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Pulse Amplitude Modulation (PAM), 
Quadrature Amplitude Modulation 
(QAM) 

12.1 PULSE AMPLITUDE MODULATION 

In Chapter 2, we discussed the discrete-time processing of continuous-time signals, 
and in that context reviewed and discussed D/C conversion for reconstructing a 
continuous-time signal from a discrete-time sequence. Another common context 
in which it is useful and important to generate a continuous-time signal from a 
sequence is in communication systems, in which discrete data — for example, digital 
or quantized data — is to be transmitted over a channel in the form of a continuous-
time signal. In this case, unlike in the case of DT processing of CT signals, the 
resulting continuous-time signal will be converted back to a discrete-time signal at 
the receiving end. Despite this difference in the two contexts, we will see that the 
same basic analysis applies to both. 

As examples of the communication of DT information over CT channels, consider 
transmitting a binary sequence of 1’s and 0’s from one computer to another over a 
telephone line or cable, or from a digital cell phone to a base station over a high-
frequency electromagnetic channel. These instances correspond to having analog 
channels that require the transmitted signal to be continuous in time, and to also be 
compatible with the bandwidth and other constraints of the channel. Such require
ments impact the choice of continuous-time waveform that the discrete sequence is 
modulated onto. 

The translation of a DT signal to a CT signal appropriate for transmission, and the 
translation back to a DT signal at the receiver, are both accomplished by devices 
referred to as modems (modulators/demodulators). Pulse Amplitude Modulation 
(PAM) underlies the operation of a wide variety of modems. 

12.1.1 The Transmitted Signal 

The basic idea in PAM for communication over a CT channel is to transmit a se
quence of CT pulses of some pre-specified shape p(t), with the sequence of pulse 
amplitudes carrying the information. The associated baseband signal at the trans
mitter (which is then usually modulated onto some carrier to form a bandpass signal 
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212 Chapter 12 Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM) 

before actual transmission — but we shall ignore this aspect for now) is given by 

x(t) = 
∑ 

a[n] p(t − nT ) (12.1) 
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FIGURE 12.1 Baseband signal at the transmitter in Pulse Amplitude Modulation 
(PAM). 

where the numbers a[n] are the pulse amplitudes, and T is the pulse repetition 
interval or the inter-symbol spacing, so 1/T is the symbol rate (or “baud” rate). 
An individual pulse may be confined to an interval of length T , as shown in Figure 
12.1, or it may extend over several intervals, as we will see in several examples 
shortly. The DT signal a[n] may comprise samples of a bandlimited analog message 
(taken at the Nyquist rate or higher, and generally quantized to a specified set of 
levels, for instance 32 levels); or 1 and 0 for on/off or “unipolar” signaling; or 1 and 
−1 for antipodal or “polar” signaling; or 1, 0 and −1 for “bipolar” signaling; each 
of these possibilities is illustrated in Figure 12.1. 

The particular pulse shape in Figure 12.1 is historically referred to as an RZ (return
to-zero) pulse when Δ < T and an NRZ (non-return-to-zero) pulse when Δ = T . 
These pulses would require substantial channel bandwidth (of the order of 1/Δ) 
in order to be transmitted without significant distortion, so we may wish to find 
alternative choices that use less bandwidth, to accommodate the constraints of the 
channel. Such considerations are important in designing appropriate pulse shapes, 
and we shall elaborate on them shortly. 
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If p(t) is chosen such that p(0) = 1 and p(nT ) = 0 for n = 0, then we could 
recover the amplitudes a[n] from the PAM waveform x(t) by just sampling x(t) at 
times nT , since x(nT ) = a[n] in this case. However, our interest is in recovering the 
amplitudes from the signal at the receiver, rather than directly from the transmitted 
signal, so we need to consider how the communication channel affects x(t). Our 
objective will be to recover the DT signal in as simple a fashion as possible, while 
compensating for distortion and noise in the channel. 

12.1.2 The Received Signal 

When we transmit a PAM signal through a channel, the characteristics of the 
channel will affect our ability to accurately recover the pulse amplitudes a[n] from 
the received signal r(t). We might model r(t) as 

r(t) = h(t) ∗ x(t) + η(t) (12.2) 

corresponding to the channel being modeled as LTI with impulse response h(t), and 
channel noise being represented through the additive noise signal η(t). We would 
still typically try to recover the pulse amplitudes a[n] from samples of r(t) — or 
from samples of an appropriately filtered version of r(t) — with the samples taken 
at intervals of T . 

The overall model is shown in Figure 12.2, with f(t) representing the impulse 
response of an LTI filter at the receiver. This receiver filter will play a key role in 
filtering out the part of the noise that lies outside the frequency bands in which 
the signal information is concentrated. Here, we first focus on the noise-free case 
(for which one would normally set f(t) = δ(t), corresponding to no filtering before 
sampling at the receiver end), but for generality we shall take account of the effect 
of the filter f(t) as well. 

Noise η(t) 
x(t) = � h(t)∑ 

a[n]p(t − nT ) 
�+ 

� � 
r(t) 

f(t) � 
b(t) 

� 

Filtering Sample every T 

FIGURE 12.2 Transmitter, channel and receiver model for a PAM system. 

12.1.3 Frequency-Domain Characterizations 

Denote the CTFT of the pulse p(t) by P (jω), and similarly for the other CT signals 
in Figure 12.2. If the frequency response H(jω) of the channel is unity over the 
frequency range where P (jω) is significant, then a single pulse p(t) is transmitted 
essentially without distortion. In this case, we might invoke the linearity and time 
invariance of our channel model to conclude that x(t) in (12.1) is itself transmit
ted essentially without distortion, in which case r(t) ≈ x(t) in the noise-free case 
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214 Chapter 12 Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM) 

that we are considering. However, this conclusion leaves the possiblity that dis
tortions which are insignificant when a single pulse is transmitted accumulate in a 
non-negligible way when a succession of pulses is transmitted. We should therefore 
directly examine x(t), r(t), and their corresponding Fourier transforms. The un
derstanding we obtain from this is a prerequisite for designing P (jω) and picking 
the inter-symbol time T for a given channel, and also allows us to determine the 
influence of the DT signal a[n] on the CT signals x(t) and r(t). 

To compute X(jω), we take the transform of both sides of (12.1): 
(∑ 

a[n] e−jωnT 
) 

P (jω)X(jω) = 
n 

= A(ejΩ)|Ω=ωT P (jω) (12.3) 

where A(ejΩ) denotes the DTFT of the sequence a[n]. The quantity A(ejΩ)|Ω=ωT 

that appears in the above expression is simply a uniform re-scaling of the frequency 
axis of the DTFT; in particular, the point Ω = π in the DTFT is mapped to the 
point ω = π/T in the expression A(ejΩ)|Ω=ωT . 

The expression in (12.3) therefore describes X(jω) for us, assuming the DTFT of 
the sequence a[n] is well defined. For example, if a[n] = 1 for all n, corresponding 
to periodic repetition of the basic pulse waveform p(t), then A(ejΩ) = 2πδ(Ω) for 
|Ω| ≤ π, and repeats with period 2π outside this range. Hence X(jω) comprises a 
train of impulses spaced apart by 2π/T ; the strength of each impulse is 2π/T times 
the value of P (jω) at the location of the impulse (note that the scaling property of 
impulses yields δ(Ω) = δ(ωT ) = (1/T )δ(ω) for positive T ). 

In the absence of noise, the received signal r(t) and the signal b(t) that results from 
filtering at the receiver are both easily characterized in the frequency domain: 

R(jω) = H(jω)X(jω) , B(jω) = F (jω)H(jω)X(jω) . (12.4) 

Some important constraints emerge from (12.3) and (12.4). Note first that for a 
general DT signal a[n], necessary information about the signal will be distributed 
in its DTFT A(ejΩ) at frequencies Ω throughout the interval |Ω| ≤ π; knowing 
A(ejΩ) only in a smaller range |Ω| ≤ Ωa < π will in general be insufficient to 
allow reconstruction of the DT signal. Now, setting Ω = ωT as specified in (12.3), 
we see that A(ejωT ) will contain necessary information about the DT signal at 
frequencies ω that extend throughout the interval |ω| ≤ π/T . Thus, if P (jω) =6 0 
for |ω| ≤ π/T then X(jω) preserves the information in the DT signal; and if 
H(jω)P (jω) 6= 0 for |ω| ≤ π/T then R(jω) preserves the information in the DT 
signal; and if F (jω)H(jω)P (jω) =6 0 for |ω| ≤ π/T then B(jω) preserves the 
information in the DT signal. 

The above constraints have some design implications. A pulse for which P (jω) 
was nonzero only in a strictly smaller interval |ω| ≤ ωp < π/T would cause loss of 
information in going from the DT signal to the PAM signal x(t), and would not be 
a suitable pulse for the chosen symbol rate 1/T (but could become a suitable pulse 
if the symbol rate was reduced appropriately, to ωp/π or less). 
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Section 12.1 Pulse Amplitude Modulation 215 

Similarly, even if the pulse was appropriately designed so that x(t) preserved the 
information in the DT signal, if we had a lowpass channel for which H(jω) was 
nonzero only in a strictly smaller interval |ω| ≤ ωc < π/T (so ωc is the cutoff 
frequency of the channel), then we would lose information about the DT signal in 
going from x(t) to r(t); the chosen symbol rate 1/T would be inappropriate for this 
channel, and would need to be reduced to ωc/π in order to preserve the information 
in the DT signal. 

12.1.4 Inter-Symbol Interference at the Receiver 

In the absence of any channel impairments, the signal values can be recovered from 
the transmitted pulse trains shown in Figure 12.1 by re-sampling at the times which 
are integer multiples of T . However, these pulses, while nicely time localized, have 
infinite bandwidth. Since any realistic channel will have a limited bandwidth, one 
effect of a communication channel on a PAM waveform is to “de-localize” or disperse 
the energy of each pulse through low-pass filtering. As a consequence, pulses that 
may not have overlapped (or that overlapped only benignly) at the transmitter may 
overlap at the receiver in a way that impedes the recovery of the pulse amplitudes 
from samples of r(t), i.e. in a way that leads to inter-symbol interference (ISI). 
We now make explicit what condition is required in order for ISI to be eliminated 

M-ary signal 

0 1 2 3 4 

Intersymbol Interference 

x(t) r(t)
�� H(jω) 

t Channel 
T 2T 3T 

2π = ωsT 

FIGURE 12.3 Illustration of Inter-symbol Interference (ISI). 

from the filtered signal b(t) at the receiver. When this no-ISI condition is met, we 
will again be able to recover the DT signal by simply sampling b(t). Based on this 
condition, we can identify the additional constraints that must be satisfied by the 
pulse shape p(t) and the impulse response f(t) of the filter (or channel compensator 
or equalizer) at the receiver so as to eliminate or minimize ISI. 

With x(t) as given in (12.1), and noting that b(t) = f(t)∗h(t)∗x(t) in the noise-free 
case, we can write 

b(t) = 
∑ 

a[n] g(t − nT ) (12.5) 
n 

where 
g(t) = f(t) ∗ h(t) ∗ p(t) (12.6) 

We assume that g(t) is continuous (i.e., has no discontinuity) at the sampling times 
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nT . Our requirement for no ISI is then that 

g(0) = c , and g(nT ) = 0 for nonzero integers n, (12.7) 

where c is some nonzero constant. If this condition is satisfied, then if follows from 
(12.5) that b(nT ) = c.a[n], and consequently the DT signal is exactly recovered (to 
within the known scale factor c). 

As an example, suppose that g(t) in (12.6) is 

sin ωct 
g(t) = , (12.8) 

ωct 

with corresponding G(jω) given by 

π 
G(jω) = 

ωc 
for |ω| < ωc 

= 0 otherwise . (12.9) 

π 
Then choosing the inter-symbol spacing to be T = , we can avoid ISI in the 

ωc 
received samples, since g(t) = 1 at t = 0 and is zero at other integer multiples of 
T , as illustrated in Figure 12.4. 

a[0] 

a[1] 

π/ω 
c 

t 

FIGURE 12.4 Illustration of the no-ISI property for PAM when g(0) = 1 and g(t) = 0 
at other integer multiples of the inter-symbol time T . 

We are thereby able to transmit at a symbol rate that is twice the cutoff frequency 
of the channel. From what was said earlier, in the discussion following (12.3) on 
constraints involving the symbol rate and the channel cutoff frequency, we cannot 
expect to do better in general. 

More generally, in the next section we translate the no-ISI time-domain condition 
in (12.7) to one that is useful in designing p(t) and f(t) for a given channel. The 
approach is based on the frequency-domain translation of the no-ISI condition, 
leading to a result that was first articulated by Nyquist. 
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12.2 NYQUIST PULSES 

The frequency domain interpretation of the no-ISI condition of (12.7) was explored 
by Nyquist in 1924 (and extended by him in 1928 to a statement of the sampling 
theorem — this theorem then waited almost 20 years to be brought to prominence 
by Gabor and Shannon). 

Consider sampling g(t) with a periodic impulse train: 

+∞
g(t) = g(t) 

∑ 
δ(t − nT ) . (12.10) 

n=−∞ 

Then our requirements on g(t) in (12.7) imply that ĝ(t) = c δ(t), an impulse of 
strength c, whose transform is Ĝ(jω) = c. Taking transforms of both sides of 
(12.10), and utilizing the fact that multiplication in the time domain corresponds 
to convolution in the frequency domain, we obtain 

1 
+∞

2π 
Ĝ(jω) = c = 

T 

∑ 
G(jω − jm 

T 
) . (12.11) 

m=−∞ 

The expression on the right hand side of (12.11) represents a replication of G(jω) 
(scaled by 1/T ) at every integer multiple of 2π/T along the frequency axis. The 
Nyquist requirement is thus that G(jω) and its replications, spaced 2πm/T apart for 
all integer m, add up to a constant. Some examples of G(jω) = F (jω)H(jω)P (jω) 
that satisfy this condition are given below. 

The particular case of the sinc function of (12.8) and (12.9) certainly satisfies the 
Nyquist condition of (12.11). 

If we had an ideal lowpass channel H(jω) with bandwidth ωc or greater, then 
choosing p(t) to be the sinc pulse of (12.8) and not doing any filtering at the receiver 
— so F (jω) = 1 — would result in no ISI. However, there are two problems with the 
sinc characteristic. First, the signal extends indefinitely in time in both directions. 
Second, the sinc has a very slow roll-off in time (as 1/t). This slow roll-off in time 
is coupled to the sharp cut-off of the transform of the sinc in the frequency domain. 
This is a familiar manifestation of time-frequency duality: quick transition in one 
domain means slow transition in the other. 

It is highly desirable in practice to have pulses that taper off more quickly in time 
than a sinc. One reason is that, given the inevitable inaccuracies in sampling times 
due to timing jitter, there will be some unavoidable ISI, and this ISI will propagate 
for unacceptably long times if the underlying pulse shape decays too slowly. Also, 
a faster roll-off allows better approximation of a two-sided signal by a one-sided 
signal, as would be required for a causal implementation. The penalty for more 
rapid pulse roll-off in time is that the transition in the frequency domain has to 
be more gradual, necessitating a larger bandwidth for a given symbol rate (or a 
reduced symbol rate for a given bandwidth). 

The two examples in Figure 12.5 have smoother transitions than the previous case, 
and correspond to pulses that fall off as 1/t2 . It is evident that both can be made 
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218 Chapter 12 Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM) 

to satisfy the Nyquist condition by appropriate choice of T . 

π/T π/T 
ω

ω 

P(jω)H(jω) 
P(jω)H(jω) 

FIGURE 12.5 Two possible choices for the Fourier transform of pulses that decay in 
time as 1/t2 and satisfy the Nyquist zero-ISI condition for appropriate choice of T . 

Still smoother transitions can be obtained with a family of frequency-domain char
acteristics in which there is a cosine transition from 1 to 0 over the frequency range 

π
T

π
T(1 − β) to ω 

corresponding formula for the received and filtered pulse is 
ω (1 + β), where β is termed the roll-off parameter. The = = 

π
T t cos β π

T tsin
f(t) ∗ h(t) ∗ p(t) (12.12) = π

T t 1 − (2βt/T )2 

which falls off as 1/t3 for large t. 

−4T −3T −2T −T 0 T 2T 3T 4T 

0 

T 
X(t) 

β=1 β=0.5 β=0 

X(ω) 

β = 1 

β = 0.5 

β = 0
T 

0 

−2π/T −π/T 0 π/T 2π/T
time, t frequency, ω 

FIGURE 12.6 Time and frequency characteristics of the family of pulses in Eq. 
(12.12) 

Once G(jω) is specified, knowledge of the channel characteristic H(jω) allows us 
to determine the corresponding pulse transform P (jω), if we fix F (jω) = 1. In the 
presence of channel noise that corrupts the received signal r(t), it turns out that it 
is best to only do part of the pulse shaping at the transmitter, with the rest done 
at the receiver prior to sampling. For instance, if the channel has no distortion 
in the passband (i.e., if H(jω) = 1 in the passband) and if the noise intensity is 
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Section 12.3 Carrier Transmission 219 

TABLE 5.4: Selected CCITT International Telephone Line Modem Standards 

Bit Rate Symbol Rate Modulation CCITT Standard 

330 300 2FSK V.21 

1,200 600 QPSK V.22 

2,400 600 16QAM V.22bis 

1,200 1,200 2FSK V.23 

2,400 1,200 QPSK V.26 

4,800 1,600 8PSK V.27 

9,600 2,400 Fig. 3.15(a) V.29 

4,800 2,400 QPSK V.32 

9,600 2,400 16QAM V.32ALT 

14,400 
28,800 

2,400 
3,429 

128QAM,TCM 
1024QAM,TCM 

V.32bis 
V.fast(V.34) 

FIGURE 12.7 From Digital Transmission Engineering by J.B.Anderson, IEEE Press 
1999. The reference to Fig. 3.15 a is a particular QAM constellation. 

uniform in this passband, then the optimal choice of pulse is P (jω) = 
√

G(jω), 
assuming that G(jω) is purely real, and this is also the optimal choice of receiver 
filter F (jω). We shall say a little more about this sort of issue when we deal with 
matched filtering in a later chapter. 

12.3 CARRIER TRANSMISSION 

The previous discussion centered around the design of baseband pulses. For trans
mission over phone lines, wireless links, satellites, etc. the baseband signal needs 
to be modulated onto a carrier, i.e. converted to a passband signal. This also 
opens opportunities for augmentation of PAM. The table in Figure 12.7 shows the 
evolution of telephone line digital modem standards. FSK refers to frequency-shift
keying, PSK to phase-shift-keying, and QAM to quadrature amplitude modulation, 
each of which we describe in more detail below. The indicated increase in symbol 
rate (or baud rate) and bit rates over the years corresponds to improvements in 
signal processing, to better modulation schemes, to the use of better conditioned 
channels, and to more elaborate coding (and correspondingly complex decoding, 
but now well within real-time computational capabilities of digital receivers). 

For baseband PAM, the transmitted signal is of the form of equation (12.1) i.e. 

x(t) = 
∑ 

a[n] p(t − nT ) (12.13) 
n 

where p(t) is a lowpass pulse. When this is amplitude-modulated onto a carrier, 
the transmitted signal takes the form 

s(t) = 
∑ 

a[n] p(t − nT ) cos(ωct + θc) (12.14) 
n 

where ωc and θc are the carrier frequency and phase. 
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220 Chapter 12 Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM) 

In the simplest form of equation (12.14), specifically with ωc and θc fixed, equation 
(12.14) corresponds to using amplitude modulation to shift the frequency content 
from baseband to a band centered at the carrier frequency ωc. However, since two 
additional parameters have been introduced (i.e. ωc and θc) this opens additional 
possibilities for embedding data in s(t). Specifically, in addition to changing the 
amplitude in each symbol interval, we can consider changing the carrier frequency 
and/or the phase in each symbol interval. These alternatives lead to frequency-
shift-keying (FSK) and phase-shift-keying (PSK). 

12.3.1 FSK 

With frequency shift keying (12.14) takes the form 

s(t) = 
∑ 

a[n] p(t − nT ) cos((ω0 + Δn)t + θc) (12.15) 
n 

where ω0 is the nominal carrier frequency and Δn is the shift in the carrier frequency 
in symbol interval n. In principle in FSK both a[n] and Δn can incorporate data 
although it is typically the case that in FSK the amplitude does not change. 

12.3.2 PSK 

In phase shift keying (12.14) takes the form 

s(t) = 
∑ 

a[n] p(t − nT ) cos(ωct + θn) (12.16) 
n 

In each symbol interval, information can then be incorporated in both the pulse 
amplitude a[n] and the carrier phase θn. In what is typically referred to as PSK, 
information is only incorporated in the phase, i.e. a[n] = a = constant. 

For example, with 

2πbn
θn = ; bn a non-negative integer (12.17) 

M 

one of M symbols can be encoded in the phase in each symbol interval. For M = 2, 
θn = 0 or π, commonly referred to as binary PSK (BPSK). With M = 4, θn takes 
on one of the four values 0, π 

2 , π, or 3
2 
π . 

To interpret PSK somewhat differently and as a prelude to expanding the discus
sion to a further generalization (quadrature amplitude modulation or QAM) it is 
convenient to express equation (12.16) in some alternate forms. For example, 

jθn jωcts(t) = 
∑ 

Re{ae p(t − nT )e } (12.18) 
n 

and equivalently 
s(t) = I(t) cos(ωct) − Q(t) sin(ωct) (12.19) 
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with 
I(t) = 

∑ 
ai[n] p(t − nT ) (12.20) 

n 

Q(t) = 
∑ 

aq[n] p(t − nT ) (12.21) 
n 

and 

ai[n] = a cos(θn) (12.22) 

aq[n] = a sin(θn) (12.23) 

Equation 12.19 is referred to as the quadrature form of equation 12.16 and I(t) 
and Q(t) are referred to as the in-phase and quadrature components. For BPSK, 
ai[n] = ±a and aq[n] = 0. 

For PSK with θn in the form of equation 12.17 and M = 4, θn can take on any of 
the four values 0, π 

2 , π, or 3
2 
π . In the form of equations 12.22 and 12.23 ai[n] will 

then be either +a, −a, or zero and aq[n] will be either +a, −a, or zero. However, 
clearly QPSK can only encode four symbols in the phase not nine, i.e. the various 
possibilities for ai[n] and aq[n] are not independent. For example, for M = 4, if 
ai[n] = +a then aq[n] must be zero since ai[n] = +a implies that θn = 0. A con
venient way of looking at this is through what’s referred to as an I-Q constellation 
as shown in Figure 12.8. 

aq 

−a +a 

−a 

+a 

ai 

FIGURE 12.8 I-Q Constellation for QPSK. 

Each point in the constellation represents a different symbol that can be encoded, 
and clearly with the constellation of Figure 12.8 one of four symbols can be encoded 
in each symbol interval (recall that for now, the amplitude a[n] is constant. This 
will change when we expand the discussion shortly to QAM). 
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aq 

a
2 

a√
ai 

a√

√

2 

+ 

a
2

√− + 
2 

− 

FIGURE 12.9 I-Q Constellation for quadrature phase-shift-keying (QPSK). 

An alternative form with four-phase PSK is to choose 

2πbn π 
θn = + ; bn a non-negative integer (12.24) 

4 4 

in which case ai[n] = ±
12.9. 

a√
2 

and aq[n] = ± a√
2 

resulting in the constellation in Figure 

In this case, the amplitude modulation of I(t) and Q(t) (equations 12.20 and 12.21) 
can be done independently. Modulation with this constellation is commonly referred 
to as QPSK (quadrature phase-shift keying). 

In PSK as described above, a[n] was assumed constant. By incorporating encoding 
in both the amplitude a[n] and phase θn in equation 12.16 we are led to a richer 
form of modulation referred to as quadrature amplitude modulation (QAM). In the 
form of equations (12.19 - 12.21) we now allow ai[n] and aq[n] to be chosen from a 
richer constellation. 

12.3.3 QAM 

The QAM constellation diagram is shown in Figure 12.10 for the case where each 
set of amplitudes can take the values ±a and ±3a. The 16 different combinations 
that are available in this case can be used to code 4 bits, as shown in the figure. 
This particular constellation is what is used in the V.32ALT standard shown in the 
table of Figure 12.7. In this standard, the carrier frequency is 1,800 Hz, and the 
symbol frequency or baud rate (1/T ) is 2,400 Hz. With 4 bits per symbol, this 
works out to the indicated 9,600 bits/second. One baseband pulse shape p(t) that 
may be used is the square root of the cosine-transition pulse mentioned earlier, say 
with β = 0.3. This pulse contains frequencies as high as 1.3 × 1, 200 = 1, 560 Hz. 
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After modulation of the 1,800 Hz carrier, the signal occupies the band from 240 Hz 
to 3,360 Hz, which is right in the passband of the voice telephone channel. 

The two faster modems shown in the table use more elaborate QAM-based schemes. 
The V.32bis standard involves 128QAM, which could in principle convey 7 bits per 
symbol, but at the price of greater sensitivity to noise (because the constellation 
points are more tightly clustered for a given signal power). However, the QAM 
in this case is actually combined with so-called trellis-coded modulation (TCM), 
which in effect codes in some redundancy (by introducing dependencies among the 
modulating amplitudes), leading to greater noise immunity and an effective rate of 
6 bits per symbol (think of the TCM as in effect reserving a bit for error checking). 
The symbol rate here is still 2,400 Hz, so the transmission is at 6 × 2, 400 = 14, 400 
bits/second. Similarly, the V.34 standard involves 1024QAM, which could convey 
10 bits per symbol, although with more noise sensitivity. The combination with 
TCM introduces redundancy for error control, and the resulting bit rate is 28,800 
bits/second (9 effective bits times a symbol frequency of 3,200 Hz). 

Demodulation of Quadrature Modulated PAM signals: 
The carrier modulated signals in the form of equations (12.19 - 12.23) can carry 
encoded data in both the I and Q components I(t) and Q(t). Therefore in demodu
lation we must be able to extract these seperately. This is done through quadrature 
demodulation as shown in Figure 12.11 

In both the modulation and demodulation, it is assumed that the bandwidth of 
p(t) is low compared with the carrier frequency wc so that the bandwidth of I(t) 
and Q(t) are less than ωc. The input signal ri(t) is 

ri(t) = I(t)cos 2(ωct) − Q(t)sin(ωct)cos(ωct) (12.25) 

1 1 1 
= I(t)cos(2ωct) − Q(t)sin(2ωct) (12.26) I(t) −

2 2 2 

Similarly 

rq(t) = I(t)cos(ωct)sin(ωct) − Q(t)sin2(ωct) (12.27) 

1 1 1 
= I(t)sin(2ωct) + Q(t)cos(2ωct) (12.28) Q(t) −

2 2 2 

Choosing the cutoff frequency of the lowpass filters to be greater than the bandwidth 
of p(t) (and therefore also greater than the bandwidth of I(t) and Q(t)) but low 
enough to eliminate the components in ri(t) and rq (t) around 2ωc, the outputs will 
be the quadrature signals I(t) and Q(t). 

©Alan V. Oppenheim and George C. Verghese, 2010 c
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aq 

a 

1011 1001 1110 1111 
+3 

1010 1000 1100 1101 
+1 

ai 
a 

0001 0000 

0011 0010 

FIGURE 12.10 16 QAM constellation. (From 
J.B. Anderson, IEEE Press, 1999, p.96) 

+1 +3 

0100 0110 

0101 0111 

Digital Transmission Engineering by 
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cos(ωct) 

� 
� ri(t) � I(t)LPF 

� 
s(t)

� sin(ωct) 

�


�

� rq (t) � Q(t)LPF 

FIGURE 12.11 Demodulation scheme for a Quadrature Modulated PAM Signal. 
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FIGURE 12.12 (a) PAM signal with sinc pulse. (b) PAM signal with ‘raised cosine’ 
pulse. Note much larger tails and excursions in narrow band pulse of (a); tails may 
not be truncated without widening the bandwidth. (From J.B. Anderson, Digital 
Transmission Engineering, IEEE Press, 1999.) 
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Image by MIT OpenCourseWare, adapted from Digital Transmission
Engineering, John Anderson. IEEE Press, 1999.
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