MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Problem Set No. 2

Issued: September 16, 2009

Due: September 23, 2009

Reading Assignments:

Lecture 3	(9/17/09)	- Chap. 4 (4.2, 4.3), Chap. 6 (begin)
Lecture 4	(9/22/09)	- Chap. 6 (all), Chap. 7 (7.1, 7.2)
Lecture 5	(9/24/09)	- Chap. 5 (5.1)

- <u>Problem 1</u> We say that we can approximate the minority carrier lifetime in Si as being infinite even though it is really several hundred milliseconds, because this is a long time compared to the time it takes a hole or an electron to drift or diffuse across a device to a contact or junction. To verify this statement consider the following two questions:
 - a) With <u>drift</u>, the time it takes a carrier to go (transit) a distance d is: $\tau_{tr/Drift} = d/\mu E$.
 - i) How long does it take an electron ($\mu_e = 1600 \text{ cm}^2/\text{V-s}$) to drift 10 μ m in a field of 10 V/cm?
 - ii) Repeat a) i) for a hole ($\mu_h = 600 \text{ cm}^2/\text{V-s}$).
 - iii) Compare your answers in a) i) and a) ii) to a lifetime of 100 ms. Is approximating this lifetime as "infinite" in this situation reasonable?
 - b) With <u>diffusion</u>, the time it takes a carrier to transit a distance d is: $\tau_{tr/Diff} = d^2/2D$.
 - i) How long does it take an electron ($D_e = 40 \text{ cm}^2/\text{s}$) to diffuse 10 μ m in a concentration gradient of 10^{15} cm^{-3} per micron?
 - ii) Repeat b) i) for a hole $(D_h = 15 \text{ cm}^2/\text{s})$.
 - iii) Compare your answers in a) i) and a) ii) to a lifetime of 100 ms. Is approximating this lifetime as "infinite" in this situation reasonable?

<u>Problem 2</u> - Do Problem 3.9, Parts a thru d, in the course textbook.

<u>Problem 3</u> - Two short problems:

- i) Do Problem 4.3 in the course textbook.
- ii) Do Problem 4.2 in the course textbook.

<u>Problem 4</u> - The n-type silicon sample illustrated on the top of the next page is 10 microns (μm) long and has metal ohmic contacts, A and B, on either end. The net donor concentration is 1 x 10¹⁵ cm⁻³; the electron mobility, $\mu_{e'}$ is 1600 cm²/V-s; and the hole mobility, $\mu_{h'}$ is 600 cm²/V-s. The electrostatic potential of the metal relative to intrinsic silicon is 0.2V, and the intrinsic carrier concentration at room temperature is 10¹⁰ cm⁻³.

Use the 60 mV rule to calculate the electrostatic potential, i.e. use $(kT/q) \ln 10 = 0.06 V$.

- a) What are the thermal equilibrium (i.e., no light, $v_{AB} = 0$ V) hole and electron concentrations and electrostatic potential, $\phi_{n\nu}$ in this silicon?
- b) Sketch the electrostatic potential, $\phi(x)$, with $v_{AB} = 0$ V, going from the metal on the left, through the silicon, and into the metal on the right. Dimension your sketch; label any significant features.
- c) Assume now that $v_{AB} = 0.5$ V. Sketch the electrostatic potential, $\phi(x)$, with $v_{AB} = 0.5$ V, going from the metal on the left, through the silicon, and into the metal on the right (where you should assume the value of ϕ is unchanged, i.e. 0.2 V). Dimension your sketch and label any significant features, including $\phi(0)$.
- e) When $v_{AB} = 0.5$ V, what are the electron and hole <u>drift</u> current densities, J_e^{dr} and J_h^{dr} , respectively, at $x = 0 \ \mu m$

Next consider a sample similar to our original sample, except that it is doped p-type with a net acceptor concentration of 1×10^{15} cm⁻³ in the region from $x = 0 \ \mu$ m to $x = +5 \ \mu$ m as shown below. **Note**: This is a diode with the p-side to the right.

- f) Sketch the electrostatic potential, $\phi(x)$, going from the metal on the left, through the silicon, and into the metal on the right, with $v_{AB} = 0$ V. Dimension your sketch and label any significant features, including the value of $\phi(0)$.
- g) The diode is now <u>reverse biased</u> by $v_{AB} = 0.5$ V. Sketch the electrostatic potential, $\phi(x)$, now, going from the metal on the left, through the silicon, and into the metal on the right. Keep ϕ in the metal to the right of $x = 5 \mu m$ at the value it had in Part f. Dimension your sketch and label any significant features, including the value of $\phi(0)$.

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.