
C H A P T E R 8 

Estimation with Minimum Mean 
Square Error 

INTRODUCTION 

A recurring theme in this text and in much of communication, control and signal 
processing is that of making systematic estimates, predictions or decisions about 
some set of quantities, based on information obtained from measurements of other 
quantities. This process is commonly referred to as inference. Typically, inferring 
the desired information from the measurements involves incorporating models that 
represent our prior knowledge or beliefs about how the measurements relate to the 
quantities of interest. 

Inference about continuous random variables and ultimately about random pro
cesses is the topic of this chapter and several that follow. One key step is the 
introduction of an error criterion that measures, in a probabilistic sense, the error 
between the desired quantity and our estimate of it. Throughout our discussion 
in this and the related subsequent chapters, we focus primarily on choosing our 
estimate to minimize the expected or mean value of the square of the error, re
ferred to as a minimum mean-square-error (MMSE) criterion. In Section 8.1 we 
consider the MMSE estimate without imposing any constraint on the form that 
the estimator takes. In Section 8.3 we restrict the estimate to be a linear combina
tion of the measurements, a form of estimation that we refer to as linear minimum 
mean-square-error (LMMSE) estimation. 

Later in the text we turn from inference problems for continuous random variables 
to inference problems for discrete random quantities, which may be numerically 
specified or may be non-numerical. In the latter case especially, the various possible 
outcomes associated with the random quantity are often termed hypotheses, and 
the inference task in this setting is then referred to as hypothesis testing, i.e., the 
task of deciding which hypothesis applies, given measurements or observations. The 
MMSE criterion may not be meaningful in such hypothesis testing problems, but we 
can for instance aim to minimize the probability of an incorrect inference regarding 
which hypothesis actually applies. 
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140 Chapter 8 Estimation with Minimum Mean Square Error 

8.1 ESTIMATION OF A CONTINUOUS RANDOM VARIABLE 

To begin the discussion, let us assume that we are interested in a random variable 
Y and we would like to estimate its value, knowing only its probability density 
function. We will then broaden the discussion to estimation when we have a mea
surement or observation of another random variable X, together with the joint 
probability density function of X and Y . 

Based only on knowledge of the PDF of Y , we wish to obtain an estimate of Y 
— which we denote as ŷ — so as to minimize the mean square error between the 
actual outcome of the experiment and our estimate ŷ. Specifically, we choose ŷ to 
minimize 

E[(Y − ŷ)2] = (y − ŷ)2fY (y) dy . (8.1) 

Differentiating (8.1) with respect to ŷ and equating the result to zero, we obtain 

− 2 (y − ŷ)fY (y) dy = 0 (8.2) 

or 

yfY (y) dy = yfY (y) dy (8.3) 

from which 
y = E[Y ] . (8.4) 

The second derivative of E[(Y − ŷ)2] with respect to ŷ is


2 fY (y) dy = 2 , (8.5) 

which is positive, so (8.4) does indeed define the minimizing value of ŷ. Hence the 
MMSE estimate of Y in this case is simply its mean value, E[Y ]. 

The associated error — the actual MMSE — is found by evaluating the expression 
in (8.1) with ŷ = E[Y ]. We conclude that the MMSE is just the variance of Y , 
namely σY 

2 : 
min E[(Y − ŷ)2] = E[(Y − E[Y ])2] = σ2 . (8.6) Y 

In a similar manner, it is possible to show that the median of Y , which has half 
the probability mass of Y below it and the other half above, is the value of ŷ that 
minimizes the mean absolute deviation, E[ |Y − ŷ| ]. Also, the mode of Y , which 
is the value of y at which the PDF fY (y) is largest, turns out to minimize the 
expected value of an all-or-none cost function, i.e., a cost that is unity when the 
error is outside of a vanishingly small tolerance band, and is zero within the band. 
We will not be pursuing these alternative error metrics further, but it is important 
to be aware that our choice of mean square error, while convenient, is only one of 
many possible error metrics. 

The insights from the simple problem leading to (8.4) and (8.6) carry over directly 
to the case in which we have additional information in the form of the measured or 
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Section 8.1 Estimation of a Continuous Random Variable 141 

observed value x of a random variable X that is related somehow to Y . The only 
change from the previous discussion is that, given the additional measurement, 
we work with the conditional or a posteriori density fY |X (y|x), rather than the 
unconditioned density fY (y), and now our aim is to minimize 

E[{Y − ŷ(x)}2|X = x] = {y − ŷ(x)}2fY |X (y|x) dy . (8.7) 

We have introduced the notation ŷ(x) for our estimate to show that in general it 
will depend on the specific value x. Exactly the same calculations as in the case of 
no measurements then show that 

y(x) = E[Y X = x] , (8.8) 

the conditional expectation of Y , given X = x. The associated MMSE is the vari
ance σ2 of the conditional density fY |X (y|x), i.e., the MMSE is the conditional Y |X 
variance. Thus, the only change from the case of no measurements is that we now 
condition on the obtained measurement. 

Going a further step, if we have multiple measurements, say X1 = x1,X2 = 
x2, ,XL = xL, then we work with the a posteriori density · · · 

fY | X1,X2,··· ,XL 
(y | x1, x2, · · · , xL) . (8.9) 

Apart from this modification, there is no change in the structure of the solutions. 
Thus, without further calculation, we can state the following: 

The MMSE estimate of Y , 
given X1 = x1, ,XL = xL,· · · 

is the conditional expectation of Y : (8.10) 

y(x1, . . . , xL) = E[Y X1 = x1, ,XL = xL]̂ | · · · 

For notational convenience, we can arrange the measured random variables into a 
column vector X, and the corresponding measurements into the column vector x. 
The dependence of the MMSE estimate on the measurements can now be indicated 
by the notation ŷ(x), with 

∫ ∞ 

ŷ(x) = 
−∞ 

y fY |X(y | X = x) dy = E[ Y | X = x ] . (8.11) 

The minimum mean square error (or MMSE) for the given value of X is again the 
conditional variance, i.e., the variance σY 

2 
|X of the conditional density fY |X(y | x). 

EXAMPLE 8.1 MMSE Estimate for Discrete Random Variables 

A discrete-time discrete-amplitude sequence s[n] is stored on a noisy medium. The 
retrieved sequence is r[n]. Suppose at some particular time instant n = n0 we have 
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142 Chapter 8 Estimation with Minimum Mean Square Error 

s[n0] and r[n0] modeled as random variables, which we shall simply denote by S 
and R respectively. From prior measurements, we have determined that S and R 
have the joint probability mass function (PMF) shown in Figure 8.1. 

r 

1 

s
-1 1 

-1 

FIGURE 8.1 Joint PMF of S and R. 

Based on receiving the value R = 1, we would like to make an MMSE estimate ŝ
of S. From (8.10), ŝ = E(S|R = 1), which can be determined from the conditional 
PMF PS|R(s|R = 1), which in turn we can obtain as 

PR,S (R = 1, s)
PS|R(s|R = 1) = 

PR(R = 1) 
. (8.12) 

From Figure 8.1, 

2 
PR(1) = (8.13) 

7 

and 

PR,S (1, s) = 


 

 

0 s = −1 
1/7 s = 0 
1/7 s = +1 

Consequently, 
{ 

1/2 s = 0 
PS|R(s|R = 1) = 

1/2 s = +1 

Thus, the MMSE estimate is ŝ = 1 . Note that although this estimate minimizes 2 
the mean square error, we have not constrained it to take account of the fact that 
S can only have the discrete values of +1, 0 or −1. In a later chapter we will 
return to this example and consider it from the perspective of hypothesis testing, 
i.e., determining which of the three known possible values will result in minimizing 
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Section 8.1 Estimation of a Continuous Random Variable 143 

a suitable error criterion. 

EXAMPLE 8.2 MMSE Estimate of Signal in Additive Noise 

A discrete-time sequence s[n] is transmitted over a noisy channel and retrieved. 
The received sequence r[n] is modeled as r[n] = s[n] + w[n] where w[n] represents 
the noise. At a particular time instant n = n0, suppose r[n0], s[n0] and w[n0] are 
random variables, which we denote as R, S and W respectively. We assume that 

1
2

1
2S and W are independent, that W is uniformly distributed between + and −

and S is uniformly distributed between −1 and +1. The specific received value is 
1
4

, 

R = , and we want the MMSE estimate ŝ for S. From (8.10), 

1 ̂ |
4
) (8.14) s = E(S R = 

1
4 ): which can be determined from fS|R(s R =|

1
4fR|S ( s)fS (s)1 |

fR(
fS|R(s|R = 

4
) = . (8.15) 1

4 ) 

We evaluate separately the numerator and denominator terms in (8.15). The PDF 
fR|S (r

indicated in Figure 8.2 below.


s) is identical in shape to the PDF of W , but with the mean shifted to s, as |
1
4 |s) is as shown in Figure 8.3,Consequently, fR|S (

s)fS (s) is shown in Figure 8.4.and fR|S (
1
4 |

fR|S (r|s) 

r 

1 

− 1
2 + s + 1

2 + s 

FIGURE 8.2 Conditional PDF of R given S, fR|S (r|s). 

1
4

1
4To obtain fS|R(s R|

tained by evaluating the convolution of the PDF’s of S and W 
) we divide Figure 8.4 by fR( ), which can easily be ob=

at the argument 
1
4

1
4More simply, since fS|R(s R|

same as Figure 8.4 but scaled by fR(

) must have total area of unity and it is the =. 
1
4 ), we can easily obtain it by just normalizing 

Figure 8.4 to have an area of 1. The resulting value for ŝ is the mean associated 
1
4with the PDF fS|R(s R =| ), which will be 

1 ̂
4 

. (8.16) s = 
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1 

s 

− 1
4 0 

3
4 

1
4 |s). Plot of fR|S (FIGURE 8.3 

1 
2 

s 
− 1

4
3
40 

1
4 |Plot of fR|S ( s)fS (s). FIGURE 8.4 

1 
12 .The associated MMSE is the variance of this PDF, namely

EXAMPLE 8.3 MMSE Estimate for Bivariate Gaussian Random Variables 

Two random variables X and Y are said to have a bivariate Gaussian joint PDF if 
the joint density of the centered (i.e. zero-mean) and normalized (i.e. unit-variance) 
random variables 

V = 
X − µX 

, W = 
Y − µY 

(8.17) 
σX σY 

is given by 

1 (v2 − 2ρvw + w
2(1 − ρ2) 

2) 
} 

. (8.18) fV,W (v, w) = 
2π

√
1 − ρ2 

exp − 

Here µX and µY are the means of X and Y respectively, and σX , σY are the respec
tive standard deviations of X and Y . The number ρ is the correlation coefficient 
of X and Y , and is defined by 

σXY 
ρ = , with σXY = E[XY ] − µX µY (8.19) 

σX σY 

where σXY is the covariance of X and Y . 

Now, consider ŷ(x), the MMSE estimate of Y given X = x, when X and Y are 
bivariate Gaussian random variables. From (8.10), 

y(x) = E[Y X = x] (8.20) 
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Section 8.2 From Estimates to an Estimator 145 

or, in terms of the zero-mean normalized random variables V and W , 
[ 

x − µX 
] 

y(x) = E (σY W + µY ) V =̂ | 
σX 

= σY E 

[ 

W | V = 
x − 

σX 

µX 
] 

+ µY . (8.21) 

It is straightforward to show with some computation that fW |V (w v) is Gaussian 
with mean ρv, and variance 1 − ρ2, from which it follows that 

| 

[ 
x − µX 

] [ 
x − µX 

] 

E W V = = ρ . (8.22) | 
σX σX 

Combining (8.21) and (8.22), 

y(x) = E[ Y X = x ]̂ | 
σY 

= µY + ρ (x − µX ) (8.23) 
σX 

The MMSE estimate in the case of bivariate Gaussian variables has a nice linear 
(or more correctly, affine, i.e., linear plus a constant) form. 

The minimum mean square error is the variance of the conditional PDF fY |X(y|X = 
x): 

E[ (Y − ŷ(x))2 | X = x ] = σY 
2 (1 − ρ2) . (8.24) 

Note that σY 
2 is the mean square error in Y in the absence of any additional infor

mation. Equation (8.24) shows what the residual mean square error is after we have 
a measurement of X. It is evident and intuitively reasonable that the larger the 
magnitude of the correlation coefficient between X and Y , the smaller the residual 
mean square error. 

8.2 FROM ESTIMATES TO AN ESTIMATOR 

The MMSE estimate in (8.8) is based on knowing the specific value x that the 
random variable X takes. While X is a random variable, the specific value x is not, 
and consequently ŷ(x) is also not a random variable. 

As we move forward in the discussion, it is important to draw a distinction between 
the estimate of a random variable and the procedure by which we form the estimate. 
This is completely analogous to the distinction between the value of a function at 
a point and the function itself. We will refer to the procedure or function that 
produces the estimate as the estimator. 

For instance, in Example 8.1 we determined the MMSE estimate of S for the specific 
value of R = 1. We could more generally determine an estimate of S for each of 
the possible values of R, i.e., −1, 0, and + 1. We could then have a tabulation of 
these results available in advance, so that when we retrieve a specific value of R 
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146 Chapter 8 Estimation with Minimum Mean Square Error 

we can look up the MMSE estimate. Such a table or more generally a function 
of R would correspond to what we term the MMSE estimator. The input to the 
table or estimator would be the specific retrieved value and the output would be 
the estimate associated with that retrieved value. 

We have already introduced the notation ŷ(x) to denote the estimate of Y given 
X = x. The function ŷ( ) determines the corresponding estimator, which we · 
will denote by ŷ(X), or more simply by just Ŷ , if it is understood what random 
variable the estimator is operating on. Note that the estimator Ŷ = ŷ(X) is a 
random variable. We have already seen that the MMSE estimate ŷ(x) is given by 
the conditional mean, E[Y X = x], which suggests yet another natural notation for |
the MMSE estimator: 

Ŷ = ŷ(X) = E[Y |X] . (8.25) 

Note that E[Y X] denotes a random variable, not a number. |
The preceding discussion applies essentially unchanged to the case where we observe 
several random variables, assembled in the vector X. The MMSE estimator in this 
case is denoted by 

Ŷ = ŷ(X) = E[Y |X] . (8.26) 

Perhaps not surprisingly, the MMSE estimator for Y given X minimizes the mean 
square error, averaged over all Y and X. This is because the MMSE estimator 
minimizes the mean square error for each particular value x of X. More formally, 

EY,X 

( 
[Y − ŷ(X)]2 

) 
= EX 

( 
EY |X 

( 
[Y − ŷ(X)]2 | X 

)) 

= 
∫ ∞ ( 

EY |X 

( 
[Y − ŷ(x)]2 | X = x 

) 
fX(x) dx . (8.27) 

−∞ 

(The subscripts on the expectation operators are used to indicate explicitly which 
densities are involved in computing the associated expectations; the densities and 
integration are multivariate when X is not a scalar.) Because the estimate ŷ(x) 
is chosen to minimize the inner expectation EY |X for each value x of X, it also 
minimizes the outer expectation EX, since fX(X) is nonnegative. 

EXAMPLE 8.4 MMSE Estimator for Bivariate Gaussian Random Variables 

We have already, in Example 8.3, constructed the MMSE estimate of one member 
of a pair of bivariate Gaussian random variables, given a measurement of the other. 
Using the same notation as in that example, it is evident that the MMSE estimator 
is simply obtained on replacing x by X in (8.23): 

σY
Ŷ = ŷ(X) = µY + ρ

σX 
(X − µX ) . (8.28) 

The conditional MMSE given X = x was found in the earlier example to be σ2 (1 −Y 
ρ2), which did not depend on the value of x, so the MMSE of the estimator, averaged 
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Section 8.2 From Estimates to an Estimator 147 

over all X, ends up still being σ2 (1 − ρ2). Y 

EXAMPLE 8.5 MMSE Estimator for Signal in Additive Noise 

Suppose the random variable X is a noisy measurement of the angular position Y of 
an antenna, so X = Y + W , where W denotes the additive noise. Assume the noise 
is independent of the angular position, i.e., Y and W are independent random 
variables, with Y uniformly distributed in the interval [−1, 1] and W uniformly 
distributed in the interval [−2, 2]. (Note that the setup in this example is essentially 
the same as in Example 8.2, though the context, notation and parameters are 
different.) 

Given that X = x, we would like to determine the MMSE estimate ŷ(x), the 
resulting mean square error, and the overall mean square error averaged over all 
possible values x that the random variable X can take. Since ŷ(x) is the conditional 
expectation of Y given X = x, we need to determine fY |X (y|x). For this, we first 
determine the joint density of Y and W , and from this the required conditional 
density. 

From the independence of Y and W : 


1 − 2 ≤ w ≤ 2, −1 ≤ y ≤ 1 
fY,W (y, w) = fY (y)fW (w) = 8
 

0 otherwise


�y 
1 

� 
−2 0 2 w 

−1 

FIGURE 8.5 Joint PDF of Y and W for Example 8.5. 

Conditioned on Y = y, X is the same as y + W , uniformly distributed over the 
interval [y − 2, y + 2]. Now 

1 1 1 
fX,Y (x, y) = fX|Y (x|y)fY (y) = ( 

4
)( 

2
) = 

8 

©Alan V. Oppenheim and George C. Verghese, 2010 c



148 Chapter 8 Estimation with Minimum Mean Square Error 

for −1 ≤ y ≤ 1, y − 2 ≤ x ≤ y + 2, and zero otherwise. The joint PDF is therefore 
uniform over the parallelogram shown in the Figure 8.6. 

�y 
1


� 
x
−3 −2 −1 0 1 2 3


−1 

FIGURE 8.6 Joint PDF of X and Y and plot of the MMSE estimator of Y from X

for Example 8.5.


�y �y �y �y �y �y �y 

�1


0 
1


� −1 1
 1
2


1
2


1
2


fY |X (y | −3) fY |X (y | −1) fY |X (y | 1) fY |X (y | 3) 

fY |X (y | −2) fY |X (y | 0) fY |X (y | 2) 

FIGURE 8.7 Conditional PDF fY |X for various realizations of X for Example 8.5. 

Given X = x, the conditional PDF fY |X is uniform on the corresponding vertical 
section of the parallelogram: 

fY |X (y, x) = 


 

 

1
 − 3 ≤ x ≤ −1 , −1 ≤ y ≤ x + 2

3 + x


1
 − 1 ≤ x ≤ 1 , −1 ≤ y ≤ 1 (8.29)
2


1


3 − x 
1 ≤ x ≤ 3 , x − 2 ≤ y ≤ 1
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The MMSE estimate ŷ(x) is the conditional mean of Y given X = x, and the 
conditional mean is the midpoint of the corresponding vertical section of the paral
lelogram. The conditional mean is displayed as the heavy line on the parallelogram 
in the second plot. In analytical form, 


 

 

1 1

+ x − 3 ≤ x < −1 

2 2


y(x) = E[Y 

The minimum mean square error associated with this estimate is the variance of 
the uniform distribution in eq. (8.29), specifically: 

X = x] = 0 − 1 ≤ x < 1
 (8.30)| 
1 1
−
2

+
2 

1 ≤ x ≤ 3
x


X = x]E[{Y − ŷ(x)}2 | 


 

 

(3 + x)2 

− 3 ≤ x < −1 
12


1


3

(3 − x)2


12


− 1 ≤ x < 1 (8.31) 

1 ≤ x ≤ 3


Equation (8.31) specifies the mean square error that results for any specific value 
x of the measurement of X. Since the measurement is a random variable, it is also 
of interest to know what the mean square error is, averaged over all possible values 
of the measurement, i.e. over the random variable X. To determine this, we first 
determine the marginal PDF of X: 

fX (x) = 
fX,Y (x, y) 
fY |X (y | x) 

= 



 

3 + x
 − 3 ≤ x < −1 
8


1


4

− 1 ≤ x < 1


3 − x 
1 ≤ x ≤ 3


8

0 otherwise


This could also be found by convolution, fX = fY ∗ fW , since Y and W are 
statistically independent. Then, 

∫∞ 

EX [EY |X {(Y − ŷ(x)}2 | X = x]] = E[(Y − ŷ(x))2 | X = x]fX (x)dx 

−∞ 

= 

−1 

( 
(3 + x)2 

12


1 3


)( )dx + ( )( )dx + ( 
(3 − x)2 

12


3 + x
 1 1

)( 

3 − x

8


)dx 
8
 3
 4


−3 −1 1 

1

= 

4
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150 Chapter 8 Estimation with Minimum Mean Square Error 

Compare this with the mean square error if we just estimated Y by its mean, namely 
0. The mean square error would then be the variance σY 

2 : 

σ2 [1 − (−1)]2 1 
,= = Y 12 3 

so the mean square error is indeed reduced by allowing ourselves to use knowledge 
of X and of the probabilistic relation between Y and X. 

8.2.1	 Orthogonality 

A further important property of the MMSE estimator is that the residual error 
Y − ŷ(X) is orthogonal to any function h(X) of the measured random variables: 

EY,X [{Y − ŷ(X)}h(X)] = 0 ,	 (8.32) 

where the expectation is computed over the joint density of Y and X. Rearranging 
this, we have the equivalent condition 

EY,X [ŷ(X)h(X)] = EY,X [Y h(X)] , (8.33) 

i.e., the MMSE estimator has the same correlation as Y does with any function of 
X. In particular, choosing h(X) = 1, we find that 

EY,X [ŷ(X)] = EY [Y ] .	 (8.34) 

The latter property results in the estimator being referred to as unbiased: its 
expected value equals the expected value of the random variable being estimated. 
We can invoked the unbiasedness property to interpret (8.32) as stating that the 
estimation error of the MMSE estimator is uncorrelated with any function of the 
random variables used to construct the estimator. 

The proof of the correlation matching property in (8.33) is in the following sequence 
of equalities: 

EY,X [ŷ(X)h(X)] = EX [EY |X [Y |X]h(X)] (8.35)


= EX [EY |X [Y h(X)|X]] (8.36)


= EY,X [Y h(X)] . (8.37)


Rearranging the final result here, we obtain the orthogonality condition in (8.32). 

8.3	 LINEAR MINIMUM MEAN SQUARE ERROR ESTIMATION 

In general, the conditional expectation E(Y X) required for the MMSE estimator |
developed in the preceding sections is difficult to determine, because the conditional 
density fY |X(y|x) is not easily determined. A useful and widely used compromise 
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Section 8.3 Linear Minimum Mean Square Error Estimation 151 

is to restrict the estimator to be a fixed linear (or actually affine, i.e., linear plus 
a constant) function of the measured random variables, and to choose the linear 
relationship so as to minimize the mean square error. The resulting estimator is 
called the linear minimum mean square error (LMMSE) estimator. We begin with 
the simplest case. 

Suppose we wish to construct an estimator for the random variable Y in terms of 
another random variable X, restricting our estimator to be of the form 

Ŷℓ = ŷℓ(X) = aX + b , (8.38) 

where a and b are to be determined so as to minimize the mean square error 

EY,X [(Y − Ŷℓ)
2] = EY,X [{Y − (aX + b)} 2] . (8.39) 

Note that the expectation is taken over the joint density of Y and X; the linear 
estimator is picked to be optimum when averaged over all possible combinations of 
Y and X that may occur. We have accordingly used subscripts on the expectation 
operations in (8.39) to make explicit for now the variables whose joint density the 
expectation is being computed over; we shall eventually drop the subscripts. 

Once the optimum a and b have been chosen in this manner, the estimate of Y , 
given a particular x, is just ŷℓ(x) = ax + b, computed with the already designed 
values of a and b. Thus, in the LMMSE case we construct an optimal linear 
estimator, and for any particular x this estimator generates an estimate that is 
not claimed to have any individual optimality property. This is in contrast to the 
MMSE case considered in the previous sections, where we obtained an optimal 
MMSE estimate for each x, namely E[Y X = x], that minimized the mean square |
error conditioned on X = x. The distinction can be summarized as follows: in 
the unrestricted MMSE case, the optimal estimator is obtained by joining together 
all the individual optimal estimates, whereas in the LMMSE case the (generally 
non-optimal) individual estimates are obtained by simply evaluating the optimal 
linear estimator. 

We turn now to minimizing the expression in (8.39), by differentiating it with 
respect to the parameters a and b, and setting each of the derivatives to 0. (Con
sideration of the second derivatives will show that we do indeed find minimizing 
values in this fashion, but we omit the demonstration.) First differentiating (8.39) 
with respect to b, taking the derivative inside the integral that corresponds to the 
expectation operation, and then setting the result to 0, we conclude that 

EY,X [Y − (aX + b)] = 0 , (8.40) 

or equivalently 
E[Y ] = E[aX + b] = E[Ŷℓ] , (8.41) 

from which we deduce that 
b = µY − aµX , (8.42) 

where µY = E[Y ] = EY,X [Y ] and µX = E[X] = EY,X [X]. The optimum value of 
b specified in (8.42) in effect serves to make the linear estimator unbiased, i.e., the 
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152 Chapter 8 Estimation with Minimum Mean Square Error 

expected value of the estimator becomes equal to the expected value of the random 
variable we are trying to estimate, as (8.41) shows. 

Using (8.42) to substitute for b in (8.38), it follows that 

Ŷℓ = µY + a(X − µX ) . (8.43) 

In other words, to the expected value µY of the random variable Y that we are 
estimating, the optimal linear estimator adds a suitable multiple of the difference 
X − µX between the measured random variable and its expected value. We turn 
now to finding the optimum value of this multiple, a. 

First rewrite the error criterion (8.39) as 

E[{(Y − µY ) − (Ŷℓ − µY )}2] = E[( Ỹ − aX̃)2] , (8.44) 

where 
Ỹ = Y − µY and X̃ = X − µX , (8.45) 

and where we have invoked (8.43) to obtain the second equality in (8.44). Now 
taking the derivative of the error criterion in (8.44) with respect to a, and setting 
the result to 0, we find 

E[( Ỹ − aX̃)X̃] = 0 . (8.46) 

Rearranging this, and recalling that E[Ỹ X̃] = σY X , i.e., the covariance of Y and 
X, and that E[X̃2] = σ2 , we obtain X 

σY X σY 
a = = ρY X 

σ2 σX 
, (8.47) 

X 

where ρY X — which we shall simply write as ρ when it is clear from context what 
variables are involved — denotes the correlation coefficient between Y and X. 

It is also enlightening to understand the above expression for a in terms of the 
vector-space picture for random variables developed in the previous chapter. 

aX̃

FIGURE 8.8 Expression for a from Eq. (8.47) illustrated in vector space. 

The expression (8.44) for the error criterion shows that we are looking for a vector 
aX̃, which lies along the vector X̃, such that the squared length of the error vector 
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Ỹ −aX̃ is minimum. It follows from familiar geometric reasoning that the optimum 
choice of aX̃ must be the orthogonal projection of Ỹ on X̃, and that this projection 
is 

< ˜ X > Y , ˜
X = X .	 (8.48) a ˜ ˜ X > 

˜
< X, ˜

Here, as in the previous chapter, < U, V > denotes the inner product of the vec
tors U and V , and in the case where the “vectors” are random variables, denotes 
E[UV ]. Our expression for a in (8.47) follows immediately. Figure 8.8 shows the 
construction associated with the requisite calculations. Recall from the previous 
chapter that the correlation coefficient ρ denotes the cosine of the angle between 
the vectors Ỹ and X̃. 

The preceding projection operation implies that the error Ỹ − aX̃, which can also 
be written as Y − Ŷℓ, must be orthogonal to X̃ = X − µX . This is precisely what 
(8.46) says. In addition, invoking the unbiasedness of Ŷℓ shows that Y − Ŷℓ must 
be orthogonal to µX (or any other constant), so Y − Ŷℓ is therefore orthogonal to 
X	 itself: 

E[(Y − Ŷℓ)X] = 0 . (8.49) 

In other words, the optimal LMMSE estimator is unbiased and such that the esti
mation error is orthogonal to the random variable on which the estimator is based. 
(Note that the statement in the case of the MMSE estimator in the previous section 
was considerably stronger, namely that the error was orthogonal to any function 
h(X) of the measured random variable, not just to the random variable itself.) 

The preceding development shows that the properties of (i) unbiasedness of the 
estimator, and (ii) orthogonality of the error to the measured random variable, 
completely characterize the LMMSE estimator. Invoking these properties yields 
the LMMSE estimator. 

Going a step further with the geometric reasoning, we find from Pythagoras’s the
orem applied to the triangle in Figure 8.8 that the minimum mean square error 
(MMSE) obtained through use of the LMMSE estimator is 

MMSE = E[( Ỹ − aX̃)2] = E[Ỹ 2](1 − ρ2) = σY 
2 (1 − ρ2) . (8.50) 

This result could also be obtained purely analytically, of course, without recourse 
to the geometric interpretation. The result shows that the mean square error σY 

2 

that we had prior to estimation in terms of X is reduced by the factor 1 − ρ2 when 
we use X in an LMMSE estimator. The closer that ρ is to +1 or −1 (corresponding 
to strong positive or negative correlation respectively), the more our uncertainty 
about Y is reduced by using an LMMSE estimator to extract information that X 
carries about Y . 

Our results on the LMMSE estimator can now be summarized in the following 
expressions for the estimator, with the associated minimum mean square error 
being given by (8.50): 

σY X	 σY
Ŷℓ = ŷℓ(X) = µY + 

σ2 (X − µX ) = µY + ρ
σX 

(X − µX ) , (8.51) 
X 
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or the equivalent but perhaps more suggestive form 

Ŷℓ − µY 
= ρ

X − µX 
. (8.52) 

σY σX 

The latter expression states that the normalized deviation of the estimator from its 
mean is ρ times the normalized deviation of the observed variable from its mean; the 
more highly correlated Y and X are, the more closely we match the two normalized 
deviations. 

Note that our expressions for the LMMSE estimator and its mean square error are 
the same as those obtained in Example 8.4 for the MMSE estimator in the bivariate 
Gaussian case. The reason is that the MMSE estimator in that case turned out to 
be linear (actually, affine), as already noted in the example. 

EXAMPLE 8.6 LMMSE Estimator for Signal in Additive Noise 

We return to Example 8.5, for which we have already computed the MMSE esti
mator, and we now design an LMMSE estimator. Recall that the random vari
able X denotes a noisy measurement of the angular position Y of an antenna, so 
X = Y + W , where W denotes the additive noise. We assume the noise is inde
pendent of the angular position, i.e., Y and W are independent random variables, 
with Y uniformly distributed in the interval [−1, 1] and W uniformly distributed 
in the interval [−2, 2]. 

For the LMMSE estimator of Y in terms of X, we need to determine the respective 
means and variances, as well as the covariance, of these random variables. It is easy 
to see that 

1 42 2= 0 , µW = 0 , µX = 0 , σ , σµY = = ,Y W3 3 

5 1 1 
σ2 

X = σ2 
Y + σ2 2 

Y, σY X = σ
3 

, ρY X = √
5 

= = .W 3 

2 

The LMMSE estimator is accordingly 

1 ̂
5 
X , Yℓ = 

and the associated MMSE is 

Y (1 − ρ2) = 
4 

. 
15 

σ

1 
3
1 
4

obtained 
obtained 

This MMSE should be compared with the (larger) mean square error of
if we simply use µY = 0 as our estimator for Y , and the (smaller) value
using the MMSE estimator in Example 8.5. 

©Alan V. Oppenheim and George C. Verghese, 2010 c



Section 8.3 Linear Minimum Mean Square Error Estimation 155 

EXAMPLE 8.7 Single-Point LMMSE Estimator for Sinusoidal Random Process 

Consider a sinusoidal signal of the form 

X(t) = A cos(ω0t + Θ) (8.53) 

where ω0 is assumed known, while A and Θ are statistically independent random 
variables, with the PDF of Θ being uniform in the interval [0, 2π]. Thus X(t) is a 
random signal, or equivalently a set or “ensemble” of signals corresponding to the 
various possible outcomes for A and Θ in the underlying probabilistic experiment. 
We will discuss such signals in more detail in the next chapter, where we will refer 
to them as random processes. The value that X(t) takes at some particular time 
t = t0 is simply a random variable, whose specific value will depend on which 
outcomes for A and Θ are produced by the underlying probabilistic experiment. 

Suppose we are interested in determining the LMMSE estimator for X(t1) based 
on a measurement of X(t0), where t0 and t1 are specified sampling times. In other 
words, we want to choose a and b in 

X̂(t1) = aX(t0) + b (8.54) 

so as to minimize the mean square error between X(t1) and X̂(t1). 

We have established that b must be chosen to ensure the estimator is unbiased: 

E[X̂(t1)] = aE[X(t0)] + b = E[X(t1)] . 

Since A and Θ are independent, 

∫ 2π 1 
E[X(t0)] = E{A} cos(ω0t0 + θ) dθ = 0 

2π0 

and similarly E[X(t1)] = 0, so we choose b = 0. 

Next we use the fact that the error of the LMMSE estimator is orthogonal to the 
data: 

E[( X̂(t1) − X(t1))X(t0)] = 0 

and consequently 
aE[X2(t0)] = E[X(t1)X(t0)] 

or 
E[X(t1)X(t0)] 

a = . (8.55) 
E[X2(t0)] 

The numerator and denominator in (8.55) are respectively 

∫ 2π 1 
E[X(t1)X(t0)] = E[A2] cos(ω0t1 + θ) cos(ω0t0 + θ) dθ 

2π 

E[A2] 
0 

= cos{ω0(t1 − t0)}
2 
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and E[X2(t0)] = E[A2] . Thus a = cos{ω0(t1 − t0)}, so the LMMSE estimator is 2 

X(t1) = X(t0) cos{ω0(t1 − t0)} . (8.56) 

It is interesting to observe that the distribution of A doesn’t play a role in this 
equation. 

To evaluate the mean square error associated with the LMMSE estimator, we com
pute the correlation coefficient between the samples of the random signal at t0 and 
t1. It is easily seen thatρ = a = cos{ω0(t1 − t0)}, so the mean square error is 

E[A2] (
1 − cos 2 {ω0(t1 − t0)}

) 
= 

E[A2] 
sin2 {ω0(t1 − t0)} . (8.57) 

2 2 

We now extend the LMMSE estimator to the case where our estimation of a random 
variable Y is based on observations of multiple random variables, say X1, . . . ,XL, 
gathered in the vector X. The affine estimator may then be written in the form 

L

Ŷℓ = ŷℓ(X) = a0 + 
∑ 

aj Xj . (8.58) 
j=1 

As we shall see, the coefficient ai of this LMMSE estimator can be found by solving 
a linear system of equations that is completely defined by the first and second 
moments (i.e., means, variances and covariances) of the random variables Y and 
Xj . The fact that the model (8.58) is linear in the parameters ai is what results in a 
linear system of equations; the fact that the model is affine in the random variables 
is what makes the solution only depend on their first and second moments. Linear 
equations are easy to solve, and first and second moments are generally easy to 
determine, hence the popularity of LMMSE estimation. 

The development below follows along the same lines as that done earlier in this 
section for the case where we just had a single observed random variable X, but 
we use the opportunity to review the logic of the development and to provide a few 
additional insights. 

We want to minimize the mean square error 

L

E
[(

Y − (a0 + 
∑ 

aj Xj )
)2] 

, (8.59) 
j=1 

where the expectation is computed using the joint density of Y and X. We use the 
joint density rather than the conditional because the parameters are not going to 
be picked to be best for a particular set of measured values x — otherwise we could 
do as well as the nonlinear estimate in this case, by setting a0 = E[Y X = x] and |
setting all the other ai to zero. Instead, we are picking the parameters to be the best 
averaged over all possible X. The linear estimator will in general not be as good 
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as the unconstrained estimator, except in special cases (some of them important, 
as in the case of bivariate Gaussian random variables) but this estimator has the 
advantage that it is easy to solve for, as we now show. 

To minimize the expression in (8.59), we differentiate it with respect to ai for 
i = 0, 1, , L, and set each of the derivatives to 0. (Again, calculations involving · · · 
second derivatives establish that we do indeed obtain minimizing values, but we 
omit these calculation here.) First differentiating with respect to a0 and setting 
the result to 0, we conclude that 

L

E[Y ] = E[ a0 + 
∑ 

aj Xj ] = E[Ŷℓ] (8.60) 
j=1 

or 
L

a0 = µY − 
∑ 

aj µXj , (8.61) 
j=1 

where µY = E[Y ] and µXj = E[Xj ]. This optimum value of a0 serves to make the 
linear estimator unbiased, in the sense that (8.60) holds, i.e., the expected value of 
the estimator is the expected value of the random variable we are trying to estimate. 

Using (8.61) to substitute for a0 in (8.58), it follows that 

L

Ŷℓ = µY + 
∑ 

aj (Xj − µXj ) . (8.62) 
j=1 

In other words, the estimator corrects the expected value µY of the variable we 
are estimating, by a linear combination of the deviations Xj − µXj between the 
measured random variables and their respective expected values. 

Taking account of (8.62), we can rewrite our mean square error criterion (8.59) as 

L

E[{(Y − µY ) − (Ŷℓ − µY )}2] = E
[( 

Ỹ − 
∑ 

aj X̃j )
)2] 

, (8.63) 
j=1 

where 
Ỹ = Y − µY and X̃j = Xj − µXj . (8.64) 

Differentiating this with respect to each of the remaining coefficients ai, i = 1, 2, ...L, 
and setting the result to zero produces the equations 

L

E[( Ỹ − 
∑ 

aj X̃j )X̃i] = 0 i = 1, 2, ..., L . (8.65) 
j=1 

or equivalently, if we again take account of (8.62), 

E[(Y − Ŷℓ)X̃i] = 0 i = 1, 2, ..., L . (8.66) 
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Yet another version follows on noting from (8.60) that Y − Ŷℓ is orthogonal to all 
constants, in particular to µXi , so 

E[(Y − Ŷℓ)Xi] = 0 i = 1, 2, ..., L . (8.67) 

All three of the preceding sets of equations express, in slightly different forms, the 
orthogonality of the estimation error to the random variables used in the estimator. 
One moves between these forms by invoking the unbiasedness of the estimator. 
The last of these, (8.67), is the usual statement of the orthogonality condition that 
governs the LMMSE estimator. (Note once more that the statement in the case of 
the MMSE estimator in the previous section was considerably stronger, namely that 
the error was orthogonal to any function h(X) of the measured random variables, 
not just to the random variables themselves.) Rewriting this last equation as 

E[Y Xi] = E[ŶℓXi] i = 1, 2, ..., L (8.68) 

yields an equivalent statement of the orthogonality condition, namely that the 
LMMSE estimator Ŷℓ has the same correlations as Y with the measured variables 
Xi. 

The orthogonality and unbiasedness conditions together determine the LMMSE 
estimator completely. Also, the preceding developments shows that the first and 
second moments of Y and the Xi are exactly matched by the corresponding first 
and second moments of Ŷℓ and the Xi. It follows that Y and Ŷℓ cannot be told 
apart on the basis of only first and second moments with the measured variables 
Xi. 

We focus now on (8.65), because it provides the best route to a solution for the 
coefficients aj , j = 1, . . . , L. This set of equations can be expressed as 

L∑ 
σXi Xj aj = σXiY , (8.69) 

j=1 

where σXiXj is the covariance of Xi and Xj (so σXiXi is just the variance σ2 ), Xi 

and σXiY is the covariance of Xi and Y . Collecting these equations in matrix form, 
we obtain 

 
σX1X1 σX1X2 · · · σX1XL 

  
a1 

  
σX1Y 

 

 

σX2X1 

. . . 

σX2X2 

. . . 

· · · 
. . . 

σX2XL 

. . . 

 

 

a2 
. . . 

 
= 

 

σX2Y 
. . . 

 
. (8.70) 

σXLX1 σXL X2 · · · σXLXL aL σXLY 

This set of equations is referred to as the normal equations. We can rewrite the 
normal equations in more compact matrix notation: 

(CXX) a = CXY (8.71) 

where the definitions of CXX, a, and CXY should be evident on comparing the last 
two equations. The solution of this set of L equations in L unknowns yields the 
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{aj } for j = 1, , L, and these values may be substituted in (8.62) to completely · · · 
specify the estimator. In matrix notation, the solution is 

a = (CXX)−1CXY . (8.72) 

It can be shown quite straightforwardly (though we omit the demonstration) that 
the minimum mean square error obtained with the LMMSE estimator is 

σY 
2 − CY X(CXX)−1CXY = σY 

2 − CY Xa , (8.73) 

where CY X is the transpose of CXY . 

EXAMPLE 8.8 Estimation from Two Noisy Measurements 

R1 

↓⊕ 
X1→ → 

|
Y → 

| ⊕ 
X2→ → 

↑
R2 

FIGURE 8.9 Illustration of relationship between random variables from Eq. (8.75) 
for Example 8.8. 

Assume that Y , R1 and R2 are mutually uncorrelated, and that R1 and R2 have zero 
means and equal variances. We wish to find the linear MMSE estimator for Y , given 
measurements of X1 and X2. This estimator takes the form Ŷℓ = a0 +a1X1 +a2X2. 
Our requirement that Ŷℓ be unbiased results in the constraint 

a0 = µY − a1µX1 − a2µX2 = µY (1 − a1 − a2) (8.74) 

Next, we need to write down the normal equations, for which some preliminary 
calculations are required. Since 

X1 = Y + R1


X2 = Y + R2 (8.75)


and Y , R1 and R2 are mutually uncorrelated, we find 

E[Xi 
2] = E[Y 2] + E[R2 

i ] , 

E[X1X2] = E[Y 2] , 

E[XiY ] = E[Y 2] . (8.76) 
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The normal equations for this case thus become 
[ 

σ2 + σ2 σ2 
[ 

σ2 
Y 

2 2 2 2σ σ σ σ+ Y 

[	
σ2 + σ2 

−σ2 
R 

Y 

Y

R 

Y 

Y

R

Y

Y

] [ 
a1 

] 

] [ 
2σY

Yσ2 

(8.77) = 
a2 

from which we conclude that 
[ 

a1 
] 

2σ+ R 

2σ− Y 
2σY

1 
= 

(σ2	 + σ2 

σ2 

= . 
R 

R

2 22σ σ+ 
Y 

Y

Y − σ4 
Y [ ]

1 

)2a2 

(8.78) 
1 

Finally, therefore, 

2(σR2σ+ R

1 2 2σ X σ+ +1 YY

2 2σ σRY

2σ2 
Y 

and applying (8.73) we get that the associated minimum mean square error (MMSE) 
is 

Ŷℓ X2) (8.79) = µY 

.	 (8.80) 

2 2sonable values at extreme ranges of the signal-to-noise ratio σ /σRY

2 22σ σ+ RY

One can easily check that both the estimator and the associated MMSE take rea
. 
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