6.012 - Microelectronic Devices and Circuits

Lecture 22 - Diff-Amp Anal. III: Cascode, µA-741 - Outline

Announcements

DP: Discussion of Q13, Q13' impact. Gain expressions.

• Review - Output Stages

DC Offset of an OpAmp Push-pull/totem pole output stages

• Specialty Stages, cont. - more useful transistor pairings The Marvelous Cascode Darlington Connection

A Commercial Op-Amp Example - the µA-741 The schematic and chip layout Understanding the circuit

• Bounding mid-band - starting high frequency issues Review of Mid-band concept The Method of Open-Circuit Time Constants

DC off-set at the output of an Operational Amplifier:

DC off-set:

The node between Q_{12} and Q_{13} is a high impedance node whose quiescent voltage can only be determined by invoking symmetry.*

In any practical Op Amp, a very small differential input, v_{IN1} - v_{IN2} , is require to make the voltage on this node (and V_{OUT}) zero.

DC off-set at the output of an Op Amp, cont:

DC off-set:

The transfer characteristic, v_{OUT} vs $(v_{IN1} - v_{IN2})$, will not in general go through the origin, i.e.,

 $V_{OUT} = A_{vd}(V_{IN1} - V_{IN2}) + V_{OFFSET}$

In the example in the figure A_{vd} is -2 x 10⁶, and V_{OFFSET} is 0.1 V.

In a practice, an Op Amp will be used in a feed-back circuit like the example shown to the left, and the value of v_{OUT} with $v_{IN} = 0$ will be quite small. For this example (in which $A_{vd} = -2 \times 10^6$, and $V_{OFFSET} =$ 0.1 V) v_{OUT} is only 0.1 µV.

In the D.P. you are asked for this value for your design.

Specialty pairings: Push-pull or Totem Pole Output Pairs

A source follower output:

- Using a single source follower as the output stage must be biased with a relatively large drain current to achieve a large output voltage swing, which in turn dissipates a lot of quiescent power.

Specialty Pairings: The Push-pull or Totem Pole Output

A stacked pair of complementary emitter- or source-followers

Specialty pairings: Push-pull or Totem Pole in Design Prob.

Comments/Observations:

- The D.P. output stage involves four emitter follower building blocks arranged as two parallel cascades of two emitter follower stages each.

+

VIN

- Q₂₀ and Q₂₁ with joined sources at the output node is called a push-pull, or totem pole pair.

- They determine the output resistance of the amplifier.
- Ideally the output stage voltage gain is ≈ 1.

- The input resistance, r_{out}, is highest about zero output, and there it is the output resistance of the two follower stages in parallel.
- r_{in} is lowest at this point, too, and is a parallel combination, also.

Clif Fonstad, 12/1/09

(discussed in Lecture 21)

Specialty pairings: Push-pull or Totem Pole, cont.

Voltage gain:

- The design problem uses a bipolar totem pole. The gain and linearity of this stage depend on the bias level of the totem pole. The gain is higher for with higher bias, but the power dissipation is also.

To calculate the large signal transfer characteristic of the bipolar totem pole we begin with v_{OUT} :

$$v_{OUT} = R_L \left(-i_{E20} - i_{E21} \right)$$

The emitter currents depend on $(v_{IN} - v_{OUT})$:

$$i_{E20} = -I_{E20}e^{(v_{IN}-v_{OUT})/V_t}, \quad i_{E21} = I_{E21}e^{-(v_{IN}-v_{OUT})/V_t}$$

Putting this all together, and using $I_{E21} = -I_{E20}$, we have: $v_{out} = R_L I_{E20} \left(e^{(v_{in} - v_{out})/V_t} - e^{-(v_{in} - v_{out})/V_t} \right)$

$$=2R_L I_{E20} \sinh(v_{in} - v_{out})/V_t$$

We can do a spread-sheet solution by picking a set of values for $(v_{IN} - v_{OUT})$, using the last equation to calculate the v_{OUT} , using this v_{OUT} to calculate v_{IN} , and finally plotting v_{OUT} vs v_{IN} . The results are seen on the next slide.

Voltage gain, cont.: - With a 50 Ω load and for several different bias levels we find:

Clif Fonstad, 12/1/09

Note:

- The voltage gains of the third-stage emitter followers (Q_{25} and Q_{26}) will likely be very close to one, but that of the stage-four followers might be noticeably less than one.

Specialty Pairings: The Cascode

<u>Common-source stage followed by a common gate stage</u>

Specialty Pairings: The Cascode, cont.

Clif Fonstad, 12/1/09

Specialty Pairings: The Cascode, cont.

Cascode two-port:

The equivalent Cascode transistor:

The cascode two-port is that of a single MOSFET with the g_m of the first transistor, and the output conductance of common gate.

Clif Fonstad, 12/1/09

Specialty Pairings: The Cascode, cont.

Cascode current mirrors: alternative connections

The output resistances and load characteristics are identical, but the Wilson load is balanced better in bipolar applications, and the enhanced swing cascode has the largest output voltage swing of any of them.

Specialty pairings: Cascodes in a DP-like amplifier

Comments/Observations:

- This stage is essentially a normal source-coupled pair with a current mirror load, but there are differences..
- The <u>first</u> difference is that two driver transistors are cascode pairs.
- The <u>second</u> difference is that the current mirror load is also cascoded.
- The <u>third</u> difference is that the stage is not biased with a current source, but is instead biased by the first gain stage.

Specialty pairings: The Cascode, cont.

The Folded Cascode: another variation

Specialty pairings: The Darlington Connection

A bipolar pair stage used to get a large input resistance

Multi-stage amplifier analysis and design: The µA741

The circuit: a full schematic

Clif Fonstad, 12/1/09

Lecture 22 - Slide 19

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Another interesting discussion of the µA741:

Clif Fonstad, 12/1/09

http://en.wikipedia.org/wiki/Operational_amplifier

Lecture 22 - Slide 20

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Multi-stage amplifier analysis and design: The µA741

The chip: a bipolar IC

Clif Fonstad, 12/1/09

Lecture 22 - Slide 21

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Mid-band, cont: The mid-band range of frequencies

In this range of frequencies the gain is a constant, and the phase shift between the input and output is also constant (either 0° or 180°).

All of the <u>parasitic and intrinsic device capacitances</u> are effectively open circuits

All of the <u>biasing and coupling capacitors</u> are effectively short circuits

Bounding mid-band: frequency range of constant gain and phase

Clif Fonstad, 12/1/09

Estimating ω_{HI} - Open Circuit Time Constants Method

Open circuit time constants (OCTC) recipe:

- 1. Pick one C_{gd} , C_{gs} , C_{μ} , C_{π} , etc. (call it C_1) and assume all others are open circuits.
- 2. Find the resistance in parallel with C_1 and call it R_1 .
- 3. Calculate $1/R_1C_1$ and call it ω_1 .
- 4. Repeat this for each of the N different C_{gd} 's, C_{gs} 's, C_{μ} 's, C_{π} 's, etc., in the circuit finding $\omega_1, \omega_2, \omega_3, ..., \omega_N$.
- 5. Define ω_{HI}^* as the inverse of the sum of the inverses of the N ω_i 's:

$$ω_{HI}^{*} = [Σ(ω_i)^{-1}]^{-1} = [ΣR_iC_i]^{-1}$$

6. The true ω_{HI} is similar to, but greater than, ω_{HI}^* .

Observations:

The OCTC method gives a conservative, low estimate for ω_{HI} . The sum of inverses favors the smallest ω_i , and thus the capacitor with the largest RC product dominates ω_{HI}^* .

Estimating ω_{LO} - Short Circuit Time Constants Method

Short circuit time constants (SCTC) recipe:

- 1. Pick one C_0 , C_1 , C_E , etc. (call it C_1) and assume all others are short circuits.
- 2. Find the resistance in parallel with C_1 and call it R_1 .
- 3. Calculate $1/R_1C_1$ and call it ω_1 .
- 4. Repeat this for each of the M different C_I's, C_O's, C_E's, C_S's, etc., in the circuit finding $\omega_1, \omega_2, \omega_3, ..., \omega_M$.
- 5. Define ω_{LO}^* as the sum of the M ω_i 's:

 $\omega_{\text{LO}}^* = [\Sigma(\omega_j)] = [\Sigma(R_jC_j)^{-1}]$

6. The true ω_{LO} is similar to, but less than, ω_{LO}^* .

Observations:

The SCTC method gives a conservative, high estimate for ω_{LO} . The sum of inverses favors the largest ω_j , and thus the capacitor with the smallest RC product dominates ω_{LO}^* .

Summary of OCTC and SCTC results $\log |A_{vd}|$ (Mid-band Range) $(WLO)^* (WH)^* ($

- **<u>OCTC</u>**: an estimate for ω_{HI}
 - ω_H* is a weighted sum of ω's associated with <u>device capacitances</u>: (add RC's and invert)
 - 2. Smallest ω (largest RC) dominates ω_{HI}^*
 - 3. Provides a lower bound on ω_{HI}
- **<u>SCTC</u>**: an estimate for ω_{LO}
 - 1. ω_{LO}^* is a weighted sum of w's associated with <u>bias capacitors</u>: (add ω 's directly)
 - 2. Largest ω (smallest RC) dominates ω_{LO}^*
 - 3. Provides a upper bound on ω_{LO}

6.012 - Microelectronic Devices and Circuits Lecture 22 - Diff-Amp Analysis II - Summary

- Design Problem Issues Q13, Q13'; voltage gains
- Specialty stages useful pairings

Source coupled pairs: MOS
Push-pull output: Two followers in vertical chain

 Very low output resistance
 Shared duties for positive and negative output swings

Cascode: Common-source/emitter performance

 Greatly enhanced output resistance
 Find greatly enhanced high frequency performance also

Darlington: Increased input resistance ona bipolar stage
µA 741: A workhorse IC showing all of these pairs

• Bounding mid-band

Open Circuit Time Constant Method: An estimate of ω_{HI} **Short Circuit Time Constant Method:** An estimate of ω_{LO} 6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.