time computational capabilities of digital receivers). 

For baseband PAM, the transmitted signal is of the form of equation (12.1) i.e. 

x(t) = 
∑ 

a[n] p(t − nT ) (12.13) 
n 

where p(t) is a lowpass pulse. When this is amplitude-modulated onto a carrier, 
the transmitted signal takes the form 

s(t) = 
∑ 

a[n] p(t − nT ) cos(ωct + θc) (12.14) 
n 

where ωc and θc are the carrier frequency and phase. 
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In the simplest form of equation (12.14), specifically with ωc and θc fixed, equation 
(12.14) corresponds to using amplitude modulation to shift the frequency content 
from baseband to a band centered at the carrier frequency ωc. However, since two 
additional parameters have been introduced (i.e. ωc and θc) this opens additional 
possibilities for embedding data in s(t). Specifically, in addition to changing the 
amplitude in each symbol interval, we can consider changing the carrier frequency 
and/or the phase in each symbol interval. These alternatives lead to frequency-
shift-keying (FSK) and phase-shift-keying (PSK). 

12.3.1 FSK 

With frequency shift keying (12.14) takes the form 

s(t) = 
∑ 

a[n] p(t − nT ) cos((ω0 + Δn)t + θc) (12.15) 
n 

where ω0 is the nominal carrier frequency and Δn is the shift in the carrier frequency 
in symbol interval n. In principle in FSK both a[n] and Δn can incorporate data 
although it is typically the case that in FSK the amplitude does not change. 

12.3.2 PSK 

In phase shift keying (12.14) takes the form 

s(t) = 
∑ 

a[n] p(t − nT ) cos(ωct + θn) (12.16) 
n 

In each symbol interval, information can then be incorporated in both the pulse 
amplitude a[n] and the carrier phase θn. In what is typically referred to as PSK, 
information is only incorporated in the phase, i.e. a[n] = a = constant. 

For example, with 

2πbn
θn = ; bn a non-negative integer (12.17) 

M 

one of M symbols can be encoded in the phase in each symbol interval. For M = 2, 
θn = 0 or π, commonly referred to as binary PSK (BPSK). With M = 4, θn takes 
on one of the four values 0, π 

2 , π, or 3
2 
π . 

To interpret PSK somewhat differently and as a prelude to expanding the discus
sion to a further generalization (quadrature amplitude modulation or QAM) it is 
convenient to express equation (12.16) in some alternate forms. For example, 

jθn jωcts(t) = 
∑ 

Re{ae p(t − nT )e } (12.18) 
n 

and equivalently 
s(t) = I(t) cos(ωct) − Q(t) sin(ωct) (12.19) 
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with 
I(t) = 

∑ 
ai[n] p(t − nT ) (12.20) 

n 

Q(t) = 
∑ 

aq[n] p(t − nT ) (12.21) 
n 

and 

ai[n] = a cos(θn) (12.22) 

aq[n] = a sin(θn) (12.23) 

Equation 12.19 is referred to as the quadrature form of equation 12.16 and I(t) 
and Q(t) are referred to as the in-phase and quadrature components. For BPSK, 
ai[n] = ±a and aq[n] = 0. 

For PSK with θn in the form of equation 12.17 and M = 4, θn can take on any of 
the four values 0, π 

2 , π, or 3
2 
π . In the form of equations 12.22 and 12.23 ai[n] will 

then be either +a, −a, or zero and aq[n] will be either +a, −a, or zero. However, 
clearly QPSK can only encode four symbols in the phase not nine, i.e. the various 
possibilities for ai[n] and aq[n] are not independent. For example, for M = 4, if 
ai[n] = +a then aq[n] must be zero since ai[n] = +a implies that θn = 0. A con
venient way of looking at this is through what’s referred to as an I-Q constellation 
as shown in Figure 12.8. 

aq 

−a +a 

−a 

+a 

ai 

FIGURE 12.8 I-Q Constellation for QPSK. 

Each point in the constellation represents a different symbol that can be encoded, 
and clearly with the constellation of Figure 12.8 one of four symbols can be encoded 
in each symbol interval (recall that for now, the amplitude a[n] is constant. This 
will change when we expand the discussion shortly to QAM). 
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aq 

a
2 

a√
ai 

a√

√

2 

+ 

a
2

√− + 
2 

− 

FIGURE 12.9 I-Q Constellation for quadrature phase-shift-keying (QPSK). 

An alternative form with four-phase PSK is to choose 

2πbn π 
θn = + ; bn a non-negative integer (12.24) 

4 4 

in which case ai[n] = ±
12.9. 

a√
2 

and aq[n] = ± a√
2 

resulting in the constellation in Figure 

In this case, the amplitude modulation of I(t) and Q(t) (equations 12.20 and 12.21) 
can be done independently. Modulation with this constellation is commonly referred 
to as QPSK (quadrature phase-shift keying). 

In PSK as described above, a[n] was assumed constant. By incorporating encoding 
in both the amplitude a[n] and phase θn in equation 12.16 we are led to a richer 
form of modulation referred to as quadrature amplitude modulation (QAM). In the 
form of equations (12.19 - 12.21) we now allow ai[n] and aq[n] to be chosen from a 
richer constellation. 

12.3.3 QAM 

The QAM constellation diagram is shown in Figure 12.10 for the case where each 
set of amplitudes can take the values ±a and ±3a. The 16 different combinations 
that are available in this case can be used to code 4 bits, as shown in the figure. 
This particular constellation is what is used in the V.32ALT standard shown in the 
table of Figure 12.7. In this standard, the carrier frequency is 1,800 Hz, and the 
symbol frequency or baud rate (1/T ) is 2,400 Hz. With 4 bits per symbol, this 
works out to the indicated 9,600 bits/second. One baseband pulse shape p(t) that 
may be used is the square root of the cosine-transition pulse mentioned earlier, say 
with β = 0.3. This pulse contains frequencies as high as 1.3 × 1, 200 = 1, 560 Hz. 
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After modulation of the 1,800 Hz carrier, the signal occupies the band from 240 Hz 
to 3,360 Hz, which is right in the passband of the voice telephone channel. 

The two faster modems shown in the table use more elaborate QAM-based schemes. 
The V.32bis standard involves 128QAM, which could in principle convey 7 bits per 
symbol, but at the price of greater sensitivity to noise (because the constellation 
points are more tightly clustered for a given signal power). However, the QAM 
in this case is actually combined with so-called trellis-coded modulation (TCM), 
which in effect codes in some redundancy (by introducing dependencies among the 
modulating amplitudes), leading to greater noise immunity and an effective rate of 
6 bits per symbol (think of the TCM as in effect reserving a bit for error checking). 
The symbol rate here is still 2,400 Hz, so the transmission is at 6 × 2, 400 = 14, 400 
bits/second. Similarly, the V.34 standard involves 1024QAM, which could convey 
10 bits per symbol, although with more noise sensitivity. The combination with 
TCM introduces redundancy for error control, and the resulting bit rate is 28,800 
bits/second (9 effective bits times a symbol frequency of 3,200 Hz). 

Demodulation of Quadrature Modulated PAM signals: 
The carrier modulated signals in the form of equations (12.19 - 12.23) can carry 
encoded data in both the I and Q components I(t) and Q(t). Therefore in demodu
lation we must be able to extract these seperately. This is done through quadrature 
demodulation as shown in Figure 12.11 

In both the modulation and demodulation, it is assumed that the bandwidth of 
p(t) is low compared with the carrier frequency wc so that the bandwidth of I(t) 
and Q(t) are less than ωc. The input signal ri(t) is 

ri(t) = I(t)cos 2(ωct) − Q(t)sin(ωct)cos(ωct) (12.25) 

1 1 1 
= I(t)cos(2ωct) − Q(t)sin(2ωct) (12.26) I(t) −

2 2 2 

Similarly 

rq(t) = I(t)cos(ωct)sin(ωct) − Q(t)sin2(ωct) (12.27) 

1 1 1 
= I(t)sin(2ωct) + Q(t)cos(2ωct) (12.28) Q(t) −

2 2 2 

Choosing the cutoff frequency of the lowpass filters to be greater than the bandwidth 
of p(t) (and therefore also greater than the bandwidth of I(t) and Q(t)) but low 
enough to eliminate the components in ri(t) and rq (t) around 2ωc, the outputs will 
be the quadrature signals I(t) and Q(t). 
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aq 

a 

1011 1001 1110 1111 
+3 

1010 1000 1100 1101 
+1 

ai 
a 

0001 0000 

0011 0010 

FIGURE 12.10 16 QAM constellation. (From 
J.B. Anderson, IEEE Press, 1999, p.96) 

+1 +3 

0100 0110 

0101 0111 

Digital Transmission Engineering by 
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cos(ωct) 

� 
� ri(t) � I(t)LPF 

� 
s(t)

� sin(ωct) 

�


�

� rq (t) � Q(t)LPF 

FIGURE 12.11 Demodulation scheme for a Quadrature Modulated PAM Signal. 
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FIGURE 12.12 (a) PAM signal with sinc pulse. (b) PAM signal with ‘raised cosine’ 
pulse. Note much larger tails and excursions in narrow band pulse of (a); tails may 
not be truncated without widening the bandwidth. (From J.B. Anderson, Digital 
Transmission Engineering, IEEE Press, 1999.) 
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C H A P T E R 13 

Hypothesis Testing 

INTRODUCTION 

The topic of hypothesis testing arises in many contexts in signal processing and 
communications, as well as in medicine, statistics and other settings in which a 
choice among multiple options or hypotheses is made on the basis of limited and 
noisy data. For example, from tests on such data, we may need to determine: 
whether a person does or doesn’t have a particular disease; whether or not a par
ticular radar return indicates the presence of an aircraft; which of four values was 
transmitted at a given time in a PAM system; and so on. 

Hypothesis testing provides a framework for selecting among M possible choices or 
hypotheses in some principled or optimal way. In our discussion we will initially 
focus on M = 2, i.e., on binary hypothesis testing, to illustrate the key concepts. 
Though Section 13.1 introduces the discussion in the context of binary pulse am
plitude modulation in noise, the presentation and results in Section 13.2 apply to 
the general problem of binary hypothesis testing. In Sections 13.3 and 13.4 we 
explicitly treat the case of more than two hypotheses. 

13.1 BINARY PULSE AMPLITUDE MODULATION IN NOISE 

In Chapter 12 we introduced the basic principles of pulse amplitude modulation, 
and considered the effects of pulse rate, pulse shape, and channel and receiver 
filtering in PAM systems. We also developed and discussed the condition for no 
inter-symbol interference (the no-ISI condition). Under the assumption of no ISI, 
we want to now examine the effect of noise in the channel. Toward this end, we 
again consider the overall PAM model in Figure 13.1, with the channel noise v(t) 
represented as an additive term. 

For now we will assume no post-filtering at the receiver, i.e., assume f(t) = δ(t). 
In Chapter 14 we will see how performance is improved with the use of filtering in 
the receiver. The basic pulse p(t) going through the channel with impulse response 
h(t) produces a signal at the channel output that we represent by s(t) = p(t) ∗ h(t). 
Figure 13.1 thus reduces to the overall system shown in Figure 13.2. 

Since we are assuming no ISI, we can carry out our discussion for just a single pulse 
index n, which we will choose as n = 0 for convenience. We therefore focus, in the 
system of Figure 13.2, on 

b[0] = r(0) = a[0]s(0) + v(0) . (13.1) 
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x(t) = � h(t)∑ 
a[n]p(t − nT ) 

�+ f(t) 

Channel 

Noise v(t) 

� � Samples b(nT )� �
r(t) b(t) 

Filtering Sample every T 

FIGURE 13.1 Overall model of a PAM system. 

v(t) 
∑ 

a[n]s(t − nT ) 
� �⊕ 

� �r(t) � b[n] = r(nT ) 

Sample every T 

FIGURE 13.2 Simplified representation of a PAM system. 

Writing r(0), a[0] and v(0) simply as r, a and v respectively, and setting s(0) = 1 
without loss of generality, the relation of interest to us is 

r = a + v . (13.2) 

Our broad objective is to determine the value of a as well as possible, given the 
measured value r. There are several variations of this problem, depending on the 
nature of the transmitted sequence a[n] and the characteristics of the noise. The 
amplitude a[n] may span a continuous range or it may be discrete (e.g., binary). 
The amplitude may correspondingly be modeled as a random variable A with a 
known PDF or PMF; then a is the specific value that A takes in a particular 
outcome or instance of the probabilistic model. The contribution of the noise also 
is typically represented as a random variable V , usually continuous, with v being 
the specific value that it takes. We may thus model the quantity r at the receiver 
as the observation of a random variable R, with 

R = A + V , (13.3) 

and we want to estimate the value that the random variable A takes, given that 
R = r. Consequently, we need to add a further processing step to our receiver, in 
which an estimate of A is obtained. 

In the case where the pulse amplitude can be only one of two values, i.e., in the 
case of binary signaling, finding an estimate of A reduces to deciding, on the basis 
of the observed value r of R, which of the two possible amplitudes was transmitted. 
Two common forms of binary signaling in PAM systems are on/off signaling and 
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antipodal signaling. Letting a1 and a0 denote the two possible amplitudes (repre
senting for example a binary “one” or “zero”), in on/off signaling we have a0 = 0, 

= 0, whereas in antipodal signaling a0 = 0. a1 6 = −a1 6
Thus, in binary signaling, the required post-processing corresponds to deciding be
tween two alternatives or hypotheses, where the available information may include 
some prior information along with a measurement r of the single continuous random 
variable R. (The extension to multiple hypotheses and multiple measurements will 
be straightforward once the two-hypothesis case is understood.) The hypotheses 
are listed below: 

Hypothesis H0: the transmitted amplitude A takes the value a0, so R = a0 + V . 

Hypothesis H1: the transmitted amplitude A takes the value a1, so R = a1 + V . 

Our task now is to decide, given the measurement R = r, whether H0 or H1 is 
responsible for the measurement. The next section develops a framework for this 
sort of hypothesis testing task. 

13.2 BINARY HYPOTHESIS TESTING 

Our general binary hypothesis testing task is to decide, on the basis of a mea
surement r of a random variable R, which of two hypotheses — H0 or H1 — is 
responsible for the measurement. We shall indicate these decisions by ‘H0’ and ‘H1 ’ 
respectively (where the quotation marks are intended to suggest the announcement 
of a decision). An alternative notation is Ĥ = H0 and Ĥ = H1 respectively, where 
Ĥ denotes our estimate of, or decision on, the hypothesis H. 

Suppose H is modeled as a random quantity, and assume we know the a priori (i.e., 
prior) probabilities 

P (H0 is true) = P (H = H0) = P (H0) = p0 (13.4) 

and 
P (H1 is true) = P (H = H1) = P (H1) = p1 (13.5) 

(where the last two equalities in each case simply define streamlined notation that 
we will be using). We shall also require the conditional densities fR|H (r|H0) and 
fR|H (r|H1) that tell us how the measured variable is distributed under the two 
respective hypotheses. These conditional densities in effect constitute the relevant 
specifications of how the measured data relates to the two hypotheses. For example, 
in the PAM setting, with R defined as in (13.3) and assuming V is independent of 
A under each hypothesis, these conditional densities are simply 

fR|H (r|H0) = fV (r − a0) and fR|H (r|H1) = fV (r − a1) . (13.6) 

It is natural in many settings, as in the case of digital communication by PAM, to 
want to minimize the probability of picking the wrong hypothesis, i.e., to choose 
with minimum probability of error between the hypotheses, given the measurement 
R = r. We will, for most of our discussion of hypothesis testing, focus on this 
criterion of minimum probability of error. 
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13.2.1 Deciding with Minimum Probability of Error: The MAP Rule 

Consider first how one would choose between H0 and H1 with minimum probability 
of error in the absence of any measurement of R. If we make the choice ‘H0’, then 
we make an error precisely when H0 does not hold, so the probability of error 
with this choice is 1 − P (H0) = 1 − p0. Similarly, if we chose ‘H1’, then the 
probability of error is 1 − P (H1) = 1 − p1 = p0. Thus, for minimum probability of 
error, we should decide in favor of whichever hypothesis has maximum probability 
— an intuitively reasonable conclusion. (The preceding reasoning extends in the 
same way to choosing one from among many hypotheses, and leads to the same 
conclusion.) 

What changes when we aim to choose between H0 and H1 with minimum probabil
ity of error, knowing that R = r? The same reasoning applies as in the preceding 
paragraph, except that all probabilities now need to be conditioned on the mea
surement R = r. We conclude that to minimize the conditional probability of 
error, P (error R = r), we need to decide in favor of whichever hypothesis has |
maximum conditional probability, conditioned on the measurement R = r. (If 
there were several random variables for which we had measurements, rather than 
just the single random variable R, we would simply condition on all the available 
measurements.) Thus, if P (H1 R = r) > P (H0 R = r), we decide ‘H1’, and if | |
P (H1 R = r) < P (H0 R = r), we decide ‘H0’. This may be compactly written as | |

‘H1 ’ 
> 

P (H1 R = r) P (H0 R = r) . (13.7) |
< 

|
‘H0 ’ 

(If the two conditional probabilities happen to be equal, we get the same conditional 
probability of error whether we choose ‘H0’ or ‘H1’.) The corresponding conditional 
probability of error is 

P (error|R = r) = min{1 − P (H0|R = r), 1 − P (H1|R = r)} . (13.8) 

The overall probability of error, Pe, associated with the use of the above decision 
rule (but before knowing what specific value of R is measured) is obtained by 
averaging the conditional probability of error in (13.8) over all possible values of r 
that might be measured, using the PDF fR(r) as a weighting function. We shall 
study Pe in more detail shortly. 

The conditional probabilities P (H0 R = r) and P (H1 R = r) that appear in the | |
expression (13.7) are referred to as the a posteriori or posterior probabilities of the 
hypotheses, to distinguish them from the a priori or prior probabilities, P (H0) and 
P (H1). The decision rule in (13.7) is accordingly referred to as the maximum a 
posteriori probability rule, usually abbreviated as the “MAP” rule. 

To actually evaluate the posterior probabilities in (13.7), we use Bayes’ rule to 
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rewrite them in terms of known quantities, so the decision rule becomes 

‘H1 ’ 
p1fR|H (r H1) > p0fR|H (r H0)|

< 
|

, (13.9) 
fR(r) fR(r) 

‘H0 ’ 

under the reasonable assumption that fR(r) > 0, i.e., that the PDF of R is positive 
at the value r that was actually measured. (In any case, we only need to specify our 
decision rule at values of r for which fR(r) > 0, because the choices made at other 
values of r do not affect the overall probability of error, Pe.) Since the denominator 
is the same and positive on both sides of the above expression, we may further 
simplify it to 

‘H1 ’ 
> 

p1fR|H (r|H1) <
p0fR|H (r|H0) . (13.10) 

‘H0 ’ 

This now provides us with an easily visualized and implemented decision rule. We 
first use the prior probabilities pi = P (Hi) to scale the PDFs fR|H (r|Hi) that 
describe how the measured quantity R is distributed under each of the hypotheses. 
We then decide in favor of the hypothesis associated with whichever scaled PDF is 
largest at the measured value r. (The preceding description also applies to choosing 
with minimum probability of error among multiple hypotheses, rather than just two, 
and given measurements of several associated random variables, rather than just 
one — the reasoning is identical.) 

13.2.2 Understanding Pe: False Alarm, Miss and Detection 

The sample space that is relevant to evaluating a decision rule consists of the 
following four mutually exclusive and collectively exhaustive possibilities: Hi is 
true and we declare ‘Hj ’, i, j = 1, 2. Of the four possible outcomes, the two that 
represent errors are (H0, ‘H1’) and (H1, ‘H0’). Therefore, the probability of error 
Pe — averaged over all possible values of the measured random variable — is given 
by 

Pe = P (H0, ‘H1’) + P (H1, ‘H0’) 

= p0P (‘H1 ’|H0) + p1P (‘H0 ’|H1) . (13.11) 

The conditional probability P (‘H1 ’ H0) is referred to as the conditional probability |
of a false alarm, and denoted by PFA. The conditional probability P (‘H0 ’ H1)|
is referred to as the conditional probability of a miss, and denoted by PM . The 
word “conditional” is usually omitted from these terms in normal use, but it is 
important to keep in mind that the probability of a false alarm and the probability 
of a miss are defined as conditional probabilities, and are furthermore conditioned 
on different events. 

The preceding terminology is historically motivated by the radar context, in which 
H1 represents the presence of a target and H0 the absence of a target. A false 
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alarm then occurs if you declare that a target is present when it actually isn’t, and 
a miss occurs if you declare that a target is absent when it actually isn’t. We will 
also make reference to the conditional probability of detection, 

PD = P (‘H1 ’|H1) . (13.12) 

In the radar context, this is the probability of declaring a target is present when it 
is actually present. As with PFA and PM , the word “conditional” is usually omitted 
in normal use, but it is important to keep in mind that the probability of detection 
is a conditional probability. 

Expressing the probability of error in terms of PFA and PM , (13.11) becomes 

Pe = p0PFA + p1PM . (13.13) 

Also note that 
P (‘H0 ’ H1) + P (‘H1 ’ H1) = 1 (13.14) | |

or 
PM = 1 − PD . (13.15) 

To explicitly relate PFA and PM to whatever the corresponding decision rule is, it 
is helpful to introduce the notion of a decision region in measurement space. In 
the case of a decision rule based on measurement of a single random variable R, 
specifying the decision rule corresponds to choosing a range of values D1 on the 
real line such that, when the measured value r of R falls in D1, we declare ‘H1’, and 
when r falls outside D1 — a region that we shall denote by D0 — then we declare 
‘H0’. This is illustrated in Figure 13.3, for some arbitrary choice of D1. (There is 
a direct generalization of this notion to the case where multiple random variables 
are measured.) 

D 

r 

f(r|H f(r|H 

1 

1) 0 ) 

FIGURE 13.3 Decision regions. The choice of D1 marked here is arbitrary, not the 
optimal choice for minimum probability of error. 

With the preceding definitions, we can write 

PFA = fR|H (r|H0)dr (13.16) 
D1 
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and 

PM = 
∫ 

D0 

fR|H (r|H1)dr . (13.17) 

13.2.3 The Likelihood Ratio Test 

Rewriting (13.10), we can state the minimum-Pe decision rule in the form 

Λ(r) = 
fR|H (r|H1) 

fR|H (r|H0) 

‘H1 ’ 
> 
< 

‘H0 ’ 

p0 

p1 
(13.18) 

or

‘H1 ’

>


Λ(r) η ,	 (13.19) 
< 

‘H0 ’ 

where Λ(r) is referred to as the likelihood ratio, and η is referred to as the thresh
old. This particular way of writing our decision rule is of interest because other 
formulations of the binary hypothesis testing problem — with criteria other than 
minimization of Pe — also often lead to a decision rule that involves comparing 
the likelihood ratio with a threshold. The only difference is that the threshold is 
picked differently in these other formulations. We describe two of these alternate 
formulations — the Neyman-Pearson approach, and minimum risk decisions — in 
later sections of this chapter. 

13.2.4 Other Scenarios 

While the above discussion of binary hypothesis testing was introduced in the con
text of binary PAM, it applies in many other scenarios. For example, in the medical 
literature, clinical tests are described using a hypothesis testing framework simi
lar to that used here for communication and signal detection problems, with H0 

generally denoting the absence of a medical condition and H1 its presence. The 
terminology in the medical context is slightly different, but still suggestive of the 
intent, as the following examples show: 

•	 PD is the sensitivity of the clinical test. 

•	 P (‘H1 ’|H0) is the probability of a false positive (rather than of a false alarm). 

•	 1 − PFA is the specificity of the test. 

•	 P (H1) is the prevalence of the condition that the test is aimed at. 

•	 P (H1 |‘H1’) is the positive predictive value of the test, and P (H0 | ‘H0’) is the 
negative predictive value. 
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Some easy exploration using Bayes’ rule and the above terminology will lead you to 
recognize how small the positive predictive value of a test can be if the prevalence 
of the targeted medical condition is low, even if the test is highly sensitive and 
specific. 

Another important context for binary hypothesis testing is in target detection, such 
as aircraft detection and tracking, in which a radar pulse is transmitted and the 
decision on the presence or absence of an aircraft is based on the presence or absence 
of reflected energy. 

13.2.5 Neyman-Pearson Detection and Receiver Operating Characteristics 

A difficulty with using the minimization of Pe as the decision criterion in many of 
these other contexts is that it relies heavily on knowing the a priori probabilities 
p0 and p1, and in many situations there is little basis for coming up with these 
numbers. One alternative that often makes sense is to maximize the probability 
of detection PD, while keeping PFA below some specified tolerable level. These 
conditional probabilities are determined by the measurement models under the 
different hypotheses, and by the decision rule, but not by the probabilities governing 
the selection of hypotheses. Such a formulation of the hypothesis testing problem 
again leads to a decision rule that involves comparing the likelihood ratio with a 
threshold; the only difference now is that the threshold is picked differently in this 
formulation. This approach is referred to as Neyman-Pearson detection, and is 
elaborated on below. 

Consider a context in which we want to maximize the probability of detection, 

PD = P (‘H1 ’|H1) = 
D1 

fR|H (r|H1)dr , (13.20) 

while keeping the probability of false alarm, 

PFA = P (‘H1 ’|H0) = 
D1 

fR|H (r|H0)dr , (13.21) 

below a pre-specified level. (Both integrals are over the decision region D1, and 
augmenting D1 by adding more of the real axis to it will not decrease either prob
ability.) As we show shortly, we can achieve our objective by picking the decision 
region D1 to comprise those values of r for which the likelihood ratio Λ(r) exceeds 
a certain threshold η, so 

‘H1 ’ 

Λ(r) = 
fR|H (r|H1) > 

η . (13.22) 
fR|H (r|H0)

‘H
< 

0 ’ 

The threshold η is picked to provide the largest possible PD while ensuring that 
PFA is not larger than the pre-specified level. The smaller the η, the larger the 
decision region D1 and the value of PD become, but the larger PFA grows as well, 
so one would pick the smallest η that is consistent with the given bound on PFA. 
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To understand why the decision rule in this setting takes the form of (13.22), note 
that our objective is to include in D1 values of r that contribute as much as possible 
to the integral that defines PD, and as little as possible to the integral that defines 
PFA. If we start with a high value of the threshold η, we will be including in 
D1 those r for which Λ(r) is large, and therefore where the contribution to PD is 
relatively large compared to the contribution to PFA. Moving η lower, we increase 
both PD and PFA, but the rate of increase of PD drops, while the rate of increase of 
PFA rises. These increases in PD and PFA may not be continuous in η. (Reducing η 
from infinitesimally above some value η to infinitesimally below this value will give 
rise to a finite upward jump in both PD and PFA if fR|H (r|H1) = η fR|H (r|H0) 
throughout some interval of r where both these PDFs are positive.) Typically, 
though, the variation of PD and PFA with η is indeed continuous, so as η is lowered 
we reach a point where the specified bound on PFA is attained, or PD = 1 is 
reached. This is the value of η used in the Neyman-Pearson test. (In the rare 
situation where PFA jumps discontinuously from a value below its tolerable level 
to one above its tolerable level as η is lowered through some value η, it turns out 
that a randomized decision rule allows one to come right up to the tolerable PFA 

level, and ! thereby maximize PD. A case like this is explored in a problem at the 
end of this chapter.) 

The following argument shows in a little more detail, though still informally, why 
the Neyman-Pearson criterion is equivalent to a likeliood ratio test. If the decision 
region D1 is optimal for the Neyman-Pearson criterion, then any change in D1 that 
keeps PFA the same cannot lead to an improvement in PD. So suppose we take a 
infinitesimal segment of width dr at a point r in the optimal D1 region and convert 
it to be part of D0. In order to keep PFA unchanged, we must correspondingly 
take an infinitesimal segment of width dr′ at an arbitrary point r′ in the optimal 
D0 region, and convert it to be a part of D1. 

D 

r 

f(r|H f(r|H 

1 

1) 0 ) 

dr dr’ 

FIGURE 13.4 Illustrating the construction used in deriving the likelihood ratio test 
for the Neyman-Pearson criterion. 

The requirement that PFA be unchanged then imposes the condition 

fR|H (r ′ |H0) dr′ = fR|H (r|H0) dr , (13.23) 
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while the requirement that the new PD not be larger than the old implies that 

fR|H (r ′ |H1) dr′ ≤ fR|H (r|H1) dr . (13.24) 

Combining (13.23) and (13.24), we find 

Λ(r ′) ≤ Λ(r) . (13.25) 

What (13.25) shows is that the likelihood ratio cannot be less inside D1 than it is in 
D0. We can therefore conclude that the optimum solution to the Neyman-Pearson 
formulation is in fact based on a threshold test on the likelihood ratio: 

‘H1 ’ 

Λ(r) = 
fR|H (r|H1) 

fR|H (r|H0) 
> 
< 

‘H0 ’ 

η , (13.26) 

where the threshold η is picked to obtain the largest possible PD while ensuring 
that PFA is not larger than the pre-specified bound. 

The above derivation has made various implicit assumptions. However, our purpose 
is only to convey the essence of how one arrives at a likelihood ratio test in this 
case. 

Receiver Operating Characteristic. In considering which value of PFA to 
choose as a bound in the Neyman-Pearson test, it is often useful to look at a curve 
of PD versus PFA as the parameter η is varied. This is referred to as the Receiver 
Operating Characteristic (ROC). More generally, such an ROC can be defined 
for any decision rule that causes PD to be uniquely fixed, once PFA is specified. 
The ROC can be used to identify whether, for instance, modifying the variable 
parameters in a given test to permit a slightly higher PFA results in a significantly 
higher PD. The ROC can also be used to compare different tests. 

EXAMPLE 13.1 Detection and ROC for Signal in Gaussian Noise 

Consider a scenario in which a radar pulse is emitted from a ground station. If 
an aircraft is located in the propagation path, a reflected pulse will travel back 
towards the radar station. We assume that the received signal will then consist of 
noise alone if no aircraft is present, and noise plus the reflected pulse if an aircraft 
is present. The processing of the received signal results in a number that we model 
as the realization of a random variable R. If an aircraft is not present, then R = W , 
where W is a random variable denoting the result of processing just the noise. If 
an aircraft is present, then R = s + W , where the constant s is due to processing 
of the reflected pulse, and is assumed here to be a known value. We thus have the 
following two hypotheses: 

H0 : R = W (13.27) 

H1 : R = s + W . (13.28) 
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Assume that the additive noise term W is Gaussian with zero mean and unit vari
ance, i.e., 

2

fW (w) = √1

2π
e−w /2 . (13.29) 

Consequently, 

1 
fR|H (r|H0) = √

2π
e−r 2/2 (13.30) 

fR|H (r|H1) = √1

2π
e−(r−s)2/2 . (13.31) 

The likelihood ratio as defined in (13.18) is then 

[ (r − s)2 r2 ]
Λ(r) = exp +− 

2 2 
[ s2 ]

= exp sr − . (13.32) 
2 

For detection with minimum probability of error, the decision rule corresponds to 
evaluating this likelihood ratio at the received value r, and comparing the result 
against the threshold p0/p1, as stated in (13.18): 

‘H1 ’ 
> 

exp sr −
[ s2 ] 

η = 
p0 

(13.33) 
2 < p1 

‘H0 ’ 

It is interesting and important to note that, for this case, the threshold test on 
the likelihood ratio can be rewritten as a threshold test on the received value r. 
Specifically, (13.33) can equivalently be expressed as 

‘H1 ’ 
>s2 ]

[sr − ln η , (13.34) 
2 < 

‘H0 ’ 

or, if s > 0, 
‘H1 ’ 
> 1[ s2 ] 

r + ln η = γ , (13.35) 
< s 2 

‘H0 ’ 

where γ denotes the threshold on r. (If s < 0, the inequalities in (13.35) are 
simply reversed.) For example, if both hypotheses are equally likely a priori, so 
that p0 = p1, then ln η = 0 and the decision rule for minimum probability of error 
when s > 0 is simply 

‘H1 ’ 
> s 

r = γ . (13.36) 
< 2 

‘H0 ’ 

©Alan V. Oppenheim and George C. Verghese, 2010 c



238 Chapter 13 Hypothesis Testing 

FIGURE 13.5 Threshold γ on measured value r. 

The situation is represented in Figure 13.5.


The receiver operating characteristic displays PD versus PFA as η is varied, and is

sketched in Figure 13.6.


r 
sγ 

f(r|H f(r|H0 ) 1) 

PD 1.0 

.5 

0.0 

0.0 .5 1.0 PFA 

FIGURE 13.6 Receiver operating characteristic. 

In a more general setting than the Gaussian case in Example 13.1, a threshold 
test on the likelihood ratio would not simply translate to a threshold test on the 
measurement r. Nevertheless, we could still decide to use a simple threshold test 
on r as our decision rule, and then generate and evaluate the associated receiver 
operating characteristic. 

13.3 MINIMUM RISK DECISIONS 

This section briefly describes a decision criterion, called minimum risk, that includes 
minimum probability of error as a special case, and that in the binary case again 
leads to a likelihood ratio test. We describe it for the general case of M hypotheses. 

Let the available measurement be the value r of the random variable R (the same 
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development holds if we have measurements of several random variables). Suppose 
we associate a cost cij with each combination of model Hj and decision ‘Hi ’ for 
0 ≤ i, j ≤ M − 1, reflecting the costs of actions and consequences that follow from 
this combination of model and decision. Our objective now is to pick whichever 
decision has minimum expected cost, or minimum “risk”, given the measurement. 

The expected cost of deciding ‘Hi’, conditioned on R = r, is given by 

M−1 M−1

E[Cost R = r, ‘Hi’] = 
∑ 

cij P (Hj R = r, ‘Hi’) = 
∑ 

cij P (Hj R = r) , (13.37) |
j=0 

|
j=0 

|

where the last equality is a consequence of the fact that, given the received mea
surement R = r, the output of the decision rule conveys no additional information 
about which hypothesis actually holds. The next step is to compare these condi
tional expected costs for all i, and decide in favor of the hypothesis with minimum 
conditional expected cost. Specifying our decision for each possible r, we obtain 
the decision rule that minimizes the overall expected cost or risk. 

[It is in this setting that hypothesis testing comes closest to the estimation problems 
for continuous random variables that we considered in our chapter on minimum 
mean-square-error estimation. We noted there that a variety of such estimation 
problems can be formulated in terms of minimizing an expected cost function. 
Establishing an estimate for a random variable is like carrying out a hypothesis test 
for a continuum of numerically specified hypotheses (rather than just M general 
hypotheses), with a cost function that penalizes some measure of the numerical 
distance between the actual hypothesis and the one we decide on.] 

Note that if cii = 0 for all i and if cij = 1 for j = i, so we penalize all errors equally, 
then the conditional expected cost in (13.37) becomes 

E[Cost R = r, ‘Hi’] = 
∑ 

P (Hj r) = 1 − P (Hi r) . (13.38) |
j=i 

| |

This conditional expected cost is thus precisely the conditional probability of error 
associated with deciding ‘Hi’, conditioned on R = r. The right side of the equation 
then shows that to minimize this conditional probability of error we should decide 
in favor of the hypothesis with largest conditional probability. In other words, 
with this choice of costs, the risk (when the expectation is taken over all possible 
values of r) is exactly the probability of error Pe, and the optimum decision rule 
for minimizing this criterion is again seen to be the MAP rule. 

Using Bayes’ rule in (13.37) and noting that fR(r) — assumed positive — is common 
to all the quantities involved in our comparison, we see that an equivalent but more 
directly implementable procedure is to pick the hypothesis for which 

M−1∑ 
cij f(r|Hj )P (Hj ) (13.39) 

j=0 

is minimum. In the case of two hypotheses, and assuming c01 > c11, it is easy to 
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see that the decision rule based on (13.39) can be rewritten as 

‘H1 ’ 

Λ(r) = 
f(r|H1) > P (H0)(c10 − c00)

= η , (13.40) 
f(r|H0)

‘H
< 

0 ’ 
P (H1)(c01 − c11) 

where Λ(r) denotes the likelihood ratio, and η is the threshold. We have therefore 
again arrived at a decision rule that involves comparing a likelihood ratio with a 
threshold. If cii = 0 for i = 0, 1 and if cij = 1 for j = i, then we obtain the 
threshold associated with the MAP decision rule for minimum Pe, as expected. 

The trouble with the above minimum risk approach to classification, and with the 
minimum error probability formulation that we have examined a few times already, 
is the requirement that the prior probabilities P (Hi) be known. 

It is often unrealistic to assume that prior probabilities are known, so we are led 
to consider alternative criteria. Most important among these alternatives is the 
Neyman-Pearson approach treated earlier, where the decision is based on the con
ditional probabilities PD and PFA, thereby avoiding the need for prior probabilities 
on the hypotheses. 

13.4 HYPOTHESIS TESTING IN CODED DIGITAL COMMUNICATION 

In our discussion of PAM earlier in this chapter, we considered binary hypothesis 
testing on a single received pulse. In modern communication systems, an alphabet 
of symbols may be transmitted, with each symbol encoded into a binary sequence 
of “ones” and “zeroes”. Consequently, in addition to making a binary decision on 
each received pulse, we may need to further decode a string of bits to make our best 
judgement of the transmitted symbol, and perhaps yet further processing to decide 
on the sequence of symbols that constitutes the entire message. It would in principle 
be better to take all the raw measurements and then make optimal decisions about 
the entire sequence of symbols that was transmitted, but this would be a hugely 
more complex task. In practice, therefore, the task is commonly broken down into 
three stages, as here, with locally optimal decisions made at the single-pulse level 
to decode sequences of “ones” and “zeros”, then further decisions made to decode 
at the symbol level, and still further decisions made at the symbol sequence level. 
In this section we illustrate the second of these decoding stages. 

For concreteness, we center our discussion on the system in Figure 13.7. Suppose 
the transmitter randomly selects for transmission one of four possible symbols, 
which we label A, B, C and D. The probabilities with which these are selected 
will be denoted by P (A), P (B), P (C) and P (D) respectively. Whatever symbol 
the transmitter selects is now coded appropriately for transmission over the binary 
channel. The coding adds some redundancy to provide a basis for error correction 
at the receiver, in order to combat errors introduced by channel noise that may 
corrupt the individual bits. The resulting signal is then sent to the receiver. After 
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FIGURE 13.7 Communication over a binary channel.


the receiver decodes the received pulses, attempting to correct for channel noise in 
the process, it has to arrive at a decision as to which symbol was transmitted. 

A natural criterion for measuring the performance of the receiver, with whatever 
decision process or decision rule it applies, is again the probability of error, Pe. It 
is natural, in a communications setting, to want minimum probability of error, and 
this is the criterion we adopt. 

In the development below, rather than simply invoking the MAP rule we derived 
earlier, we repeat in this higher-level setting the line of reasoning that led to the 
MAP rule. We do this partly because there are some differences from what we 
considered earlier: we now have multiple hypotheses (four in our example), not just 
a pair of hypotheses; and the measured quantity is a discrete random symbol (more 
exactly, the received and possibly noise corrupted binary code for a transmitted 
symbol), rather than a continuous random variable. However, it will be clear that 
the problem here is not fundamentally different or harder. 

13.4.1 Optimal a priori Decision 

Consider, first of all, what the minimum-probability-of-error decision rule would be 
for the receiver if the channel was down, i.e., if the receiver had to decide on the 
transmitted signal without the benefit of any received signal, using only on a priori 
information. If the receiver guesses that the transmitter selected the symbol A, then 
the receiver is correct if A was indeed the transmitted symbol, and the receiver has 
made an error if A was not the transmitted symbol. Hence the receiver’s probability 
of error with this choice is 1−P (A). Similar reasoning applies for the other symbols. 
So the minimum-probability-of-error decision rule for the receiver is to decide in 
favor of whichever symbol has maximum probability. This seems quite obvious for 
this simple case, and the general case (i.e., with the channel functioning) is not 
really any harder. We turn now to this general case, where the receiver actually 
receives the result of sending the transmitted signal through the noisy channel. 
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13.4.2 The Transmission Model 

Let us model the channel as a binary channel, which accepts 1’s and 0’s from the 
transmitter, and delivers 1’s and 0’s to the receiver. Suppose that because of the 
noise in the channel there is a probability p > 0 that a transmitted 1 is received as 
a 0, and that a transmitted 0 is received as a 1. Because the probability is the same 
for both types of errors, this binary channel is called symmetric (we could treat 
the non-symmetric case as easily, apart from some increased notational burden). 
Implicit in our definition of this channel is the assumption that it is memoryless, 
i.e., its characteristics during any particular transmission slot are independent of 
what has been transmitted in other time slots. The channel is also assumed time-
invariant, i.e., its characteristics do not vary with time. 

Given such a channel, the transmitter needs to code the selected symbol into binary 
form. Suppose the transmitter uses 3 bits to code each symbol, as follows: 

A : 000 , B : 011 , C : 101 , D : 110 . (13.41) 

Because of the finite probability of bit-errors introduced by the channel, the received 
sequence for any of these transmissions could be any 3-bit binary number: 

R0 = 000 , R1 = 001 , R2 = 010 , R3 = 011 , 

R4 = 100 , R5 = 101 , R6 = 110 , R7 = 111 . (13.42) 

The redundancy introduced by using 3 bits — rather than the 2 bits that would 
suffice to communicate our set of four symbols — is intended to provide some 
protection against channel noise. Notice that with our particular 3-bits/symbol 
code, a single bit-error would be recognized at the receiver as an error, because it 
would result in an invalid codeword. It takes two bit-errors (which are rarer than 
single bit-errors) to convert any valid codeword into another valid one, and thereby 
elude recognition of the error by the receiver. 

There are now various probabilities that it might potentially be of interest to eval
uate, such as: 

•	 P (R1 | D), the probability that R1 is received, given that D was sent; 

•	 P (D | R1), the probability that D was sent, given that R1 was received — 
this is the a posteriori probability of D, in contrast to P (D), which is the a 
priori probability of D; 

•	 P (D,R1), the probability that D is sent and R1 is received; 

•	 P (R1), the probability that R1 is received. 

The sample space of our probabilistic experiment can be described by Table 13.1, 
which contains an entry corresponding to every possible combination of transmit
ted symbol and received sequence. In the jth row of column A, we enter the 
probability P (A,Rj ) that A was transmitted and Rj received, and similarly for 
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columns B, C, and D. The simplest way to actually compute this probability is 
by recognizing that P (A,Rj ) = P (Rj A)P (A); the characterization of the chan|
nel permits computation of P (Rj A), while the characterization of the information |
source at the transmitter yields the prior probability P (A). Note that we can also 
write P (A,Rj ) = P (A Rj )P (Rj ). Examples of these three ways of writing the |
probabilities of the outcomes of our experiment are shown in the table. 

13.4.3 Optimal a posteriori Decision 

We now want to design the decision rule for the receiver, i.e., the rule by which 
it decides or hypothesizes what symbol was transmitted, after the reception of a 
particular sequence. We would like to do this in such a way that the probability of 
error, Pe, is minimized. 

Since a decision rule in our example selects one of the four possible symbols (or 
hypotheses), namely A, B, C, or D, for each possible Rj , it can be represented 
in Table 13.1 by selecting one (and only one) entry in each row; we shall mark 
the selected entry by a box. For instance, a particular decision rule may declare 
D to be the transmitted signal whenever it receives R4; this is indicated on the 
table by putting a box around the entry in row R4, column D, as shown. Each 
possible decision rule is therefore associated with a table of the preceding form, 
with precisely one entry boxed in each row. 

Now, for a given decision rule, the probability of being correct is the sum of the 
probabilities in all the boxed entries, because this sum gives the total probability 
that the decision rule declares in favor of the same symbol that was transmitted. 
The probability of error, Pe, is therefore 1 minus the probability of being correct. 

It follows that to specify the decision rule for minimum probability of error or 
maximum probability of being correct, we must pick in each row the box that has 
the maximum entry. (If more than one entry has the maximum value, we are free 
to pick one of these arbitrarily — Pe is not affected by which of these we pick.) For 
row Rj in Table 13.1, we should pick for the optimum decision rule the symbol for 
which we maximize 

P (symbol, Rj ) = P (Rj symbol)P (symbol) | 
= P (symbol Rj )P (Rj ) . (13.43) |

Table 13.2 displays some examples of the required computation in a particular nu
merical case. The computation in this example is carried out according to the 
prescription on the right side in the first of the above pair of equations. As noted 
earlier, this is generally the form that yields the most direct computation in prac
tice, because the characterization of the channel usually permits direct computation 
of P (Rj symbol), while the characterization of the information source at the trans|
mitter yields the prior probabilities P (symbol). 

The right side of the second equation in (13.43) permits a nice, intuitive interpre
tation of what the optimum decision rule does. Since our comparison is being done 
across the row, for a given Rj the term P (Rj ) in the second equation stays the 
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A : 000 B : 011 C : 101 D : 110 

P (A, R0) P (B, R0) P (C, R0) P (D, R0) 
R0 = 000 = P (R0|B)P (B) = P (C|R0)P (R0) 

= p2(1 − p)P (B) 

R1 = 001 

R2 = 010 

R3 = 011 

R4 = 100 P (A, R4) P (B, R4) P (C, R4) P (D, R4) 

R5 = 101 

R6 = 110 

R7 = 111 

TABLE 13.1 Each entry corresponds to a transmitted symbol and a received 
sequence. 
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same, so actually all that we need to compare are the a posteriori probabilities, 
P (symbol Rj ), i.e. the probabilities of the various symbols, given the data. The |
optimum decision rule therefore picks the symbol with the maximum a posteriori 
probability. This is again the MAP decision rule that we derived previously in the 
binary hypothesis case. To summarize the important result we have arrived at here, 
and which we shall encounter again in more elaborate hypothesis testing contexts: 

For minimum error probability Pe, decide in favor of the choice that has maximum a 
posteriori probability, i.e., the choice whose probability, conditioned on the available 
data, is maximum. 

Note that the only difference from the minimum-Pe a priori decision rule we arrived 
at earlier, for the case where the channel was down, is the computation now has 
to involve conditional or a posteriori probabilities — conditioned on the received 
information — rather than the a priori probabilities. The receiver still decides in 
favor of the most probable choice, but now incorporating (i.e., conditioning on) the 
received information. 
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TABLE 13.2 Designing the optimal decision rule, with P (A) = 2
1 , P (B) = 4

1 , 
P (C) = 8

1 
8
1 , p = 4

1 , P (D) = . The MAP rule chooses the symbol that maximizes 
the a posteriori probability, P (symbol data). | 
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Signal Detection 

14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING 

In Chapter 13 we considered hypothesis testing in the context of random variables. 
The detector resulting in the minimum probability of error corresponds to the MAP 
test as developed in section 13.2.1 or equivalently the likelihood ratio test in section 
13.2.3. 

In this chapter we extend those results to a class of detection problems that are 
central in radar, sonar and communications, involving measurements of signals over 
time. The generic signal detection problem that we consider corresponds to receiv
ing a signal r(t) over a noisy channel. r(t) either contains a known deterministic 
pulse s(t) or it does not contain the pulse. Thus our two hypotheses are 

H1 : r(t) = s(t) + w(t)


H0 : r(t) = w(t), (14.1)


where w(t) is a wide-sense stationary random process. One example of a scenario 
in which this problem arises is in binary communication using pulse amplitude 
modulation. In that context the presence or absence of the pulse s(t) represents 
the transmission of a “one” or a “zero”. As another example, radar and sonar 
systems are based on transmitting a pulse and detecting the presence or absence of 
an echo. 

In our treatment in this chapter we first consider the case in which the noise is 
white and carry out the formulation and analysis in discrete-time which avoids 
some of the subtler issues associated with continuous-time white noise. We also 
initially treat the case in which the noise is Gaussian. In Section 14.3.4 we extend 
the discussion to discrete-time Gaussian colored noise. In Section 14.3.2 we discuss 
the implications when the noise is not Gaussian and in Section 14.3.3 we discuss 
how the results generalize to the continuous-time case. 

14.2 OPTIMAL DETECTION IN WHITE GAUSSIAN NOISE 

In the signal detection task outlined above, our hypothesis test is no longer based 
on the measurement of a single (scalar) random variable R, but instead involves a 
collection of L (scalar) random variables R1, R2, . . . , RL. 

Specifically, we receive the (finite-length) DT signal r[n], n = 1, 2, , L, regarded · · · 
as the realization of a random process. More simply, the signal r[n] is modeled as 

c 247©Alan V. Oppenheim and George C. Verghese, 2010 



248 Chapter 14 Signal Detection 

the values taken by a set of random variables R[n]. Let H0 denote the hypothesis 
that the random waveform is only white Gaussian noise, i.e. 

H0 : R[n] = W [n] (14.2) 

where the W [n] for n = 1, 2, , L are independent, zero-mean, Gaussian random · · · 
variables, with variance σ2 . Similarly, let H1 denote the hypothesis that the wave
form R[n] is the sum of white Gaussian noise W [n] and a known, deterministic 
signal s[n], i.e. 

H1 : R[n] = s[n] + W [n] (14.3) 

where the W [n] are again distributed as above. Our task is to decide in favor of 
H0 or H1 on the basis of the measurements r[n]. 

The nature and derivation of the solutions to such decision problems are similar 
to those in Chapter 13, except that we now use posterior probabilities conditioned 
on the entire collection of measurements, i.e. P (Hi r[1], r[2], , r[L]) rather than | · · · 
P (Hi r). Similarly, we use compound (or joint) PDF’s, such as f(r[1], r[2], , r[L] Hi)| · · · |
instead of f(r Hi). The associated decision regions Di are now regions in an L|
dimensional space, rather than segments of the real line. 

For detection with minimum probability of error, we again use the MAP rule or 
equivalently compare the values of 

f(r[1], r[2], . . . , r[L] Hi) P (Hi) (14.4) | 

for i = 0, 1, and decide in favor of whichever hypothesis yields the maximum value 
of this expression, i.e. the form of equation (13.7) for the case of multiple measure
ments is 

‘H1 ’ 
> 

f(r[1], r[2], . . . , r[L] H1) P (H1) f(r[1], r[2], . . . , r[L] H0) P (H0) (14.5) | 
< 

| 
‘H0 ’ 

which also can easily be put into the form of equation (13.18) corresponding to the 
likelihood ratio test. 

With W [n] white and Gaussian, the conditional densities in (14.5) are easy to 
evaluate, and take the form 

L
1 

{ 
(r[n])2 } 

f(r[1], r[2], . . . , r[L] | H0) = 
(2πσ2)(L/2) 

∏ 
exp − 

2σ2 
n=1 

L

= 
1 

exp − 

{
∑ (r[n])2 

} 

(14.6) 
(2πσ2)(L/2) 2σ2 

n=1 

©Alan V. Oppenheim and George C. Verghese, 2010 c



} 

{
∑ 

} 

) ∑ 

∑ 

Section 14.2 Optimal Detection in White Gaussian Noise 249 

and 

{ 
(r[n] − s[n])2 

2σ2 

L

L

(2πσ2)(L/2) 

∏ 

=1 n

1 
f(r[1], r[2], . . . , r[L] H1) = | exp − 

(r[n] − s[n])2 

2σ2 

1 
(14.7) = 

(2πσ2)(L/2) 
exp − 

n=1 

The inequality in equation (14.5) (or any inequality in general) will, of course still 
hold if a nonlinear, strictly increasing function is applied to both sides. Because 
of the form of equations (14.6) and (14.7) it is particularly convenient to replace 
equation (14.5) by applying the natural logarithm to both sides of the inequality. 
The resulting inequality, in the case of (14.6) and (14.7), is: 

“H1 ” 
> 

( 
P (H0) 1 

g = 
L∑ 

=1 n

r[n]s[n] 
L

n=1 

s 2[n] (14.8) σ2 ln + 
< P (H1) 2 

“H ” 0 

∑ 

The sum on the left-hand side of Eq. (14.8) is referred to as the deterministic 
correlation between r[n] and s[n], which we denote as g. The second sum on the 
right-hand side is the energy in the deterministic signal s[n] which we denote by E . 
For convenience we denote the threshold represented by the entire right hand side 
of (14.8) as γ, i.e., equation (14.8) becomes 

“H1 ” 
> 

g γ (14.9a) 
< 

“H0 ” 

where γ = σ2 ln( 
P (H0)

) + 
E 

(14.9b) 
P (H1) 2 

If the Neyman-Pearson formulation is used, then the optimal decision rule is still 
of the form of equation (14.8), except that the right hand side of the inequality is 
determined by the specified bound on PFA. 

If hypothesis H0 is true, i.e. if the signal s[n] is absent, then r[n] on the left hand 
side of equation (14.8) will be Gaussian white noise only, i.e. g will be the random 
variable 

L

G = W [n]s[n] (14.10) 
n=1 

Since W [n] at each value of n is Gaussian, with zero mean and variance σ2, and 
since a weighted, linear combination of Gaussian random variables is also Gaussian, 

L
2[n] = σ2the random variable G is Gaussian with mean zero and variance σ2 s E . 

n=1 
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When the signal is actually present, i.e., when H1 holds, the random variable is 
the realisation of a Gaussian random variable with mean E and still with variance 
Eσ2 or standard deviation σ

√
E . The optimal test in (14.8) is therefore described 

by Figure 14.1 which is of course similar to that in Figure 13.5 : 

FIGURE 14.1 Optimal test for two hypotheses with equal variances and different 
means. 

Using the facts summarized in this figure, and given a detection threshold γ on the 
correlation (e.g. with γ picked equal to the right side of (14.8), or in some other 
way), we can compute PFA, PD, Pe, and other probabilities of interest. 

Figure 14.1 makes evident that the performance of the detection strategy is deter
mined entirely by the ratio E/(σ

√
E), or equivalently by the signal-to-noise ratio 

E/σ2, i.e. the ratio of the signal energy E to the noise variance σ2 . 

14.2.1 Matched Filtering 

Since the correlation sum in (14.8) constitutes a linear operation on the measured 
signal, we can consider computing the sum through the use of an LTI filter and the 
output sampled at an appropriate time to form the correlation sum g. Specifically, 
with h[n] as the impulse response and r[n] as the input, the output will be the 
convolution sum 

∞∑ 
r[k]h[n − k] (14.11) 

k=−∞ 

For r[n] = 0 except for 1 ≤ n ≤ L and with h[n] chosen as s[−n], the filter output at 
n = 0 is 

∑L
k=1 r[k]s[k] = g as required. In other words, we choose the filter impulse 

response to be a time-reversed version of the target signal for n = 1, 2, . . . , L, with 
h[n] = 0 elsewhere. This filter is said to be the matched filter for the target signal. 
The structure of the optimum detector for a finite-length signal in white Gaussian 
noise is therefore as shown below: 
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Matched Filter 

x[k] h[k] r =Σ x[k]s[k] > γ ’H1 ’ = s[-k] < 
Sample at ’H0 ’ 
time zero 

FIGURE 14.2 Optimum detector 

14.2.2 Signal Classification 

We can easily extend the previous two-hypothesis problem to the multiple hypoth
esis case, where Hi, i = 0, 1, ,M − 1 denotes the hypothesis that the signal R[n], · · · 
n = 1, 2, , L, is a noise-corrupted version of the ith deterministic signal si[n], · · · 
selected from a possible set of M deterministic signals: 

Hi : R[n] = si[n] + W [n] (14.12) 

with the W [n] denoting independent, zero-mean, Gaussian random variables with 
variance σ2 . This scenario arises, for example, in radar signature analysis. Different 
aircraft reflect a radar pulse differently, typically with a distinct signature that can 
be used to identify not only its presence, but the type of aircraft. In this case, each 
of the signals si[n] and correspondingly each hypothesis Hi would correspond to 
the presence of a particular type of aircraft. Thus, our task is to decide in favor 
of one of the hypotheses, given a set of measurements r[n] of R[n]. For minimum 
error probability, the required test involves comparison of the quantities 

L∑ 
r[n]si[n] − Ei 

+ σ2 ln P (Hi) (14.13) 
2 

n=1 

where Ei denotes the energy of the ith signal. The largest of the expressions in 
(14.13), for i = 0, 1, ,M − 1, determines which hypothesis is selected. If the · · · 
signals have equal energies and equal prior probabilities, then the above comparison 
reduces to deciding in favor of the signal with the highest deterministic correlation 

L∑ 
r[n]si[n] . (14.14) 

n=1 

14.3 A GENERAL DETECTOR STRUCTURE 

The matched filter developed in Section 14.2 extends to the case where we have an 
infinite number of measurements rather than just L measurements. As we will see in 
Section 14.3.4, it also extends to the case of colored noise. We shall, for simplicity, 
treat these extensions by assuming the general detector structure, shown in Figure 
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‘H1 ’ 
r[n] g[n] � n = 0 >� <� Processor � Threshold 

‘H0 ’ ↑ ↑ ↑ ↑ 

random random random decision 
process process variable 

FIGURE 14.3 A general detector structure. 

11.7, and determine an optimum choice of processor and of detection threshold for 
each scenario. 

We are assuming that the transmitter and receiver are synchronized, so that we 
test g[n] at a known (fixed) time, which we choose here as n = 0. The choice 
of 0 as the sampling instant is for convenience; any other instant may be picked, 
with a corresponding time-shift in the operation of the processor. Although the 
processor could in general be nonlinear, we shall assume the processing will be 
done with an LTI filter. Thus the system to be considered is shown in Figure 14.4; 
a corresponding system can be considered for continuous time. 

‘H1 ’ 
r[n] g[n] � n = 0 >� <� LTI, h[n] � Threshold 

‘H0 ’G 

FIGURE 14.4 Detector structure of Figure 14.3 with the processor as an LTI system. 

It can be shown formally, but is also intuitively reasonable, that scaling h[n] by a 
constant gain will not affect the overall performance of the detector if the threshold 
is correspondingly adjusted since a constant overall gain scales the signal and noise 
identically. 

For convenience, we normalize the gain of the LTI system so as to have 

+∞∑ 
h2[n] = 1 . (14.15) 

n=−∞ 

If r[n] is a Gaussian random process, then so is g[n], because it is obtained by linear 
processing of r[n], and therefore G is a Gaussian random variable in this case. 

14.3.1 Pulse Detection in White Noise 

To suggest the approach we consider a very simple choice of LTI processor, namely 
with h[n] = δ[n], so 

H1 : G = g[0] = s[0] + w[0] 

H0 : G = g[0] = w[0] . (14.16) 
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Also for convenience we assume that s[0] is positive. 

Thus, under each hypothesis, g[0] is Gaussian: 

2 

H1 : fG|H (g|H1) = N (s[0], σ2) = √
2

1 

πσ 
exp 

[ 

− 
(g − s[0])

] 

2σ2 

21 
[ 

g
] 

H0 : fG|H (g|H0) = √
2πσ 

exp − . (14.17) 
2σ2 

fG|H (g|H0) 

� 

fG|H (g|H1) 

� 

0 s[0] g 

FIGURE 14.5 PDF’s for the two hypotheses in Eq. (14.16). 

This is just the binary hypothesis testing problem on the random variable G treated 
in Section 13.2 and correspondingly the MAP rule for detection with minimum 
probability of error is given by 

‘H1 ’ 
>P (H1 G = g) < P (H0 G = g) , | 

‘H0 ’ 
| 

or, equivalently, the likelihood ratio test: 

‘H1 ’ 
>fG|H (g | H1) 
<

P (H0)
= η . (14.18) 

fG|H (g | H0) ‘H0 ’ 
P (H1) 

Evaluating equation (14.18) using equation (14.17) leads to the relationship 

2
{[ 

(g − s[0])2 ] [ 
g

]} ‘H1 ’ P (H0)> exp +− 
2σ2 2σ2 < P (H1) 

(14.19) 
‘H0 ’ 

and equivalently 
[ 
gs[0] s2[0] 

] ‘H1 ’ P (H0) 
exp − 

‘H

> 

0 ’ 
P (H1) 

(14.20) 
σ2 2σ2 < 

or, taking the natural logarithm of both sides of the likelihood ratio test as we did 
in Section 14.2, equation (14.20) is replaced by 

‘H
> 

1 ’ s[0] σ2 P (H0) 
g < + ln (14.21) 

2 s[0] P (H1)‘H0 ’ 
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254 Chapter 14 Signal Detection 

We may not know the a priori probabilities P(H0) and P(H1) or, for other reasons, 
may want to modify the threshold, but still using a threshold test on the likelihood 
ratio, or a threshold test of the form 

‘H1 ’ 
> g < λ . (14.22) 

‘H0 ’ 

Sweeping the threshholds over all possible values leads to the receiver operating 
characteristics as discussed in Section 13.2.5. 

We next consider the more general case in which h[n] is not the identity system. 
Then, under the two hypothesis we have: 

H1 : g[n] = s[n] ∗ h[n] + w[n] ∗ h[n] 
(14.23) 

H0 : g[n] = w[n] ∗ h[n] , 

The term w[n] ∗ h[n] still represents noise but is no longer white, i.e. its spectral 
shape is changed by the filter h[n]. Denoting w[n] ∗ h[n] as v[n], the autocorrelation 
function of v[n] is 

Rvv[m] = Rww[m] ∗ Rhh[m] (14.24) 

and in particular the mean v[n] is zero and its variance is 

∞
var{v[n]} = σ2 

∑ 
h2[n]. (14.25) 

n=−∞ 

Because of the normalization in equation (14.15) the variance of v[n] is the same 
as that of the white noise, i.e. var{v[n]} = σ2 . Furthermore, since w[n] is Gaussian 
so is v[n]. Consequently the value g[0] is again a Gaussian random variable with 
variance σ2 . The mean of g[0] under the two hypotheses is now: 

∞
H1 : E{g[n]} = 

∑ 
h[n]s[−n] , µ 

(14.26) 
n=−∞

H0 : E{g[n]} = 0, 

Therefore equation (14.17) is replaced by 

H1 : fG|H (g|H1) = N(µ, σ2)


H0 : fG|H (g|H0) = N(0, σ2). (14.27)


The probability density functions representing the two hypothesis are shown in 
Figure 14.6 below. On this figure we have also indicated the threshold γ of equation 
(14.27) above which we would declare H1 to be true and below which we would 
declare H0 to be true. Also indicated by the shaded areas are the areas under the 
PDF’s that would correspond to PFA and PD. 
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PF A PD 

� � 

| |
�� 

fG|H (g[0] H0) fG|H (g[0] H1) 

0 λ M g[0] 

FIGURE 14.6 Indication of the areas representing PFA and PD. 

The value of PFA is fixed by the shape of fG|H (g[0]|H0) and the value of the 
threshold γ. Since fG|H (g[0]|H0) is not dependent on h[n], the choice of h[n] will 
not affect PFA. The variance of fG(g[0] H1) is also not influenced by the choice of |
h[n] but its mean µ is. In particular, as we see from Figure 14.6, the value of PD 

is given by ∫ ∞ 

PD = fG(g[0] H1)dg (14.28) 
γ 

|

which increases as µ increases. Consequently, to minimize P (error), or alternatively 
to maximize PD for a given PFA, we want to maximize the value of µ. To determine 
the choice of h[n] to maximize µ we use the Schwarz inequality: 

2∣∣∣
∑ 

h[n]s[−n]
∣∣∣ ≤ 

∑ 
h2[n] 

∑ 
s 2[−n] (14.29) 

with equality if and only if h[n] = cs[−n] for some constant c. Since we normalized 
the energy in h[n], the optimum filter is h[n] = ( √1E 

)s[−n], which is again the 
matched filter. (This is as expected, since the optimum detector for a known finite-
length pulse in white Gaussian noise has already been shown in Section 14.2.1 to 
have the form we assumed here, with the impulse response of the LTI filter being 
matched to the signal.) The filter output g[n] due to the pulse is then √1E 

Rss[n] and 

the output due to the noise is the colored noise v[n] with variance σ2 . Since g[0] 
is a random variable with mean √1E 

∑∞
n=−∞ s

2[n] and variance σ2, only the energy 
in the pulse and not its specific shape, affects the performance of the detector. 

14.3.2 Maximizing SNR 

If w[n] is white but not Gaussian, then g[0] is not Gaussian. However, g[0] is still 
distributed the same under each hypothesis, except that its mean under H0 is 0 
while the mean under H1 is µ as given in equation (14.26). The matched filter 
in this case still maximizes the output signal-to-noise ratio (SNR) in the specified 
structure (namely, LTI filtering followed by sampling), where the SNR is defined as 
E{g[0]|H1}2/σ2 . The square root of the SNR is the relative separation between the 
means of the two distributions, measured in standard deviations. In some intuitive 
sense, therefore, maximizing the SNR tries to separate the two distributions as well 
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as possible. However, this does not in general necessarily correspond to minimizing 
the probability of error. 

14.3.3 Continuous-Time Matched Filters 

All of the matched filter results developed in this section carry over in a direct way 
to continuous-time. In Figure 14.7 we show the continuous-time counterpart to 
Figure 14.4 As before, we normalize the gain of h(t) so that 

‘H1 ’ 
r(t) g(t) � t = 0 >� <� LTI h(t) � Threshold λ 

G ‘H0 ’ 

FIGURE 14.7 Continuous-time matched filtering. 

∫ ∞ 

h2(t)dt = 1 (14.30) 
−∞ 

with r(t) a Gaussian random process, g(t) is also Gaussian and G is a Gaussian 
random variable. Under the two hypotheses the PDF of G is then given by 

H1 : fG|H (g H1) = N(µ, σ2| G) 

H0 : fG|H (g H0) = N(0, σ2 (14.31) | G) , 

where ∫ ∞ 

σ2 = N0 h2(t)dt = N0 (14.32) G 
−∞ 

and ∫ ∞ 

µ = h(t)s(−t)dt (14.33) 
−∞ 

Consequently, as in the discrete-time case, the probability of error is minimized 
by choosing h(t) to separate the two PDF’s in equation (14.31) as much as possi
ble. With the continuous-time version of the Cauchy-Schwarz inequality applied to 
equation (14.33) we then conclude that the optimum choice for h(t) is proportional 
to s(−t), i.e. again the matched filter 

EXAMPLE 14.1 PAM with Matched Filter 

Figure 14.8(a) shows an example of a typical noise-free binary PAM signal as rep
resented by Eq. (13.1). The pulse p(t) is a rectangular pulse of length 50 sec. The 
binary sequence a[n] over the time interval shown is indicated above the waveform. 
In the absence of noise, the optimal threshold detector of the form of Figure 14.4 
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FIGURE 14.8 Binary detection with on/off signaling 

would simply test at integer multiples of T whether the received signal is positive 
or zero. Clearly the probability of error in this noise-free case would be zero. 

In Figure 14.8(b) we show the same PAM signal but with wideband Gaussian noise 
added. If h(t) is the identity system and the threshold of the detector is chosen 
according to Eq. (14.18) with P (H0) = P (H1) i.e. using the likelihood ratio 
test but without the matched filter, the decoded binary sequence is 0100111111011 
which has 6 bit errors. Figure 14.8(c) shows the output of the matched filter, i.e. 
with h(t) = s(−t). The detector threshold is again chosen based on the likelihood 
ratio test. The resulting decoded binary sequence is 1010011111000 which has 2 
bit errors 

In Figure 14.9 we show the corresponding results when antipodal rather than on-
off signaling is used. Figure 14.9(a) depicts the transmitted waveform with the 
same binary sequence as was used in Figure 14.8, and Figure 14.9(b) the received 
signal including additive noise. If h(t) = δ(t) and P (H0) = P (H1), then the choice 
of threshold for the likelihood ratio test is zero. The decoded binary sequence is 
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FIGURE 14.9 Binary Detection with antipodal signaling 

0001001011001, resulting in 4 bit errors. With h(t) chosen as the matched filter the 
signal before the threshold detector is that shown in Figure 14.9(c). The resulting 
decoded binary sequence is 1010011011001 with no bit errors. In Table 14.1 we 
summarize the results for this specific example based on a simulation with a binary 
sequence of length 104 . 

No matched filter W/ matched Filter

On/Off Signaling
 0.4808 0.3752


Antipodal Signaling
 0.4620 0.2457 

TABLE 14.1 Bit error rate for a PAM signal illustrating effect of matched filter for 
two different signaling schemes. 
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14.3.4 Pulse Detection in Colored Noise 

In Sections 14.2 and 14.3 the optimal detector was developed under the assumption 
that the noise is white. When the noise is colored , i.e. when its spectral density is 
not flat, the results are easily modified. We again assume a detector of the form of 
Figure 14.4. The two hypotheses are now: 

H1 : r[n] = s[n] + v[n],


H0 : r[n] = v[n] , (14.34)


where v[n] is again a zero-mean Gaussian process but in general, not white. The 
autocorrelation function of v[n] is denoted by Rvv[m] and the power spectral density 
by Svv(ejΩ). The basic approach is to transform the problem to that dealt with in 
the previous section by first processing r[n] with a whitening filter as was discussed 
in Section 10.2.3 , which is always possible as long as Svv(ejΩ) is strictly positive, 
i.e. it is not zero at any value of Ω. This first stage of filtering is depicted in Figure 
14.10. 

Whitening Filter 

r[n] rw[n]�� hw[n] 

FIGURE 14.10 First stage of filtering 

The impulse response hw[n] is chosen so that its output due to the input noise 
v[n] is white, with variance σ2 and, of course, will also be Gaussian. With this 
pre-processing the signal rw[n] now has the form assumed in Section 14.3.4 with 
the white noise w[n] corresponding to v[n] ∗ hw[n] and the pulse s[n] replaced by 
p[n] = s[n] ∗ hw[n]. The detector structure now takes the form shown in Figure 
14.11 where h[n] is again the matched filter, but in this case matched to the pulse 
p[n], i.e. hm[n] is proportional to p[−n]. 

‘H1 ’ 
� n = 0 � >� <Threshold λ 

‘H0 ’ g[0] 
�r[n] 

LTI hw[n] �rw[n] 
LTI h[n] 

g[n] 

FIGURE 14.11 Detector structure with colored noise. 

Assuming that hw[n] is invertible (i.e. its Z-transform has no zeros on the unit 
circle) there is no loss of generality in having first applied a whitening filter. To see 
this concretely denote the combined LTI filter from r[n] to g[n] as hc[n] and assume 
that if whitening had not first been applied, the optimum choice for the filter from 
r[n] to g[n] is hopt[n]. Since 

hc[n] = hw[n] ∗ hm[n] (14.35) 
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where hm[n] denotes the matched filter after whitening. If the performance with 
hopt[n] is better than with hc[n], this would imply that choosing hm[n] as hopt[n] ∗ 
hinv [n] would lead to better performance on the whitened signal. However, as seen w 
in Section 14.3, hm[n] = p[−n] is the optimum choice after the whitening and 
consequently we conclude that 

hm[n] = p[−n] = hopt[n] ∗ hinv 
w [n] (14.36) 

or equivalently 
hopt[n] = hw[n] ∗ p[−n] (14.37) 

In the following example we illustrate the determination of the optimum detector 
in the case of colored noise. 

EXAMPLE 14.2 Pulse Detection in Colored Noise 

Consider a pulse s[n] in colored noise v[n], with 

s[n] = δ[n] . (14.38) 

and 

1 
Rvv[m] = ( )|m|, so σ2 = 1 

2 v 

3/4 
then Svv(z) = 

(1 − 1 1 . (14.39) 
z−1)(1 − z)2 2 

The noise component w[n] of desired output of the whitening filter has autocorre
lation function Rww[m] = σ2δ[m] and consequently we require that 

Svv(z)Hw(z)Hw(1/z) = σ2 

σ2 4 1 1 
Thus Hw(z)Hw(1/z) = = σ2 z−1)(1 − z) . (14.40) 

Svv (z) 3
(1 − 

2 2 

We can of course choose σ arbitrarily (since it will only impact the overall gain). 
Choosing σ2 = 1, either 

1 
Hw(z) = (1 − z−1), or 

2 
1 

Hw(z) = (1 − z) (14.41) 
2 

Note that the second of these choices is non-causal. There are also other possi
bile choices since we can cascade either choice with an all-pass Hap(z) such that 
Hap(z)Hap(1/z) = 1. 
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With the first choice for Hw(z) from above, we have 

1 
z−1),Hw(z) = (1 − 

2 
1 

hw[n] = δ[n] − δ[n − 1],
2


σ2 = 3/4,


1

p[n] = s[n] − s[n − 1], and 

2 
h[n] = Ap[−n] for any convenient choice of A. (14.42) 

In our discussion in Section 14.3 of the detection of a pulse in white noise, we 
observed that the energy in the pulse affects performance of the detector but not 
the specific pulse shape. This was a consequence of the fact that the filter is chosen 
to maximize the quantity √1E 

Rss[0] where s[n] is the pulse to be detected. For the 
case of a pulse in colored noise, we correspondingly want to maximize the energy 
Ep in p[n] where 

p[n] = hw[n] ∗ s[n] (14.43) 

Expressed in the frequency domain, 

P (ejΩ) = Hw(ejΩ)S(ejΩ) (14.44) 

and from Parseval’s relation 

Ep = 
2

1 
π 

∫ π 

|Hw(ejΩ)|2|S(ejΩ)|2dΩ (14.45a) 

2 

= 
1 

∫−
π

π 

|S(ejΩ)|
dΩ (14.45b) 

2π −π Svv(ejΩ) 

Based only on Eq. (14.45b), Ep can be maximized by placing all of the energy of the 
transmitted signal s[n] at the frequency at which Svv(ejΩ) is minimum. However, 
in many situations the transmitted signal is constrained in other ways, such as 
peak amplitude and/or time duration. The task then is to choose s[n] to maximize 
the integral in Eq. (14.45b) under these constraints. There is generally no closed-
form solution to this optimization problem, but roughly speaking a good solution 
will distribute the signal energy so that it is more concentrated where the power 
Svv(ejΩ) of the colored noise is less. 
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