
       
               

                 
  

Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.011: Signals, Systems and Inference 

Spring 2018 

Problem Set 4 

Reachability and Observability, Transfer Functions, Hidden Modes, Observers 

Reading: Finish Chapter 5, and read Sections 6.1–6.2. 

NOTE: Quiz 1 portions will run through the material on this problem set and everything 
done in lectures and recitations this coming week. You can bring 2 sheets (4 sides) of notes 
to the quiz. 

As usual, start on this problem set early! 

Problem 4.1 

Problem 5.3 (which is Problem 5.13 in softcover), but instead of the forward Euler approx-
imation given in the problem, use the backward Euler approximation: h i1 

q̇(nT ) ≈ q(nT ) − q(nT − T ) . 
T 

Also, assume the input x(t) is identically 0, or equivalently that b = 0. 

[For part (c), the forward Euler approximation causes T to be limited to an upper value 
determined by the eigenvalues. Is there such a limit in the case of the backward Euler approxi-
mation? Of course, the smaller the value of T , the better the approximation to the CT solution 
in either case, but part (c) is only asking about asymptotic stability of the DT system.] 

Problem 4.2 

Problem 5.7 (which is Problem 5.6 in softcover), and also determine the value of the product 
β1ξ1 as well as the product β2ξ2, where these symbols are as defined in the chapter. 

Problem 4.3 

Problem 5.23 (which is Problem 5.24 in softcover), but in (b) and what follows, use 

s + 2 
H2(s) = , 

s − 2 
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and in (c)(ii) also determine for what values of γ the system is BIBO stable. 

Problem 4.4 

Consider an undriven 2nd-order LTI state-space system of the form 

q[n + 1] = Aq[n] and y[n] = c T q[n] + µ[n] , 

where µ[n] denotes an additive noise on the measured output y[n]. Suppose A has distinct 
eigenvalues λ1 and λ2, with associated eigenvectors v1 and v2, and denote cT v1, cT v2 by ξ1, 
ξ2 respectively. Assume the system is observable, i.e., ξ1 and ξ2 are both nonzero. 

(a) We know the initial condition can be written in the form 

q[0] = α1v1 + α2v2 

for some weights α1 and α2. Express q[1] in the same form, as a linear combination of v1 

and v2, expressing the weights in terms of α1, α2, λ1, λ2. 

(b) Suppose we don’t know the initial condition q[0]. Let’s see how well we can infer this 
initial state — or equivalently infer α1 and α2 — from the two measurements y[0] and 
y[1]. Begin by expressing each of these output values in terms of α1, α2, λ1, λ2, ξ1, ξ2, 
µ[0], µ[1], and arranging your results in the form " # " # " # 

y[0] α1 µ[0]
= M + . 

y[1] α2 µ[1] 

Write down M. 

(c) Assuming no measurement noise, obtain explicit expressions for α1 and α2 in terms of 
y[0] and y[1]. 

(d) If there is measurement noise, then the actual values of α1 and α2 will differ from the 
values you computed in (c) under the assumption of no measurement noise. Use your 
analysis above to explain how this discrepancy between the actual and estimated value 
behaves in the following two cases: 

(i) ξ1 or ξ2 becomes very small; 

(ii) λ1 − λ2 becomes very small. 

Problem 4.5 

You can turn in your solution to this in recitation on Tuesday March 13. 
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A model of a rotating machine driven by a piecewise-constant torque takes the state-space 
form " # " # " # " # 

q1[k + 1] 1 T q1[k] T 2/2 
q[k + 1] = = + x[k]

q2[k + 1] 0 1 q2[k] T 

= Aq[k] + bx[k] 

where the state vector q[k] comprises the position q1[k] and velocity q2[k] of the rotor, sampled 
at time t = kT ; x[k] is the constant value of the torque in the interval kT ≤ t < kT + T . 
Assume for this problem that T = 0.5. 

Now suppose that we have a noisy measurement of the position, so the available quantity is " # 
q1[k]y[k] = [1 0] + ζ[k] = c T q[k] + ζ[k] , 
q2[k] 

where ζ[k] denotes the unknown noise. One way to estimate the actual position and velocity is 
by using an observer, which has the form " # � �` 1 T bqb[k + 1] = Aqb[k] + bx[k] − y[k] − c q[k] . 

` 2 

Here qb[k] is our estimate of q[k]. Let the observer error be denoted by qe[k] = q[k] − qb[k]. 
(a) Determine the state-space equation that qe[k] satisfies; we’ll refer to this as the error 

equation. 

(b) Show that by proper choice of the observer gains ` 1 and ` 2 we can obtain arbitrary self-
conjugate natural frequencies for the error equation. What choice of ` 1 and ` 2 will place 
the natural frequencies of the error equation at 0 and 0.8 ? 

(c) For your choice of observer gains in (b), and assuming q1[0] = 4, q2[0] = 1, with zero 
input for all time (i.e., x[k] ≡ 0) and zero measurement noise (i.e., ζ[k] ≡ 0), set qb1[0] = 0 
and qb2[0] = 0, then compare plots of qb1[k] and qb2[k] with plots of the underlying state 
variables q1[k] and q2[k], for 0 ≤ k ≤ 20. 

Also show plots of the estimation error qe1[k] and qe2[k] over this same time window for the 
case of zero-mean measurement noise ζ[k] that takes the values +0.2 or −0.2 with equal 
probability at each instant, independently of the values taken at other instants. 

Problem 4.6 (Optional) 

For additional practice, try Problems 5.2, 5.4, 5.11, 5.12, 5.13, 5.17, 5.18 (which are Problems 
5.1, 5.3, 5.17, 5.10, 5.11, 5.7, 5.8 in softcover SSI). 
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