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WSS Processes 

Reading: Chapter 10 

Some preliminaries: We’ve introduced the mean function µX (t) = E[X(t)] and autocorre-
lation function RXX (t1, t2) = E[X(t1)X(t2)] of a random process X(t) in last Wednesday’s 
lecture, and the notion of wide-sense (or weak-sense) stationarity, WSS, in last Thursday’s 
recitation. For a WSS process, the mean function does not depend on time, so µX (t) = µX , 
and the autocorrelation function depends only on the lag τ = t2 − t1 rather than on t1 and 
t2 individually, so RXX (t + τ, t) = RXX (τ, 0) for all t. We can therefore streamline the nota-
tion for the autocorrelation function of a WSS process X(t) to RXX (τ). Note also that the 
autocovariance function CXX (t1, t2) can be computed as RXX (t1, t2)−µX (t1)µX (t2); for a WSS 

2process this becomes CXX (τ ) = RXX (τ) − µX . 

Problem 7.1 

A waveform used in a digital communication system is modeled as a random signal (or 
process) X(t) with the following properties: 

• The signal is piecewise constant over intervals (or “slots”) of length T , and has the value 
Ak in the kth interval, where the values {Ak} form an i.i.d. sequence with mean 0 and 
variance σ2 

A for each k. 

• The start time of the first interval following the time origin t = 0 is equally likely to 
be any value between 0 and T . Thus X(t) = A1 for D < t < D + T , where D is 
uniformly distributed in the interval 0 < D < T . (This is to model the situation where 
the transmitter and receiver clocks are not synchronized, so the actual start of the first 
slot is not known at the receiver.) 

(a) Draw a labeled sketch of a typical realization of this process, i.e., a typical signal, to help 
you visualize what’s going on. 

(b) What is µX (t) = E[X(t)]? � � 
(c) What is RXX (t1, t2) = RXX (t2, t1) when |t1 − t2| > T ? 

(d) Choose t1 and t2 such that 0 < t1 < t2 < T , and determine RXX (t1, t2). (Your analysis 
will probably be helped by separately considering two cases: first where 0 < D < t1 or 
t2 < D < T , and second where t1 < D < t2.) 
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(e) Write RXX (t1 + `T, t2 + `T ) in terms of RXX (t1, t2) for an arbitrary integer `. 

(f) Putting together all the above parts, you can conclude that the process is WSS. What is 
RXX (τ), where τ = t1 − t2? 

(g) Did you need the (zero-mean) Ak and Ai for k 6 i to be independent for your analysis = 
above to work, or would it have sufficed to have them be uncorrelated? 

Problem 7.2 

Consider a DT random process X[n] defined as follows: the values at distinct times are 
chosen independently; for n even, X[n] is +1 or −1 with equal probability; for n odd, X[n] = 1 

3 
9 1with probability 10 and X[n] = −3 with probability The process is clearly not strict-sense 10 . 

stationary. Determine the mean and autocorrelation functions of the process, and thus decide 
whether the process is wide-sense stationary. 

Problem 7.3 

Problem 10.34 (which is Problem 10.38 in the softcover version). 

Problem 7.4 

This problem develops the condition for a DT WSS process to be ergodic in mean 
value (see definition below). The CT case is developed in Problem 10.43 of SSI, which is 
Problem 10.36 in the softcover version, if you wish to look there for connections or inspiration. 

Consider the random variable Y obtained by time-averaging a WSS process X[·] over the 
interval [−L, L]: 

LX1 
Y = X[n] . 

2L + 1 
n=−L 

This quantity is the (local) time-average of the process X[·] (where “local” refers to the fact 
that the average is taken in the vicinity of time 0 — but our eventual interest will be in the 
case L % ∞). For any particular realization x[·] of the process, the random variable Y takes 
the value 

LX1 
y = x[n] . 

2L + 1 
n=−L 

(We will usually be less fussy about distinguishing notationally between a random variable and 
a particular realized value of it, but it is worth doing in the present context.) The values y 
that Y takes in different experiments (or realizations) will be centered around the mean value 
E[Y ] = µY of Y , with a spread that is indicated by the standard deviation σY of Y . 
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(a) Show that E[Y ] = µY = µX , so the expected value of the time-average of the random 
process X[·] is the ensemble-average of the process. 

(b) Find an explicit expression for the variance σ2 of Y in terms of the autocovariance functionY 
CXX [m] of X[·]. (To keep your calculations clean, your first step should be to relate the e edeviation Y = Y − µY to the relevant deviations X[n] = X[n] − µX .) 

Check/hint: You should be able to write your expression for σ2 in the form Y 

K � �X1 |m|
1 − CXX [m]

(K + 1) K + 1 
m=−K 

for an appropriately chosen K – what K? 

A WSS process X[·] for which σ2 & 0 as L % ∞ has the property that time-averages Y 
computed in different experiments cluster more and more closely (as L %∞) around the 
ensemble mean µY = µX , because the variance of this time-average tends to 0. We say in 
such a case, where the time-average of a WSS process X[·] tends to its ensemble mean, 
that the process is ergodic in mean value. This is a significant generalization of the Weak 
Law of Large Numbers beyond the case of processes that are uncorrelated across time, 
to the more general case of WSS processes. So it is of interest to know what conditions 
on the original process X[·] will guarantee that σ2 & 0 as L % ∞. This motivates the Y 
following questions. 

(c) For each of the following processes in (i)-(iii), use the expression you derived in (b) to 
determine whether σ2 & 0 as L %∞. Note that it is not necessary to actually evaluate Y 
your expression in (b) exactly for the following cases; it could suffice, depending on what 
you are trying to establish, to determine an upper bound on σ2 that tends to 0 as L %∞,Y 
or determine a lower bound on σ2 that tends to a positive value as L %∞.Y 

(i) CXX [m] nonzero over only a finite range of m, say |m| ≤ M , and 0 everywhere else. 
A particular case of this is an iid process, where CXX [m] = σ2 δ[m]. (Note that iid X 
implies the autocovariance is nonzero only at m = 0, but the converse is not true: 
having an autocovariance of this form doesn’t mean that samples at different times 
are independent, only that they are uncorrelated.) 

(ii) CXX [m] = 3α|m| for some positive or negative α satisfying |α| < 1. 

(iii) CXX [m] = (0.8)|m| + 2. 

Some subtler cases that we don’t ask you to solve here, but for which it turns out the σ2 
Y 

you computed in (b) tends to 0 as L %∞, are the following: 

(iv) CXX [m] & 0 as |m| % ∞ , 

and 
(v) CXX [m] = cos(Ω0m) . 
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Note that (i) and (ii) above are special cases of (iv). 

The sufficient condition (iv) is a good one to remember: Any WSS process X[·] whose 
autocovariance function CXX [m] tends to 0 as |m| tends to ∞ is ergodic in mean value. 
This condition, though sufficient, is not necessary — as case (v) shows; in case (v) the 
autocovariance function does not tend to any limit as |m| % ∞ but the process is still 
ergodic in mean value (because σ2 from (b) does in fact tend to 0 as L %∞).Y 

4 



MIT OpenCourseWare 
https://ocw.mit.edu 

6.011 Signals, Systems and Inference 
Spring 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	6011-cover.pdf
	Blank Page




